155 lines
5.7 KiB
Python
155 lines
5.7 KiB
Python
|
from functools import partial
|
||
|
from typing import Any, Optional, Union
|
||
|
|
||
|
from torch import nn, Tensor
|
||
|
from torch.ao.quantization import DeQuantStub, QuantStub
|
||
|
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNet_V2_Weights, MobileNetV2
|
||
|
|
||
|
from ...ops.misc import Conv2dNormActivation
|
||
|
from ...transforms._presets import ImageClassification
|
||
|
from .._api import register_model, Weights, WeightsEnum
|
||
|
from .._meta import _IMAGENET_CATEGORIES
|
||
|
from .._utils import _ovewrite_named_param, handle_legacy_interface
|
||
|
from .utils import _fuse_modules, _replace_relu, quantize_model
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"QuantizableMobileNetV2",
|
||
|
"MobileNet_V2_QuantizedWeights",
|
||
|
"mobilenet_v2",
|
||
|
]
|
||
|
|
||
|
|
||
|
class QuantizableInvertedResidual(InvertedResidual):
|
||
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||
|
super().__init__(*args, **kwargs)
|
||
|
self.skip_add = nn.quantized.FloatFunctional()
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
if self.use_res_connect:
|
||
|
return self.skip_add.add(x, self.conv(x))
|
||
|
else:
|
||
|
return self.conv(x)
|
||
|
|
||
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
|
||
|
for idx in range(len(self.conv)):
|
||
|
if type(self.conv[idx]) is nn.Conv2d:
|
||
|
_fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True)
|
||
|
|
||
|
|
||
|
class QuantizableMobileNetV2(MobileNetV2):
|
||
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||
|
"""
|
||
|
MobileNet V2 main class
|
||
|
|
||
|
Args:
|
||
|
Inherits args from floating point MobileNetV2
|
||
|
"""
|
||
|
super().__init__(*args, **kwargs)
|
||
|
self.quant = QuantStub()
|
||
|
self.dequant = DeQuantStub()
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
x = self.quant(x)
|
||
|
x = self._forward_impl(x)
|
||
|
x = self.dequant(x)
|
||
|
return x
|
||
|
|
||
|
def fuse_model(self, is_qat: Optional[bool] = None) -> None:
|
||
|
for m in self.modules():
|
||
|
if type(m) is Conv2dNormActivation:
|
||
|
_fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True)
|
||
|
if type(m) is QuantizableInvertedResidual:
|
||
|
m.fuse_model(is_qat)
|
||
|
|
||
|
|
||
|
class MobileNet_V2_QuantizedWeights(WeightsEnum):
|
||
|
IMAGENET1K_QNNPACK_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
"num_params": 3504872,
|
||
|
"min_size": (1, 1),
|
||
|
"categories": _IMAGENET_CATEGORIES,
|
||
|
"backend": "qnnpack",
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
|
||
|
"unquantized": MobileNet_V2_Weights.IMAGENET1K_V1,
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 71.658,
|
||
|
"acc@5": 90.150,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.301,
|
||
|
"_file_size": 3.423,
|
||
|
"_docs": """
|
||
|
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
|
||
|
weights listed below.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_QNNPACK_V1
|
||
|
|
||
|
|
||
|
@register_model(name="quantized_mobilenet_v2")
|
||
|
@handle_legacy_interface(
|
||
|
weights=(
|
||
|
"pretrained",
|
||
|
lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1
|
||
|
if kwargs.get("quantize", False)
|
||
|
else MobileNet_V2_Weights.IMAGENET1K_V1,
|
||
|
)
|
||
|
)
|
||
|
def mobilenet_v2(
|
||
|
*,
|
||
|
weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None,
|
||
|
progress: bool = True,
|
||
|
quantize: bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> QuantizableMobileNetV2:
|
||
|
"""
|
||
|
Constructs a MobileNetV2 architecture from
|
||
|
`MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
||
|
<https://arxiv.org/abs/1801.04381>`_.
|
||
|
|
||
|
.. note::
|
||
|
Note that ``quantize = True`` returns a quantized model with 8 bit
|
||
|
weights. Quantized models only support inference and run on CPUs.
|
||
|
GPU inference is not yet supported.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
|
||
|
pretrained weights for the model. See
|
||
|
:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
|
||
|
quantize (bool, optional): If True, returns a quantized version of the model. Default is False.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
|
||
|
for more details about this class.
|
||
|
.. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights
|
||
|
:members:
|
||
|
.. autoclass:: torchvision.models.MobileNet_V2_Weights
|
||
|
:members:
|
||
|
:noindex:
|
||
|
"""
|
||
|
weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights)
|
||
|
|
||
|
if weights is not None:
|
||
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
||
|
if "backend" in weights.meta:
|
||
|
_ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
|
||
|
backend = kwargs.pop("backend", "qnnpack")
|
||
|
|
||
|
model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs)
|
||
|
_replace_relu(model)
|
||
|
if quantize:
|
||
|
quantize_model(model, backend)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
return model
|