986 lines
38 KiB
Python
986 lines
38 KiB
Python
|
from functools import partial
|
||
|
from typing import Any, Callable, List, Optional, Type, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch import Tensor
|
||
|
|
||
|
from ..transforms._presets import ImageClassification
|
||
|
from ..utils import _log_api_usage_once
|
||
|
from ._api import register_model, Weights, WeightsEnum
|
||
|
from ._meta import _IMAGENET_CATEGORIES
|
||
|
from ._utils import _ovewrite_named_param, handle_legacy_interface
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"ResNet",
|
||
|
"ResNet18_Weights",
|
||
|
"ResNet34_Weights",
|
||
|
"ResNet50_Weights",
|
||
|
"ResNet101_Weights",
|
||
|
"ResNet152_Weights",
|
||
|
"ResNeXt50_32X4D_Weights",
|
||
|
"ResNeXt101_32X8D_Weights",
|
||
|
"ResNeXt101_64X4D_Weights",
|
||
|
"Wide_ResNet50_2_Weights",
|
||
|
"Wide_ResNet101_2_Weights",
|
||
|
"resnet18",
|
||
|
"resnet34",
|
||
|
"resnet50",
|
||
|
"resnet101",
|
||
|
"resnet152",
|
||
|
"resnext50_32x4d",
|
||
|
"resnext101_32x8d",
|
||
|
"resnext101_64x4d",
|
||
|
"wide_resnet50_2",
|
||
|
"wide_resnet101_2",
|
||
|
]
|
||
|
|
||
|
|
||
|
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
||
|
"""3x3 convolution with padding"""
|
||
|
return nn.Conv2d(
|
||
|
in_planes,
|
||
|
out_planes,
|
||
|
kernel_size=3,
|
||
|
stride=stride,
|
||
|
padding=dilation,
|
||
|
groups=groups,
|
||
|
bias=False,
|
||
|
dilation=dilation,
|
||
|
)
|
||
|
|
||
|
|
||
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
||
|
"""1x1 convolution"""
|
||
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Module):
|
||
|
expansion: int = 1
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
inplanes: int,
|
||
|
planes: int,
|
||
|
stride: int = 1,
|
||
|
downsample: Optional[nn.Module] = None,
|
||
|
groups: int = 1,
|
||
|
base_width: int = 64,
|
||
|
dilation: int = 1,
|
||
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
if norm_layer is None:
|
||
|
norm_layer = nn.BatchNorm2d
|
||
|
if groups != 1 or base_width != 64:
|
||
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
||
|
if dilation > 1:
|
||
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
||
|
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
||
|
self.bn1 = norm_layer(planes)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.conv2 = conv3x3(planes, planes)
|
||
|
self.bn2 = norm_layer(planes)
|
||
|
self.downsample = downsample
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
identity = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.bn1(out)
|
||
|
out = self.relu(out)
|
||
|
|
||
|
out = self.conv2(out)
|
||
|
out = self.bn2(out)
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
identity = self.downsample(x)
|
||
|
|
||
|
out += identity
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Bottleneck(nn.Module):
|
||
|
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
||
|
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
||
|
# according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
|
||
|
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
||
|
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
||
|
|
||
|
expansion: int = 4
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
inplanes: int,
|
||
|
planes: int,
|
||
|
stride: int = 1,
|
||
|
downsample: Optional[nn.Module] = None,
|
||
|
groups: int = 1,
|
||
|
base_width: int = 64,
|
||
|
dilation: int = 1,
|
||
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
if norm_layer is None:
|
||
|
norm_layer = nn.BatchNorm2d
|
||
|
width = int(planes * (base_width / 64.0)) * groups
|
||
|
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||
|
self.conv1 = conv1x1(inplanes, width)
|
||
|
self.bn1 = norm_layer(width)
|
||
|
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
||
|
self.bn2 = norm_layer(width)
|
||
|
self.conv3 = conv1x1(width, planes * self.expansion)
|
||
|
self.bn3 = norm_layer(planes * self.expansion)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.downsample = downsample
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
identity = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.bn1(out)
|
||
|
out = self.relu(out)
|
||
|
|
||
|
out = self.conv2(out)
|
||
|
out = self.bn2(out)
|
||
|
out = self.relu(out)
|
||
|
|
||
|
out = self.conv3(out)
|
||
|
out = self.bn3(out)
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
identity = self.downsample(x)
|
||
|
|
||
|
out += identity
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ResNet(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
block: Type[Union[BasicBlock, Bottleneck]],
|
||
|
layers: List[int],
|
||
|
num_classes: int = 1000,
|
||
|
zero_init_residual: bool = False,
|
||
|
groups: int = 1,
|
||
|
width_per_group: int = 64,
|
||
|
replace_stride_with_dilation: Optional[List[bool]] = None,
|
||
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
_log_api_usage_once(self)
|
||
|
if norm_layer is None:
|
||
|
norm_layer = nn.BatchNorm2d
|
||
|
self._norm_layer = norm_layer
|
||
|
|
||
|
self.inplanes = 64
|
||
|
self.dilation = 1
|
||
|
if replace_stride_with_dilation is None:
|
||
|
# each element in the tuple indicates if we should replace
|
||
|
# the 2x2 stride with a dilated convolution instead
|
||
|
replace_stride_with_dilation = [False, False, False]
|
||
|
if len(replace_stride_with_dilation) != 3:
|
||
|
raise ValueError(
|
||
|
"replace_stride_with_dilation should be None "
|
||
|
f"or a 3-element tuple, got {replace_stride_with_dilation}"
|
||
|
)
|
||
|
self.groups = groups
|
||
|
self.base_width = width_per_group
|
||
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
|
||
|
self.bn1 = norm_layer(self.inplanes)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
||
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
|
||
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
|
||
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
|
||
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||
|
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||
|
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
||
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
||
|
nn.init.constant_(m.weight, 1)
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
|
||
|
# Zero-initialize the last BN in each residual branch,
|
||
|
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
||
|
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
||
|
if zero_init_residual:
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
|
||
|
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
|
||
|
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
|
||
|
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
|
||
|
|
||
|
def _make_layer(
|
||
|
self,
|
||
|
block: Type[Union[BasicBlock, Bottleneck]],
|
||
|
planes: int,
|
||
|
blocks: int,
|
||
|
stride: int = 1,
|
||
|
dilate: bool = False,
|
||
|
) -> nn.Sequential:
|
||
|
norm_layer = self._norm_layer
|
||
|
downsample = None
|
||
|
previous_dilation = self.dilation
|
||
|
if dilate:
|
||
|
self.dilation *= stride
|
||
|
stride = 1
|
||
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
||
|
downsample = nn.Sequential(
|
||
|
conv1x1(self.inplanes, planes * block.expansion, stride),
|
||
|
norm_layer(planes * block.expansion),
|
||
|
)
|
||
|
|
||
|
layers = []
|
||
|
layers.append(
|
||
|
block(
|
||
|
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
|
||
|
)
|
||
|
)
|
||
|
self.inplanes = planes * block.expansion
|
||
|
for _ in range(1, blocks):
|
||
|
layers.append(
|
||
|
block(
|
||
|
self.inplanes,
|
||
|
planes,
|
||
|
groups=self.groups,
|
||
|
base_width=self.base_width,
|
||
|
dilation=self.dilation,
|
||
|
norm_layer=norm_layer,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def _forward_impl(self, x: Tensor) -> Tensor:
|
||
|
# See note [TorchScript super()]
|
||
|
x = self.conv1(x)
|
||
|
x = self.bn1(x)
|
||
|
x = self.relu(x)
|
||
|
x = self.maxpool(x)
|
||
|
|
||
|
x = self.layer1(x)
|
||
|
x = self.layer2(x)
|
||
|
x = self.layer3(x)
|
||
|
x = self.layer4(x)
|
||
|
|
||
|
x = self.avgpool(x)
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.fc(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
return self._forward_impl(x)
|
||
|
|
||
|
|
||
|
def _resnet(
|
||
|
block: Type[Union[BasicBlock, Bottleneck]],
|
||
|
layers: List[int],
|
||
|
weights: Optional[WeightsEnum],
|
||
|
progress: bool,
|
||
|
**kwargs: Any,
|
||
|
) -> ResNet:
|
||
|
if weights is not None:
|
||
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
||
|
|
||
|
model = ResNet(block, layers, **kwargs)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
_COMMON_META = {
|
||
|
"min_size": (1, 1),
|
||
|
"categories": _IMAGENET_CATEGORIES,
|
||
|
}
|
||
|
|
||
|
|
||
|
class ResNet18_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 11689512,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 69.758,
|
||
|
"acc@5": 89.078,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 1.814,
|
||
|
"_file_size": 44.661,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V1
|
||
|
|
||
|
|
||
|
class ResNet34_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet34-b627a593.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 21797672,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 73.314,
|
||
|
"acc@5": 91.420,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 3.664,
|
||
|
"_file_size": 83.275,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V1
|
||
|
|
||
|
|
||
|
class ResNet50_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 25557032,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 76.130,
|
||
|
"acc@5": 92.862,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 4.089,
|
||
|
"_file_size": 97.781,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 25557032,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 80.858,
|
||
|
"acc@5": 95.434,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 4.089,
|
||
|
"_file_size": 97.79,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class ResNet101_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 44549160,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 77.374,
|
||
|
"acc@5": 93.546,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 7.801,
|
||
|
"_file_size": 170.511,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 44549160,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 81.886,
|
||
|
"acc@5": 95.780,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 7.801,
|
||
|
"_file_size": 170.53,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class ResNet152_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 60192808,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 78.312,
|
||
|
"acc@5": 94.046,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 11.514,
|
||
|
"_file_size": 230.434,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 60192808,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 82.284,
|
||
|
"acc@5": 96.002,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 11.514,
|
||
|
"_file_size": 230.474,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class ResNeXt50_32X4D_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 25028904,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 77.618,
|
||
|
"acc@5": 93.698,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 4.23,
|
||
|
"_file_size": 95.789,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 25028904,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 81.198,
|
||
|
"acc@5": 95.340,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 4.23,
|
||
|
"_file_size": 95.833,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class ResNeXt101_32X8D_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 88791336,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 79.312,
|
||
|
"acc@5": 94.526,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 16.414,
|
||
|
"_file_size": 339.586,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 88791336,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 82.834,
|
||
|
"acc@5": 96.228,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 16.414,
|
||
|
"_file_size": 339.673,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class ResNeXt101_64X4D_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 83455272,
|
||
|
"recipe": "https://github.com/pytorch/vision/pull/5935",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 83.246,
|
||
|
"acc@5": 96.454,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 15.46,
|
||
|
"_file_size": 319.318,
|
||
|
"_docs": """
|
||
|
These weights were trained from scratch by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V1
|
||
|
|
||
|
|
||
|
class Wide_ResNet50_2_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 68883240,
|
||
|
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 78.468,
|
||
|
"acc@5": 94.086,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 11.398,
|
||
|
"_file_size": 131.82,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 68883240,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 81.602,
|
||
|
"acc@5": 95.758,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 11.398,
|
||
|
"_file_size": 263.124,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
class Wide_ResNet101_2_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 126886696,
|
||
|
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 78.848,
|
||
|
"acc@5": 94.284,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 22.753,
|
||
|
"_file_size": 242.896,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 126886696,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 82.510,
|
||
|
"acc@5": 96.020,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 22.753,
|
||
|
"_file_size": 484.747,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
|
||
|
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
|
||
|
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNet18_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.ResNet18_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNet18_Weights.verify(weights)
|
||
|
|
||
|
return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
|
||
|
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
|
||
|
"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNet34_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.ResNet34_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNet34_Weights.verify(weights)
|
||
|
|
||
|
return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
|
||
|
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
|
||
|
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
|
||
|
|
||
|
.. note::
|
||
|
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
||
|
convolution while the original paper places it to the first 1x1 convolution.
|
||
|
This variant improves the accuracy and is known as `ResNet V1.5
|
||
|
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNet50_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.ResNet50_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNet50_Weights.verify(weights)
|
||
|
|
||
|
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
|
||
|
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
|
||
|
"""ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
|
||
|
|
||
|
.. note::
|
||
|
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
||
|
convolution while the original paper places it to the first 1x1 convolution.
|
||
|
This variant improves the accuracy and is known as `ResNet V1.5
|
||
|
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNet101_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.ResNet101_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNet101_Weights.verify(weights)
|
||
|
|
||
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
|
||
|
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
|
||
|
"""ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__.
|
||
|
|
||
|
.. note::
|
||
|
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
||
|
convolution while the original paper places it to the first 1x1 convolution.
|
||
|
This variant improves the accuracy and is known as `ResNet V1.5
|
||
|
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNet152_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.ResNet152_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNet152_Weights.verify(weights)
|
||
|
|
||
|
return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
|
||
|
def resnext50_32x4d(
|
||
|
*, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> ResNet:
|
||
|
"""ResNeXt-50 32x4d model from
|
||
|
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNext50_32X4D_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
.. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNeXt50_32X4D_Weights.verify(weights)
|
||
|
|
||
|
_ovewrite_named_param(kwargs, "groups", 32)
|
||
|
_ovewrite_named_param(kwargs, "width_per_group", 4)
|
||
|
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
|
||
|
def resnext101_32x8d(
|
||
|
*, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> ResNet:
|
||
|
"""ResNeXt-101 32x8d model from
|
||
|
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
.. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNeXt101_32X8D_Weights.verify(weights)
|
||
|
|
||
|
_ovewrite_named_param(kwargs, "groups", 32)
|
||
|
_ovewrite_named_param(kwargs, "width_per_group", 8)
|
||
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", ResNeXt101_64X4D_Weights.IMAGENET1K_V1))
|
||
|
def resnext101_64x4d(
|
||
|
*, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> ResNet:
|
||
|
"""ResNeXt-101 64x4d model from
|
||
|
`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
.. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = ResNeXt101_64X4D_Weights.verify(weights)
|
||
|
|
||
|
_ovewrite_named_param(kwargs, "groups", 64)
|
||
|
_ovewrite_named_param(kwargs, "width_per_group", 4)
|
||
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
|
||
|
def wide_resnet50_2(
|
||
|
*, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> ResNet:
|
||
|
"""Wide ResNet-50-2 model from
|
||
|
`Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
|
||
|
|
||
|
The model is the same as ResNet except for the bottleneck number of channels
|
||
|
which is twice larger in every block. The number of channels in outer 1x1
|
||
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
||
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
.. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = Wide_ResNet50_2_Weights.verify(weights)
|
||
|
|
||
|
_ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
|
||
|
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
|
||
|
def wide_resnet101_2(
|
||
|
*, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> ResNet:
|
||
|
"""Wide ResNet-101-2 model from
|
||
|
`Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
|
||
|
|
||
|
The model is the same as ResNet except for the bottleneck number of channels
|
||
|
which is twice larger in every block. The number of channels in outer 1x1
|
||
|
convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048
|
||
|
channels, and in Wide ResNet-101-2 has 2048-1024-2048.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
.. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = Wide_ResNet101_2_Weights.verify(weights)
|
||
|
|
||
|
_ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
|
||
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
|