115 lines
4.5 KiB
Python
115 lines
4.5 KiB
Python
|
from pathlib import Path
|
||
|
from typing import Any, Callable, Optional, Tuple, Union
|
||
|
|
||
|
import PIL.Image
|
||
|
|
||
|
from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg
|
||
|
from .vision import VisionDataset
|
||
|
|
||
|
|
||
|
class Flowers102(VisionDataset):
|
||
|
"""`Oxford 102 Flower <https://www.robots.ox.ac.uk/~vgg/data/flowers/102/>`_ Dataset.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.
|
||
|
|
||
|
Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The
|
||
|
flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of
|
||
|
between 40 and 258 images.
|
||
|
|
||
|
The images have large scale, pose and light variations. In addition, there are categories that
|
||
|
have large variations within the category, and several very similar categories.
|
||
|
|
||
|
Args:
|
||
|
root (str or ``pathlib.Path``): Root directory of the dataset.
|
||
|
split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
|
||
|
transform (callable, optional): A function/transform that takes in a PIL image and returns a
|
||
|
transformed version. E.g, ``transforms.RandomCrop``.
|
||
|
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
|
||
|
download (bool, optional): If true, downloads the dataset from the internet and
|
||
|
puts it in root directory. If dataset is already downloaded, it is not
|
||
|
downloaded again.
|
||
|
"""
|
||
|
|
||
|
_download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/"
|
||
|
_file_dict = { # filename, md5
|
||
|
"image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"),
|
||
|
"label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"),
|
||
|
"setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"),
|
||
|
}
|
||
|
_splits_map = {"train": "trnid", "val": "valid", "test": "tstid"}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
root: Union[str, Path],
|
||
|
split: str = "train",
|
||
|
transform: Optional[Callable] = None,
|
||
|
target_transform: Optional[Callable] = None,
|
||
|
download: bool = False,
|
||
|
) -> None:
|
||
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
||
|
self._split = verify_str_arg(split, "split", ("train", "val", "test"))
|
||
|
self._base_folder = Path(self.root) / "flowers-102"
|
||
|
self._images_folder = self._base_folder / "jpg"
|
||
|
|
||
|
if download:
|
||
|
self.download()
|
||
|
|
||
|
if not self._check_integrity():
|
||
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
||
|
|
||
|
from scipy.io import loadmat
|
||
|
|
||
|
set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True)
|
||
|
image_ids = set_ids[self._splits_map[self._split]].tolist()
|
||
|
|
||
|
labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True)
|
||
|
image_id_to_label = dict(enumerate((labels["labels"] - 1).tolist(), 1))
|
||
|
|
||
|
self._labels = []
|
||
|
self._image_files = []
|
||
|
for image_id in image_ids:
|
||
|
self._labels.append(image_id_to_label[image_id])
|
||
|
self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg")
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self._image_files)
|
||
|
|
||
|
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
|
||
|
image_file, label = self._image_files[idx], self._labels[idx]
|
||
|
image = PIL.Image.open(image_file).convert("RGB")
|
||
|
|
||
|
if self.transform:
|
||
|
image = self.transform(image)
|
||
|
|
||
|
if self.target_transform:
|
||
|
label = self.target_transform(label)
|
||
|
|
||
|
return image, label
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f"split={self._split}"
|
||
|
|
||
|
def _check_integrity(self):
|
||
|
if not (self._images_folder.exists() and self._images_folder.is_dir()):
|
||
|
return False
|
||
|
|
||
|
for id in ["label", "setid"]:
|
||
|
filename, md5 = self._file_dict[id]
|
||
|
if not check_integrity(str(self._base_folder / filename), md5):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def download(self):
|
||
|
if self._check_integrity():
|
||
|
return
|
||
|
download_and_extract_archive(
|
||
|
f"{self._download_url_prefix}{self._file_dict['image'][0]}",
|
||
|
str(self._base_folder),
|
||
|
md5=self._file_dict["image"][1],
|
||
|
)
|
||
|
for id in ["label", "setid"]:
|
||
|
filename, md5 = self._file_dict[id]
|
||
|
download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)
|