257 lines
10 KiB
Python
257 lines
10 KiB
Python
|
import os
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
from PIL import Image
|
||
|
|
||
|
from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg
|
||
|
from .vision import VisionDataset
|
||
|
|
||
|
|
||
|
class _LFW(VisionDataset):
|
||
|
|
||
|
base_folder = "lfw-py"
|
||
|
download_url_prefix = "http://vis-www.cs.umass.edu/lfw/"
|
||
|
|
||
|
file_dict = {
|
||
|
"original": ("lfw", "lfw.tgz", "a17d05bd522c52d84eca14327a23d494"),
|
||
|
"funneled": ("lfw_funneled", "lfw-funneled.tgz", "1b42dfed7d15c9b2dd63d5e5840c86ad"),
|
||
|
"deepfunneled": ("lfw-deepfunneled", "lfw-deepfunneled.tgz", "68331da3eb755a505a502b5aacb3c201"),
|
||
|
}
|
||
|
checksums = {
|
||
|
"pairs.txt": "9f1ba174e4e1c508ff7cdf10ac338a7d",
|
||
|
"pairsDevTest.txt": "5132f7440eb68cf58910c8a45a2ac10b",
|
||
|
"pairsDevTrain.txt": "4f27cbf15b2da4a85c1907eb4181ad21",
|
||
|
"people.txt": "450f0863dd89e85e73936a6d71a3474b",
|
||
|
"peopleDevTest.txt": "e4bf5be0a43b5dcd9dc5ccfcb8fb19c5",
|
||
|
"peopleDevTrain.txt": "54eaac34beb6d042ed3a7d883e247a21",
|
||
|
"lfw-names.txt": "a6d0a479bd074669f656265a6e693f6d",
|
||
|
}
|
||
|
annot_file = {"10fold": "", "train": "DevTrain", "test": "DevTest"}
|
||
|
names = "lfw-names.txt"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
root: Union[str, Path],
|
||
|
split: str,
|
||
|
image_set: str,
|
||
|
view: str,
|
||
|
transform: Optional[Callable] = None,
|
||
|
target_transform: Optional[Callable] = None,
|
||
|
download: bool = False,
|
||
|
) -> None:
|
||
|
super().__init__(os.path.join(root, self.base_folder), transform=transform, target_transform=target_transform)
|
||
|
|
||
|
self.image_set = verify_str_arg(image_set.lower(), "image_set", self.file_dict.keys())
|
||
|
images_dir, self.filename, self.md5 = self.file_dict[self.image_set]
|
||
|
|
||
|
self.view = verify_str_arg(view.lower(), "view", ["people", "pairs"])
|
||
|
self.split = verify_str_arg(split.lower(), "split", ["10fold", "train", "test"])
|
||
|
self.labels_file = f"{self.view}{self.annot_file[self.split]}.txt"
|
||
|
self.data: List[Any] = []
|
||
|
|
||
|
if download:
|
||
|
self.download()
|
||
|
|
||
|
if not self._check_integrity():
|
||
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
||
|
|
||
|
self.images_dir = os.path.join(self.root, images_dir)
|
||
|
|
||
|
def _loader(self, path: str) -> Image.Image:
|
||
|
with open(path, "rb") as f:
|
||
|
img = Image.open(f)
|
||
|
return img.convert("RGB")
|
||
|
|
||
|
def _check_integrity(self) -> bool:
|
||
|
st1 = check_integrity(os.path.join(self.root, self.filename), self.md5)
|
||
|
st2 = check_integrity(os.path.join(self.root, self.labels_file), self.checksums[self.labels_file])
|
||
|
if not st1 or not st2:
|
||
|
return False
|
||
|
if self.view == "people":
|
||
|
return check_integrity(os.path.join(self.root, self.names), self.checksums[self.names])
|
||
|
return True
|
||
|
|
||
|
def download(self) -> None:
|
||
|
if self._check_integrity():
|
||
|
print("Files already downloaded and verified")
|
||
|
return
|
||
|
url = f"{self.download_url_prefix}{self.filename}"
|
||
|
download_and_extract_archive(url, self.root, filename=self.filename, md5=self.md5)
|
||
|
download_url(f"{self.download_url_prefix}{self.labels_file}", self.root)
|
||
|
if self.view == "people":
|
||
|
download_url(f"{self.download_url_prefix}{self.names}", self.root)
|
||
|
|
||
|
def _get_path(self, identity: str, no: Union[int, str]) -> str:
|
||
|
return os.path.join(self.images_dir, identity, f"{identity}_{int(no):04d}.jpg")
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f"Alignment: {self.image_set}\nSplit: {self.split}"
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.data)
|
||
|
|
||
|
|
||
|
class LFWPeople(_LFW):
|
||
|
"""`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset.
|
||
|
|
||
|
Args:
|
||
|
root (str or ``pathlib.Path``): Root directory of dataset where directory
|
||
|
``lfw-py`` exists or will be saved to if download is set to True.
|
||
|
split (string, optional): The image split to use. Can be one of ``train``, ``test``,
|
||
|
``10fold`` (default).
|
||
|
image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or
|
||
|
``deepfunneled``. Defaults to ``funneled``.
|
||
|
transform (callable, optional): A function/transform that takes in a PIL image
|
||
|
and returns a transformed version. E.g, ``transforms.RandomRotation``
|
||
|
target_transform (callable, optional): A function/transform that takes in the
|
||
|
target and transforms it.
|
||
|
download (bool, optional): If true, downloads the dataset from the internet and
|
||
|
puts it in root directory. If dataset is already downloaded, it is not
|
||
|
downloaded again.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
root: str,
|
||
|
split: str = "10fold",
|
||
|
image_set: str = "funneled",
|
||
|
transform: Optional[Callable] = None,
|
||
|
target_transform: Optional[Callable] = None,
|
||
|
download: bool = False,
|
||
|
) -> None:
|
||
|
super().__init__(root, split, image_set, "people", transform, target_transform, download)
|
||
|
|
||
|
self.class_to_idx = self._get_classes()
|
||
|
self.data, self.targets = self._get_people()
|
||
|
|
||
|
def _get_people(self) -> Tuple[List[str], List[int]]:
|
||
|
data, targets = [], []
|
||
|
with open(os.path.join(self.root, self.labels_file)) as f:
|
||
|
lines = f.readlines()
|
||
|
n_folds, s = (int(lines[0]), 1) if self.split == "10fold" else (1, 0)
|
||
|
|
||
|
for fold in range(n_folds):
|
||
|
n_lines = int(lines[s])
|
||
|
people = [line.strip().split("\t") for line in lines[s + 1 : s + n_lines + 1]]
|
||
|
s += n_lines + 1
|
||
|
for i, (identity, num_imgs) in enumerate(people):
|
||
|
for num in range(1, int(num_imgs) + 1):
|
||
|
img = self._get_path(identity, num)
|
||
|
data.append(img)
|
||
|
targets.append(self.class_to_idx[identity])
|
||
|
|
||
|
return data, targets
|
||
|
|
||
|
def _get_classes(self) -> Dict[str, int]:
|
||
|
with open(os.path.join(self.root, self.names)) as f:
|
||
|
lines = f.readlines()
|
||
|
names = [line.strip().split()[0] for line in lines]
|
||
|
class_to_idx = {name: i for i, name in enumerate(names)}
|
||
|
return class_to_idx
|
||
|
|
||
|
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
||
|
"""
|
||
|
Args:
|
||
|
index (int): Index
|
||
|
|
||
|
Returns:
|
||
|
tuple: Tuple (image, target) where target is the identity of the person.
|
||
|
"""
|
||
|
img = self._loader(self.data[index])
|
||
|
target = self.targets[index]
|
||
|
|
||
|
if self.transform is not None:
|
||
|
img = self.transform(img)
|
||
|
|
||
|
if self.target_transform is not None:
|
||
|
target = self.target_transform(target)
|
||
|
|
||
|
return img, target
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return super().extra_repr() + f"\nClasses (identities): {len(self.class_to_idx)}"
|
||
|
|
||
|
|
||
|
class LFWPairs(_LFW):
|
||
|
"""`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset.
|
||
|
|
||
|
Args:
|
||
|
root (str or ``pathlib.Path``): Root directory of dataset where directory
|
||
|
``lfw-py`` exists or will be saved to if download is set to True.
|
||
|
split (string, optional): The image split to use. Can be one of ``train``, ``test``,
|
||
|
``10fold``. Defaults to ``10fold``.
|
||
|
image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or
|
||
|
``deepfunneled``. Defaults to ``funneled``.
|
||
|
transform (callable, optional): A function/transform that takes in a PIL image
|
||
|
and returns a transformed version. E.g, ``transforms.RandomRotation``
|
||
|
target_transform (callable, optional): A function/transform that takes in the
|
||
|
target and transforms it.
|
||
|
download (bool, optional): If true, downloads the dataset from the internet and
|
||
|
puts it in root directory. If dataset is already downloaded, it is not
|
||
|
downloaded again.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
root: str,
|
||
|
split: str = "10fold",
|
||
|
image_set: str = "funneled",
|
||
|
transform: Optional[Callable] = None,
|
||
|
target_transform: Optional[Callable] = None,
|
||
|
download: bool = False,
|
||
|
) -> None:
|
||
|
super().__init__(root, split, image_set, "pairs", transform, target_transform, download)
|
||
|
|
||
|
self.pair_names, self.data, self.targets = self._get_pairs(self.images_dir)
|
||
|
|
||
|
def _get_pairs(self, images_dir: str) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[int]]:
|
||
|
pair_names, data, targets = [], [], []
|
||
|
with open(os.path.join(self.root, self.labels_file)) as f:
|
||
|
lines = f.readlines()
|
||
|
if self.split == "10fold":
|
||
|
n_folds, n_pairs = lines[0].split("\t")
|
||
|
n_folds, n_pairs = int(n_folds), int(n_pairs)
|
||
|
else:
|
||
|
n_folds, n_pairs = 1, int(lines[0])
|
||
|
s = 1
|
||
|
|
||
|
for fold in range(n_folds):
|
||
|
matched_pairs = [line.strip().split("\t") for line in lines[s : s + n_pairs]]
|
||
|
unmatched_pairs = [line.strip().split("\t") for line in lines[s + n_pairs : s + (2 * n_pairs)]]
|
||
|
s += 2 * n_pairs
|
||
|
for pair in matched_pairs:
|
||
|
img1, img2, same = self._get_path(pair[0], pair[1]), self._get_path(pair[0], pair[2]), 1
|
||
|
pair_names.append((pair[0], pair[0]))
|
||
|
data.append((img1, img2))
|
||
|
targets.append(same)
|
||
|
for pair in unmatched_pairs:
|
||
|
img1, img2, same = self._get_path(pair[0], pair[1]), self._get_path(pair[2], pair[3]), 0
|
||
|
pair_names.append((pair[0], pair[2]))
|
||
|
data.append((img1, img2))
|
||
|
targets.append(same)
|
||
|
|
||
|
return pair_names, data, targets
|
||
|
|
||
|
def __getitem__(self, index: int) -> Tuple[Any, Any, int]:
|
||
|
"""
|
||
|
Args:
|
||
|
index (int): Index
|
||
|
|
||
|
Returns:
|
||
|
tuple: (image1, image2, target) where target is `0` for different indentities and `1` for same identities.
|
||
|
"""
|
||
|
img1, img2 = self.data[index]
|
||
|
img1, img2 = self._loader(img1), self._loader(img2)
|
||
|
target = self.targets[index]
|
||
|
|
||
|
if self.transform is not None:
|
||
|
img1, img2 = self.transform(img1), self.transform(img2)
|
||
|
|
||
|
if self.target_transform is not None:
|
||
|
target = self.target_transform(target)
|
||
|
|
||
|
return img1, img2, target
|