200 lines
7.4 KiB
Python
200 lines
7.4 KiB
Python
|
from typing import List, Optional
|
||
|
|
||
|
from torchgen.api import dispatcher
|
||
|
from torchgen.api.types import (
|
||
|
BaseCppType,
|
||
|
BaseCType,
|
||
|
Binding,
|
||
|
boolT,
|
||
|
ConstRefCType,
|
||
|
CType,
|
||
|
longT,
|
||
|
NamedCType,
|
||
|
tensorT,
|
||
|
)
|
||
|
from torchgen.model import (
|
||
|
Argument,
|
||
|
BaseTy,
|
||
|
BaseType,
|
||
|
FunctionSchema,
|
||
|
NativeFunction,
|
||
|
NativeFunctionsViewGroup,
|
||
|
)
|
||
|
|
||
|
|
||
|
# This file describes the translation of JIT schema to API's used
|
||
|
# when creating view lambdas that are used by the functionalization pass.
|
||
|
# There are two types of lambdas: forward lambdas and reverse lambdas.
|
||
|
# These API's mostly follow the dispatcher API, with a few quirks:
|
||
|
# - The lambda capture has to convert reference types to value types
|
||
|
# - While the forward lambda just directly calls into the at::_ops API
|
||
|
# (following the dispatcher convention), the logic here for the reverse lambda
|
||
|
# is responsible for generating both the call-site, and the declarations
|
||
|
# (which are implemented manually in the at::functionalization::impl namespace).
|
||
|
|
||
|
# The lambdas generated for each view op in the functionalization pass are of the form
|
||
|
# [capture_arguments](outer_arguments) -> returns_type {
|
||
|
# return name(inner_arguments);
|
||
|
# }
|
||
|
|
||
|
# Define some specific lambda input arguments.
|
||
|
base_binding = Binding(
|
||
|
name="base",
|
||
|
nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))),
|
||
|
argument=Argument(
|
||
|
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
|
||
|
),
|
||
|
default=None,
|
||
|
)
|
||
|
mutated_view_binding = Binding(
|
||
|
name="mutated_view",
|
||
|
nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))),
|
||
|
argument=Argument(
|
||
|
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
|
||
|
),
|
||
|
default=None,
|
||
|
)
|
||
|
mutated_view_idx_binding = Binding(
|
||
|
name="mutated_view_idx",
|
||
|
nctype=NamedCType(name="mutated_view_idx", type=BaseCType(longT)),
|
||
|
argument=Argument(
|
||
|
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
|
||
|
),
|
||
|
default=None,
|
||
|
)
|
||
|
reapply_views_binding = Binding(
|
||
|
name="reapply_views",
|
||
|
nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)),
|
||
|
argument=Argument(
|
||
|
name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None
|
||
|
),
|
||
|
default=None,
|
||
|
)
|
||
|
|
||
|
InverseReturnModeT = BaseCppType("at::functionalization", "InverseReturnMode")
|
||
|
inverse_return_mode_binding = Binding(
|
||
|
name="inverse_return_mode",
|
||
|
nctype=NamedCType(name="inverse_return_mode", type=BaseCType(InverseReturnModeT)),
|
||
|
argument=Argument(
|
||
|
name="inverse_return_mode",
|
||
|
# NB: not actually a bool but it doesn't matter because this isn't used
|
||
|
type=BaseType(BaseTy.bool),
|
||
|
default=None,
|
||
|
annotation=None,
|
||
|
),
|
||
|
default=None,
|
||
|
)
|
||
|
|
||
|
|
||
|
# The lambda capture itself doesn't have a name.
|
||
|
# The name returned here corresponds to the name of the inner function called by the lambda.
|
||
|
def name(
|
||
|
g: NativeFunctionsViewGroup,
|
||
|
*,
|
||
|
is_reverse: bool,
|
||
|
include_namespace: bool,
|
||
|
reapply_views: Optional[bool] = None,
|
||
|
) -> str:
|
||
|
if reapply_views is None:
|
||
|
# reapply_views is only important for the fwd lambda,
|
||
|
# since we always plumb the runtime "reapply_views" argument into the reverse function.
|
||
|
assert is_reverse
|
||
|
if is_reverse:
|
||
|
return reverse_name(g.view, include_namespace)
|
||
|
# in the forward case, we just directly call into the at::_ops API (so we always need the namespace)
|
||
|
assert include_namespace
|
||
|
assert g.view_copy is not None
|
||
|
api_name = (
|
||
|
g.view.func.name.unambiguous_name()
|
||
|
if reapply_views
|
||
|
else g.view_copy.func.name.unambiguous_name()
|
||
|
)
|
||
|
return f"at::_ops::{api_name}::call"
|
||
|
|
||
|
|
||
|
def reverse_name(f: NativeFunction, include_namespace: bool) -> str:
|
||
|
# for the reverse: we plumb the "reapply_views" flag into that function and support
|
||
|
# both copy and non-copy variants. (We could avoid doing that, but that would require
|
||
|
# writing out twice as many view inverse functions).
|
||
|
api_name = f.func.name.unambiguous_name()
|
||
|
# in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't)
|
||
|
if include_namespace:
|
||
|
return f"at::functionalization::FunctionalInverses::{api_name}_inverse"
|
||
|
else:
|
||
|
return f"{api_name}_inverse"
|
||
|
|
||
|
|
||
|
def capture_arguments(func: FunctionSchema, *, is_reverse: bool) -> List[Binding]:
|
||
|
# capture arguments include all arguments except `self`.
|
||
|
# Importantly, they don't include any C++ reference types (or else we'll get a dangling reference in the capture),
|
||
|
# So any reference types (IntArrayRef) need to be converted to value types (vector<int64_t>)
|
||
|
args = func.arguments.flat_all
|
||
|
assert args[0].type == BaseType(BaseTy.Tensor)
|
||
|
non_self_args = args[1:]
|
||
|
non_self_value_bindings = [
|
||
|
dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args
|
||
|
]
|
||
|
|
||
|
all_bindings = [
|
||
|
inverse_return_mode_binding if is_reverse else reapply_views_binding
|
||
|
]
|
||
|
all_bindings.extend(non_self_value_bindings)
|
||
|
return all_bindings
|
||
|
|
||
|
|
||
|
def returns_type(func: FunctionSchema) -> CType:
|
||
|
# Assertion: all view ops return tensor-like outputs
|
||
|
assert len(func.returns) >= 1
|
||
|
for ret in func.returns:
|
||
|
assert ret.type.is_tensor_like()
|
||
|
# However, the return type of the lambda is always an individual tensor.
|
||
|
# For multi-tensor outputs, each tensor needs to be tracked individually.
|
||
|
return BaseCType(tensorT)
|
||
|
|
||
|
|
||
|
def outer_arguments(*, is_reverse: bool) -> List[Binding]:
|
||
|
if is_reverse:
|
||
|
return [base_binding, mutated_view_binding, mutated_view_idx_binding]
|
||
|
else:
|
||
|
return [base_binding, mutated_view_idx_binding]
|
||
|
|
||
|
|
||
|
def inner_call_index(func: FunctionSchema) -> Optional[Binding]:
|
||
|
# For view ops that return multiple tensors (like `split`), we generate a separate lambda for each output.
|
||
|
# When we replay a view op that returns multiple tensors, we need to index into the output appropriately
|
||
|
if len(func.returns) > 1 or (
|
||
|
len(func.returns) == 1 and func.returns[0].type.is_list_like()
|
||
|
):
|
||
|
return mutated_view_idx_binding
|
||
|
return None
|
||
|
|
||
|
|
||
|
def inner_arguments(func: FunctionSchema, is_reverse: bool) -> List[Binding]:
|
||
|
args = func.arguments.flat_all
|
||
|
assert args[0].type == BaseType(BaseTy.Tensor)
|
||
|
non_self_args = args[1:]
|
||
|
# The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API.
|
||
|
# Both of these follow the dispatcher API.
|
||
|
non_self_bindings = [dispatcher.argument(a) for a in non_self_args]
|
||
|
if not is_reverse:
|
||
|
# the forward lambda swaps out the original tensor argument with the lambd arg "base"
|
||
|
return [base_binding] + non_self_bindings
|
||
|
else:
|
||
|
# the reverse lambda does the same, but with an additional "mutated_view" arg
|
||
|
# additionally, we have a calling convention: for view ops that return multiple tensor outputs
|
||
|
# their corresponding view_inverse function takes in an additional index argument.
|
||
|
index_binding = inner_call_index(func)
|
||
|
if index_binding is not None:
|
||
|
return [
|
||
|
base_binding,
|
||
|
mutated_view_binding,
|
||
|
inverse_return_mode_binding,
|
||
|
index_binding,
|
||
|
] + non_self_bindings
|
||
|
else:
|
||
|
return [
|
||
|
base_binding,
|
||
|
mutated_view_binding,
|
||
|
inverse_return_mode_binding,
|
||
|
] + non_self_bindings
|