Traktor/myenv/Lib/site-packages/torchvision/datasets/ucf101.py

132 lines
5.4 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from torch import Tensor
from .folder import find_classes, make_dataset
from .video_utils import VideoClips
from .vision import VisionDataset
class UCF101(VisionDataset):
"""
`UCF101 <https://www.crcv.ucf.edu/data/UCF101.php>`_ dataset.
UCF101 is an action recognition video dataset.
This dataset consider every video as a collection of video clips of fixed size, specified
by ``frames_per_clip``, where the step in frames between each clip is given by
``step_between_clips``. The dataset itself can be downloaded from the dataset website;
annotations that ``annotation_path`` should be pointing to can be downloaded from `here
<https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip>`_.
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
elements will come from video 1, and the next three elements from video 2.
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
frames in a video might be present.
Internally, it uses a VideoClips object to handle clip creation.
Args:
root (str or ``pathlib.Path``): Root directory of the UCF101 Dataset.
annotation_path (str): path to the folder containing the split files;
see docstring above for download instructions of these files
frames_per_clip (int): number of frames in a clip.
step_between_clips (int, optional): number of frames between each clip.
fold (int, optional): which fold to use. Should be between 1 and 3.
train (bool, optional): if ``True``, creates a dataset from the train split,
otherwise from the ``test`` split.
transform (callable, optional): A function/transform that takes in a TxHxWxC video
and returns a transformed version.
output_format (str, optional): The format of the output video tensors (before transforms).
Can be either "THWC" (default) or "TCHW".
Returns:
tuple: A 3-tuple with the following entries:
- video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames
- audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
and `L` is the number of points
- label (int): class of the video clip
"""
def __init__(
self,
root: Union[str, Path],
annotation_path: str,
frames_per_clip: int,
step_between_clips: int = 1,
frame_rate: Optional[int] = None,
fold: int = 1,
train: bool = True,
transform: Optional[Callable] = None,
_precomputed_metadata: Optional[Dict[str, Any]] = None,
num_workers: int = 1,
_video_width: int = 0,
_video_height: int = 0,
_video_min_dimension: int = 0,
_audio_samples: int = 0,
output_format: str = "THWC",
) -> None:
super().__init__(root)
if not 1 <= fold <= 3:
raise ValueError(f"fold should be between 1 and 3, got {fold}")
extensions = ("avi",)
self.fold = fold
self.train = train
self.classes, class_to_idx = find_classes(self.root)
self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
video_list = [x[0] for x in self.samples]
video_clips = VideoClips(
video_list,
frames_per_clip,
step_between_clips,
frame_rate,
_precomputed_metadata,
num_workers=num_workers,
_video_width=_video_width,
_video_height=_video_height,
_video_min_dimension=_video_min_dimension,
_audio_samples=_audio_samples,
output_format=output_format,
)
# we bookkeep the full version of video clips because we want to be able
# to return the metadata of full version rather than the subset version of
# video clips
self.full_video_clips = video_clips
self.indices = self._select_fold(video_list, annotation_path, fold, train)
self.video_clips = video_clips.subset(self.indices)
self.transform = transform
@property
def metadata(self) -> Dict[str, Any]:
return self.full_video_clips.metadata
def _select_fold(self, video_list: List[str], annotation_path: str, fold: int, train: bool) -> List[int]:
name = "train" if train else "test"
name = f"{name}list{fold:02d}.txt"
f = os.path.join(annotation_path, name)
selected_files = set()
with open(f) as fid:
data = fid.readlines()
data = [x.strip().split(" ")[0] for x in data]
data = [os.path.join(self.root, *x.split("/")) for x in data]
selected_files.update(data)
indices = [i for i in range(len(video_list)) if video_list[i] in selected_files]
return indices
def __len__(self) -> int:
return self.video_clips.num_clips()
def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
video, audio, info, video_idx = self.video_clips.get_clip(idx)
label = self.samples[self.indices[video_idx]][1]
if self.transform is not None:
video = self.transform(video)
return video, audio, label