Traktor/myenv/Lib/site-packages/sympy/external/tests/test_autowrap.py

314 lines
9.5 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
import sympy
import tempfile
import os
from sympy.core.mod import Mod
from sympy.core.relational import Eq
from sympy.core.symbol import symbols
from sympy.external import import_module
from sympy.tensor import IndexedBase, Idx
from sympy.utilities.autowrap import autowrap, ufuncify, CodeWrapError
from sympy.testing.pytest import skip
numpy = import_module('numpy', min_module_version='1.6.1')
Cython = import_module('Cython', min_module_version='0.15.1')
f2py = import_module('numpy.f2py', import_kwargs={'fromlist': ['f2py']})
f2pyworks = False
if f2py:
try:
autowrap(symbols('x'), 'f95', 'f2py')
except (CodeWrapError, ImportError, OSError):
f2pyworks = False
else:
f2pyworks = True
a, b, c = symbols('a b c')
n, m, d = symbols('n m d', integer=True)
A, B, C = symbols('A B C', cls=IndexedBase)
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', d)
def has_module(module):
"""
Return True if module exists, otherwise run skip().
module should be a string.
"""
# To give a string of the module name to skip(), this function takes a
# string. So we don't waste time running import_module() more than once,
# just map the three modules tested here in this dict.
modnames = {'numpy': numpy, 'Cython': Cython, 'f2py': f2py}
if modnames[module]:
if module == 'f2py' and not f2pyworks:
skip("Couldn't run f2py.")
return True
skip("Couldn't import %s." % module)
#
# test runners used by several language-backend combinations
#
def runtest_autowrap_twice(language, backend):
f = autowrap((((a + b)/c)**5).expand(), language, backend)
g = autowrap((((a + b)/c)**4).expand(), language, backend)
# check that autowrap updates the module name. Else, g gives the same as f
assert f(1, -2, 1) == -1.0
assert g(1, -2, 1) == 1.0
def runtest_autowrap_trace(language, backend):
has_module('numpy')
trace = autowrap(A[i, i], language, backend)
assert trace(numpy.eye(100)) == 100
def runtest_autowrap_matrix_vector(language, backend):
has_module('numpy')
x, y = symbols('x y', cls=IndexedBase)
expr = Eq(y[i], A[i, j]*x[j])
mv = autowrap(expr, language, backend)
# compare with numpy's dot product
M = numpy.random.rand(10, 20)
x = numpy.random.rand(20)
y = numpy.dot(M, x)
assert numpy.sum(numpy.abs(y - mv(M, x))) < 1e-13
def runtest_autowrap_matrix_matrix(language, backend):
has_module('numpy')
expr = Eq(C[i, j], A[i, k]*B[k, j])
matmat = autowrap(expr, language, backend)
# compare with numpy's dot product
M1 = numpy.random.rand(10, 20)
M2 = numpy.random.rand(20, 15)
M3 = numpy.dot(M1, M2)
assert numpy.sum(numpy.abs(M3 - matmat(M1, M2))) < 1e-13
def runtest_ufuncify(language, backend):
has_module('numpy')
a, b, c = symbols('a b c')
fabc = ufuncify([a, b, c], a*b + c, backend=backend)
facb = ufuncify([a, c, b], a*b + c, backend=backend)
grid = numpy.linspace(-2, 2, 50)
b = numpy.linspace(-5, 4, 50)
c = numpy.linspace(-1, 1, 50)
expected = grid*b + c
numpy.testing.assert_allclose(fabc(grid, b, c), expected)
numpy.testing.assert_allclose(facb(grid, c, b), expected)
def runtest_issue_10274(language, backend):
expr = (a - b + c)**(13)
tmp = tempfile.mkdtemp()
f = autowrap(expr, language, backend, tempdir=tmp,
helpers=('helper', a - b + c, (a, b, c)))
assert f(1, 1, 1) == 1
for file in os.listdir(tmp):
if not (file.startswith("wrapped_code_") and file.endswith(".c")):
continue
with open(tmp + '/' + file) as fil:
lines = fil.readlines()
assert lines[0] == "/******************************************************************************\n"
assert "Code generated with SymPy " + sympy.__version__ in lines[1]
assert lines[2:] == [
" * *\n",
" * See http://www.sympy.org/ for more information. *\n",
" * *\n",
" * This file is part of 'autowrap' *\n",
" ******************************************************************************/\n",
"#include " + '"' + file[:-1]+ 'h"' + "\n",
"#include <math.h>\n",
"\n",
"double helper(double a, double b, double c) {\n",
"\n",
" double helper_result;\n",
" helper_result = a - b + c;\n",
" return helper_result;\n",
"\n",
"}\n",
"\n",
"double autofunc(double a, double b, double c) {\n",
"\n",
" double autofunc_result;\n",
" autofunc_result = pow(helper(a, b, c), 13);\n",
" return autofunc_result;\n",
"\n",
"}\n",
]
def runtest_issue_15337(language, backend):
has_module('numpy')
# NOTE : autowrap was originally designed to only accept an iterable for
# the kwarg "helpers", but in issue 10274 the user mistakenly thought that
# if there was only a single helper it did not need to be passed via an
# iterable that wrapped the helper tuple. There were no tests for this
# behavior so when the code was changed to accept a single tuple it broke
# the original behavior. These tests below ensure that both now work.
a, b, c, d, e = symbols('a, b, c, d, e')
expr = (a - b + c - d + e)**13
exp_res = (1. - 2. + 3. - 4. + 5.)**13
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
helpers=('f1', a - b + c, (a, b, c)))
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
helpers=(('f1', a - b, (a, b)), ('f2', c - d, (c, d))))
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
def test_issue_15230():
has_module('f2py')
x, y = symbols('x, y')
expr = Mod(x, 3.0) - Mod(y, -2.0)
f = autowrap(expr, args=[x, y], language='F95')
exp_res = float(expr.xreplace({x: 3.5, y: 2.7}).evalf())
assert abs(f(3.5, 2.7) - exp_res) < 1e-14
x, y = symbols('x, y', integer=True)
expr = Mod(x, 3) - Mod(y, -2)
f = autowrap(expr, args=[x, y], language='F95')
assert f(3, 2) == expr.xreplace({x: 3, y: 2})
#
# tests of language-backend combinations
#
# f2py
def test_wrap_twice_f95_f2py():
has_module('f2py')
runtest_autowrap_twice('f95', 'f2py')
def test_autowrap_trace_f95_f2py():
has_module('f2py')
runtest_autowrap_trace('f95', 'f2py')
def test_autowrap_matrix_vector_f95_f2py():
has_module('f2py')
runtest_autowrap_matrix_vector('f95', 'f2py')
def test_autowrap_matrix_matrix_f95_f2py():
has_module('f2py')
runtest_autowrap_matrix_matrix('f95', 'f2py')
def test_ufuncify_f95_f2py():
has_module('f2py')
runtest_ufuncify('f95', 'f2py')
def test_issue_15337_f95_f2py():
has_module('f2py')
runtest_issue_15337('f95', 'f2py')
# Cython
def test_wrap_twice_c_cython():
has_module('Cython')
runtest_autowrap_twice('C', 'cython')
def test_autowrap_trace_C_Cython():
has_module('Cython')
runtest_autowrap_trace('C99', 'cython')
def test_autowrap_matrix_vector_C_cython():
has_module('Cython')
runtest_autowrap_matrix_vector('C99', 'cython')
def test_autowrap_matrix_matrix_C_cython():
has_module('Cython')
runtest_autowrap_matrix_matrix('C99', 'cython')
def test_ufuncify_C_Cython():
has_module('Cython')
runtest_ufuncify('C99', 'cython')
def test_issue_10274_C_cython():
has_module('Cython')
runtest_issue_10274('C89', 'cython')
def test_issue_15337_C_cython():
has_module('Cython')
runtest_issue_15337('C89', 'cython')
def test_autowrap_custom_printer():
has_module('Cython')
from sympy.core.numbers import pi
from sympy.utilities.codegen import C99CodeGen
from sympy.printing.c import C99CodePrinter
class PiPrinter(C99CodePrinter):
def _print_Pi(self, expr):
return "S_PI"
printer = PiPrinter()
gen = C99CodeGen(printer=printer)
gen.preprocessor_statements.append('#include "shortpi.h"')
expr = pi * a
expected = (
'#include "%s"\n'
'#include <math.h>\n'
'#include "shortpi.h"\n'
'\n'
'double autofunc(double a) {\n'
'\n'
' double autofunc_result;\n'
' autofunc_result = S_PI*a;\n'
' return autofunc_result;\n'
'\n'
'}\n'
)
tmpdir = tempfile.mkdtemp()
# write a trivial header file to use in the generated code
with open(os.path.join(tmpdir, 'shortpi.h'), 'w') as f:
f.write('#define S_PI 3.14')
func = autowrap(expr, backend='cython', tempdir=tmpdir, code_gen=gen)
assert func(4.2) == 3.14 * 4.2
# check that the generated code is correct
for filename in os.listdir(tmpdir):
if filename.startswith('wrapped_code') and filename.endswith('.c'):
with open(os.path.join(tmpdir, filename)) as f:
lines = f.readlines()
expected = expected % filename.replace('.c', '.h')
assert ''.join(lines[7:]) == expected
# Numpy
def test_ufuncify_numpy():
# This test doesn't use Cython, but if Cython works, then there is a valid
# C compiler, which is needed.
has_module('Cython')
runtest_ufuncify('C99', 'numpy')