1155 lines
36 KiB
Python
1155 lines
36 KiB
Python
|
from __future__ import print_function
|
||
|
|
||
|
from ..libmp.backend import xrange
|
||
|
from .functions import defun, defun_wrapped, defun_static
|
||
|
|
||
|
@defun
|
||
|
def stieltjes(ctx, n, a=1):
|
||
|
n = ctx.convert(n)
|
||
|
a = ctx.convert(a)
|
||
|
if n < 0:
|
||
|
return ctx.bad_domain("Stieltjes constants defined for n >= 0")
|
||
|
if hasattr(ctx, "stieltjes_cache"):
|
||
|
stieltjes_cache = ctx.stieltjes_cache
|
||
|
else:
|
||
|
stieltjes_cache = ctx.stieltjes_cache = {}
|
||
|
if a == 1:
|
||
|
if n == 0:
|
||
|
return +ctx.euler
|
||
|
if n in stieltjes_cache:
|
||
|
prec, s = stieltjes_cache[n]
|
||
|
if prec >= ctx.prec:
|
||
|
return +s
|
||
|
mag = 1
|
||
|
def f(x):
|
||
|
xa = x/a
|
||
|
v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1)
|
||
|
return ctx._re(v) / mag
|
||
|
orig = ctx.prec
|
||
|
try:
|
||
|
# Normalize integrand by approx. magnitude to
|
||
|
# speed up quadrature (which uses absolute error)
|
||
|
if n > 50:
|
||
|
ctx.prec = 20
|
||
|
mag = ctx.quad(f, [0,ctx.inf], maxdegree=3)
|
||
|
ctx.prec = orig + 10 + int(n**0.5)
|
||
|
s = ctx.quad(f, [0,ctx.inf], maxdegree=20)
|
||
|
v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag
|
||
|
finally:
|
||
|
ctx.prec = orig
|
||
|
if a == 1 and ctx.isint(n):
|
||
|
stieltjes_cache[n] = (ctx.prec, v)
|
||
|
return +v
|
||
|
|
||
|
@defun_wrapped
|
||
|
def siegeltheta(ctx, t, derivative=0):
|
||
|
d = int(derivative)
|
||
|
if (t == ctx.inf or t == ctx.ninf):
|
||
|
if d < 2:
|
||
|
if t == ctx.ninf and d == 0:
|
||
|
return ctx.ninf
|
||
|
return ctx.inf
|
||
|
else:
|
||
|
return ctx.zero
|
||
|
if d == 0:
|
||
|
if ctx._im(t):
|
||
|
# XXX: cancellation occurs
|
||
|
a = ctx.loggamma(0.25+0.5j*t)
|
||
|
b = ctx.loggamma(0.25-0.5j*t)
|
||
|
return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b)
|
||
|
else:
|
||
|
if ctx.isinf(t):
|
||
|
return t
|
||
|
return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t
|
||
|
if d > 0:
|
||
|
a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t)
|
||
|
b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t)
|
||
|
if ctx._im(t):
|
||
|
if d == 1:
|
||
|
return -0.5*ctx.log(ctx.pi)+0.25*(a+b)
|
||
|
else:
|
||
|
return 0.25*(a+b)
|
||
|
else:
|
||
|
if d == 1:
|
||
|
return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b))
|
||
|
else:
|
||
|
return ctx._re(0.25*(a+b))
|
||
|
|
||
|
@defun_wrapped
|
||
|
def grampoint(ctx, n):
|
||
|
# asymptotic expansion, from
|
||
|
# http://mathworld.wolfram.com/GramPoint.html
|
||
|
g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e)))
|
||
|
return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g)
|
||
|
|
||
|
|
||
|
@defun_wrapped
|
||
|
def siegelz(ctx, t, **kwargs):
|
||
|
d = int(kwargs.get("derivative", 0))
|
||
|
t = ctx.convert(t)
|
||
|
t1 = ctx._re(t)
|
||
|
t2 = ctx._im(t)
|
||
|
prec = ctx.prec
|
||
|
try:
|
||
|
if abs(t1) > 500*prec and t2**2 < t1:
|
||
|
v = ctx.rs_z(t, d)
|
||
|
if ctx._is_real_type(t):
|
||
|
return ctx._re(v)
|
||
|
return v
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
ctx.prec += 21
|
||
|
e1 = ctx.expj(ctx.siegeltheta(t))
|
||
|
z = ctx.zeta(0.5+ctx.j*t)
|
||
|
if d == 0:
|
||
|
v = e1*z
|
||
|
ctx.prec=prec
|
||
|
if ctx._is_real_type(t):
|
||
|
return ctx._re(v)
|
||
|
return +v
|
||
|
z1 = ctx.zeta(0.5+ctx.j*t, derivative=1)
|
||
|
theta1 = ctx.siegeltheta(t, derivative=1)
|
||
|
if d == 1:
|
||
|
v = ctx.j*e1*(z1+z*theta1)
|
||
|
ctx.prec=prec
|
||
|
if ctx._is_real_type(t):
|
||
|
return ctx._re(v)
|
||
|
return +v
|
||
|
z2 = ctx.zeta(0.5+ctx.j*t, derivative=2)
|
||
|
theta2 = ctx.siegeltheta(t, derivative=2)
|
||
|
comb1 = theta1**2-ctx.j*theta2
|
||
|
if d == 2:
|
||
|
def terms():
|
||
|
return [2*z1*theta1, z2, z*comb1]
|
||
|
v = ctx.sum_accurately(terms, 1)
|
||
|
v = -e1*v
|
||
|
ctx.prec = prec
|
||
|
if ctx._is_real_type(t):
|
||
|
return ctx._re(v)
|
||
|
return +v
|
||
|
ctx.prec += 10
|
||
|
z3 = ctx.zeta(0.5+ctx.j*t, derivative=3)
|
||
|
theta3 = ctx.siegeltheta(t, derivative=3)
|
||
|
comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3
|
||
|
if d == 3:
|
||
|
def terms():
|
||
|
return [3*theta1*z2, 3*z1*comb1, z3+z*comb2]
|
||
|
v = ctx.sum_accurately(terms, 1)
|
||
|
v = -ctx.j*e1*v
|
||
|
ctx.prec = prec
|
||
|
if ctx._is_real_type(t):
|
||
|
return ctx._re(v)
|
||
|
return +v
|
||
|
z4 = ctx.zeta(0.5+ctx.j*t, derivative=4)
|
||
|
theta4 = ctx.siegeltheta(t, derivative=4)
|
||
|
def terms():
|
||
|
return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2,
|
||
|
-4*theta1*theta3, ctx.j*theta4]
|
||
|
comb3 = ctx.sum_accurately(terms, 1)
|
||
|
if d == 4:
|
||
|
def terms():
|
||
|
return [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3,
|
||
|
4*z1*comb2, z4, z*comb3]
|
||
|
v = ctx.sum_accurately(terms, 1)
|
||
|
v = e1*v
|
||
|
ctx.prec = prec
|
||
|
if ctx._is_real_type(t):
|
||
|
return ctx._re(v)
|
||
|
return +v
|
||
|
if d > 4:
|
||
|
h = lambda x: ctx.siegelz(x, derivative=4)
|
||
|
return ctx.diff(h, t, n=d-4)
|
||
|
|
||
|
|
||
|
_zeta_zeros = [
|
||
|
14.134725142,21.022039639,25.010857580,30.424876126,32.935061588,
|
||
|
37.586178159,40.918719012,43.327073281,48.005150881,49.773832478,
|
||
|
52.970321478,56.446247697,59.347044003,60.831778525,65.112544048,
|
||
|
67.079810529,69.546401711,72.067157674,75.704690699,77.144840069,
|
||
|
79.337375020,82.910380854,84.735492981,87.425274613,88.809111208,
|
||
|
92.491899271,94.651344041,95.870634228,98.831194218,101.317851006,
|
||
|
103.725538040,105.446623052,107.168611184,111.029535543,111.874659177,
|
||
|
114.320220915,116.226680321,118.790782866,121.370125002,122.946829294,
|
||
|
124.256818554,127.516683880,129.578704200,131.087688531,133.497737203,
|
||
|
134.756509753,138.116042055,139.736208952,141.123707404,143.111845808,
|
||
|
146.000982487,147.422765343,150.053520421,150.925257612,153.024693811,
|
||
|
156.112909294,157.597591818,158.849988171,161.188964138,163.030709687,
|
||
|
165.537069188,167.184439978,169.094515416,169.911976479,173.411536520,
|
||
|
174.754191523,176.441434298,178.377407776,179.916484020,182.207078484,
|
||
|
184.874467848,185.598783678,187.228922584,189.416158656,192.026656361,
|
||
|
193.079726604,195.265396680,196.876481841,198.015309676,201.264751944,
|
||
|
202.493594514,204.189671803,205.394697202,207.906258888,209.576509717,
|
||
|
211.690862595,213.347919360,214.547044783,216.169538508,219.067596349,
|
||
|
220.714918839,221.430705555,224.007000255,224.983324670,227.421444280,
|
||
|
229.337413306,231.250188700,231.987235253,233.693404179,236.524229666,
|
||
|
]
|
||
|
|
||
|
def _load_zeta_zeros(url):
|
||
|
import urllib
|
||
|
d = urllib.urlopen(url)
|
||
|
L = [float(x) for x in d.readlines()]
|
||
|
# Sanity check
|
||
|
assert round(L[0]) == 14
|
||
|
_zeta_zeros[:] = L
|
||
|
|
||
|
@defun
|
||
|
def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'):
|
||
|
n = int(n)
|
||
|
if n < 0:
|
||
|
return ctx.zetazero(-n).conjugate()
|
||
|
if n == 0:
|
||
|
raise ValueError("n must be nonzero")
|
||
|
if n > len(_zeta_zeros) and n <= 100000:
|
||
|
_load_zeta_zeros(url)
|
||
|
if n > len(_zeta_zeros):
|
||
|
raise NotImplementedError("n too large for zetazeros")
|
||
|
return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1]))
|
||
|
|
||
|
@defun_wrapped
|
||
|
def riemannr(ctx, x):
|
||
|
if x == 0:
|
||
|
return ctx.zero
|
||
|
# Check if a simple asymptotic estimate is accurate enough
|
||
|
if abs(x) > 1000:
|
||
|
a = ctx.li(x)
|
||
|
b = 0.5*ctx.li(ctx.sqrt(x))
|
||
|
if abs(b) < abs(a)*ctx.eps:
|
||
|
return a
|
||
|
if abs(x) < 0.01:
|
||
|
# XXX
|
||
|
ctx.prec += int(-ctx.log(abs(x),2))
|
||
|
# Sum Gram's series
|
||
|
s = t = ctx.one
|
||
|
u = ctx.ln(x)
|
||
|
k = 1
|
||
|
while abs(t) > abs(s)*ctx.eps:
|
||
|
t = t * u / k
|
||
|
s += t / (k * ctx._zeta_int(k+1))
|
||
|
k += 1
|
||
|
return s
|
||
|
|
||
|
@defun_static
|
||
|
def primepi(ctx, x):
|
||
|
x = int(x)
|
||
|
if x < 2:
|
||
|
return 0
|
||
|
return len(ctx.list_primes(x))
|
||
|
|
||
|
# TODO: fix the interface wrt contexts
|
||
|
@defun_wrapped
|
||
|
def primepi2(ctx, x):
|
||
|
x = int(x)
|
||
|
if x < 2:
|
||
|
return ctx._iv.zero
|
||
|
if x < 2657:
|
||
|
return ctx._iv.mpf(ctx.primepi(x))
|
||
|
mid = ctx.li(x)
|
||
|
# Schoenfeld's estimate for x >= 2657, assuming RH
|
||
|
err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d')
|
||
|
a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d')
|
||
|
b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u')
|
||
|
return ctx._iv.mpf([a,b])
|
||
|
|
||
|
@defun_wrapped
|
||
|
def primezeta(ctx, s):
|
||
|
if ctx.isnan(s):
|
||
|
return s
|
||
|
if ctx.re(s) <= 0:
|
||
|
raise ValueError("prime zeta function defined only for re(s) > 0")
|
||
|
if s == 1:
|
||
|
return ctx.inf
|
||
|
if s == 0.5:
|
||
|
return ctx.mpc(ctx.ninf, ctx.pi)
|
||
|
r = ctx.re(s)
|
||
|
if r > ctx.prec:
|
||
|
return 0.5**s
|
||
|
else:
|
||
|
wp = ctx.prec + int(r)
|
||
|
def terms():
|
||
|
orig = ctx.prec
|
||
|
# zeta ~ 1+eps; need to set precision
|
||
|
# to get logarithm accurately
|
||
|
k = 0
|
||
|
while 1:
|
||
|
k += 1
|
||
|
u = ctx.moebius(k)
|
||
|
if not u:
|
||
|
continue
|
||
|
ctx.prec = wp
|
||
|
t = u*ctx.ln(ctx.zeta(k*s))/k
|
||
|
if not t:
|
||
|
return
|
||
|
#print ctx.prec, ctx.nstr(t)
|
||
|
ctx.prec = orig
|
||
|
yield t
|
||
|
return ctx.sum_accurately(terms)
|
||
|
|
||
|
# TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered
|
||
|
|
||
|
@defun_wrapped
|
||
|
def bernpoly(ctx, n, z):
|
||
|
# Slow implementation:
|
||
|
#return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1))
|
||
|
n = int(n)
|
||
|
if n < 0:
|
||
|
raise ValueError("Bernoulli polynomials only defined for n >= 0")
|
||
|
if z == 0 or (z == 1 and n > 1):
|
||
|
return ctx.bernoulli(n)
|
||
|
if z == 0.5:
|
||
|
return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n)
|
||
|
if n <= 3:
|
||
|
if n == 0: return z ** 0
|
||
|
if n == 1: return z - 0.5
|
||
|
if n == 2: return (6*z*(z-1)+1)/6
|
||
|
if n == 3: return z*(z*(z-1.5)+0.5)
|
||
|
if ctx.isinf(z):
|
||
|
return z ** n
|
||
|
if ctx.isnan(z):
|
||
|
return z
|
||
|
if abs(z) > 2:
|
||
|
def terms():
|
||
|
t = ctx.one
|
||
|
yield t
|
||
|
r = ctx.one/z
|
||
|
k = 1
|
||
|
while k <= n:
|
||
|
t = t*(n+1-k)/k*r
|
||
|
if not (k > 2 and k & 1):
|
||
|
yield t*ctx.bernoulli(k)
|
||
|
k += 1
|
||
|
return ctx.sum_accurately(terms) * z**n
|
||
|
else:
|
||
|
def terms():
|
||
|
yield ctx.bernoulli(n)
|
||
|
t = ctx.one
|
||
|
k = 1
|
||
|
while k <= n:
|
||
|
t = t*(n+1-k)/k * z
|
||
|
m = n-k
|
||
|
if not (m > 2 and m & 1):
|
||
|
yield t*ctx.bernoulli(m)
|
||
|
k += 1
|
||
|
return ctx.sum_accurately(terms)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def eulerpoly(ctx, n, z):
|
||
|
n = int(n)
|
||
|
if n < 0:
|
||
|
raise ValueError("Euler polynomials only defined for n >= 0")
|
||
|
if n <= 2:
|
||
|
if n == 0: return z ** 0
|
||
|
if n == 1: return z - 0.5
|
||
|
if n == 2: return z*(z-1)
|
||
|
if ctx.isinf(z):
|
||
|
return z**n
|
||
|
if ctx.isnan(z):
|
||
|
return z
|
||
|
m = n+1
|
||
|
if z == 0:
|
||
|
return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
|
||
|
if z == 1:
|
||
|
return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
|
||
|
if z == 0.5:
|
||
|
if n % 2:
|
||
|
return ctx.zero
|
||
|
# Use exact code for Euler numbers
|
||
|
if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25:
|
||
|
return ctx.ldexp(ctx._eulernum(n), -n)
|
||
|
# http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/
|
||
|
def terms():
|
||
|
t = ctx.one
|
||
|
k = 0
|
||
|
w = ctx.ldexp(1,n+2)
|
||
|
while 1:
|
||
|
v = n-k+1
|
||
|
if not (v > 2 and v & 1):
|
||
|
yield (2-w)*ctx.bernoulli(v)*t
|
||
|
k += 1
|
||
|
if k > n:
|
||
|
break
|
||
|
t = t*z*(n-k+2)/k
|
||
|
w *= 0.5
|
||
|
return ctx.sum_accurately(terms) / m
|
||
|
|
||
|
@defun
|
||
|
def eulernum(ctx, n, exact=False):
|
||
|
n = int(n)
|
||
|
if exact:
|
||
|
return int(ctx._eulernum(n))
|
||
|
if n < 100:
|
||
|
return ctx.mpf(ctx._eulernum(n))
|
||
|
if n % 2:
|
||
|
return ctx.zero
|
||
|
return ctx.ldexp(ctx.eulerpoly(n,0.5), n)
|
||
|
|
||
|
# TODO: this should be implemented low-level
|
||
|
def polylog_series(ctx, s, z):
|
||
|
tol = +ctx.eps
|
||
|
l = ctx.zero
|
||
|
k = 1
|
||
|
zk = z
|
||
|
while 1:
|
||
|
term = zk / k**s
|
||
|
l += term
|
||
|
if abs(term) < tol:
|
||
|
break
|
||
|
zk *= z
|
||
|
k += 1
|
||
|
return l
|
||
|
|
||
|
def polylog_continuation(ctx, n, z):
|
||
|
if n < 0:
|
||
|
return z*0
|
||
|
twopij = 2j * ctx.pi
|
||
|
a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij)
|
||
|
if ctx._is_real_type(z) and z < 0:
|
||
|
a = ctx._re(a)
|
||
|
if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1):
|
||
|
a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1)
|
||
|
return a
|
||
|
|
||
|
def polylog_unitcircle(ctx, n, z):
|
||
|
tol = +ctx.eps
|
||
|
if n > 1:
|
||
|
l = ctx.zero
|
||
|
logz = ctx.ln(z)
|
||
|
logmz = ctx.one
|
||
|
m = 0
|
||
|
while 1:
|
||
|
if (n-m) != 1:
|
||
|
term = ctx.zeta(n-m) * logmz / ctx.fac(m)
|
||
|
if term and abs(term) < tol:
|
||
|
break
|
||
|
l += term
|
||
|
logmz *= logz
|
||
|
m += 1
|
||
|
l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z)))
|
||
|
elif n < 1: # else
|
||
|
l = ctx.fac(-n)*(-ctx.ln(z))**(n-1)
|
||
|
logz = ctx.ln(z)
|
||
|
logkz = ctx.one
|
||
|
k = 0
|
||
|
while 1:
|
||
|
b = ctx.bernoulli(k-n+1)
|
||
|
if b:
|
||
|
term = b*logkz/(ctx.fac(k)*(k-n+1))
|
||
|
if abs(term) < tol:
|
||
|
break
|
||
|
l -= term
|
||
|
logkz *= logz
|
||
|
k += 1
|
||
|
else:
|
||
|
raise ValueError
|
||
|
if ctx._is_real_type(z) and z < 0:
|
||
|
l = ctx._re(l)
|
||
|
return l
|
||
|
|
||
|
def polylog_general(ctx, s, z):
|
||
|
v = ctx.zero
|
||
|
u = ctx.ln(z)
|
||
|
if not abs(u) < 5: # theoretically |u| < 2*pi
|
||
|
j = ctx.j
|
||
|
v = 1-s
|
||
|
y = ctx.ln(-z)/(2*ctx.pi*j)
|
||
|
return ctx.gamma(v)*(j**v*ctx.zeta(v,0.5+y) + j**-v*ctx.zeta(v,0.5-y))/(2*ctx.pi)**v
|
||
|
t = 1
|
||
|
k = 0
|
||
|
while 1:
|
||
|
term = ctx.zeta(s-k) * t
|
||
|
if abs(term) < ctx.eps:
|
||
|
break
|
||
|
v += term
|
||
|
k += 1
|
||
|
t *= u
|
||
|
t /= k
|
||
|
return ctx.gamma(1-s)*(-u)**(s-1) + v
|
||
|
|
||
|
@defun_wrapped
|
||
|
def polylog(ctx, s, z):
|
||
|
s = ctx.convert(s)
|
||
|
z = ctx.convert(z)
|
||
|
if z == 1:
|
||
|
return ctx.zeta(s)
|
||
|
if z == -1:
|
||
|
return -ctx.altzeta(s)
|
||
|
if s == 0:
|
||
|
return z/(1-z)
|
||
|
if s == 1:
|
||
|
return -ctx.ln(1-z)
|
||
|
if s == -1:
|
||
|
return z/(1-z)**2
|
||
|
if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9):
|
||
|
return polylog_series(ctx, s, z)
|
||
|
if abs(z) >= 1.4 and ctx.isint(s):
|
||
|
return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, int(ctx.re(s)), z)
|
||
|
if ctx.isint(s):
|
||
|
return polylog_unitcircle(ctx, int(ctx.re(s)), z)
|
||
|
return polylog_general(ctx, s, z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def clsin(ctx, s, z, pi=False):
|
||
|
if ctx.isint(s) and s < 0 and int(s) % 2 == 1:
|
||
|
return z*0
|
||
|
if pi:
|
||
|
a = ctx.expjpi(z)
|
||
|
else:
|
||
|
a = ctx.expj(z)
|
||
|
if ctx._is_real_type(z) and ctx._is_real_type(s):
|
||
|
return ctx.im(ctx.polylog(s,a))
|
||
|
b = 1/a
|
||
|
return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b))
|
||
|
|
||
|
@defun_wrapped
|
||
|
def clcos(ctx, s, z, pi=False):
|
||
|
if ctx.isint(s) and s < 0 and int(s) % 2 == 0:
|
||
|
return z*0
|
||
|
if pi:
|
||
|
a = ctx.expjpi(z)
|
||
|
else:
|
||
|
a = ctx.expj(z)
|
||
|
if ctx._is_real_type(z) and ctx._is_real_type(s):
|
||
|
return ctx.re(ctx.polylog(s,a))
|
||
|
b = 1/a
|
||
|
return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b))
|
||
|
|
||
|
@defun
|
||
|
def altzeta(ctx, s, **kwargs):
|
||
|
try:
|
||
|
return ctx._altzeta(s, **kwargs)
|
||
|
except NotImplementedError:
|
||
|
return ctx._altzeta_generic(s)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def _altzeta_generic(ctx, s):
|
||
|
if s == 1:
|
||
|
return ctx.ln2 + 0*s
|
||
|
return -ctx.powm1(2, 1-s) * ctx.zeta(s)
|
||
|
|
||
|
@defun
|
||
|
def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs):
|
||
|
d = int(derivative)
|
||
|
if a == 1 and not (d or method):
|
||
|
try:
|
||
|
return ctx._zeta(s, **kwargs)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
s = ctx.convert(s)
|
||
|
prec = ctx.prec
|
||
|
method = kwargs.get('method')
|
||
|
verbose = kwargs.get('verbose')
|
||
|
if (not s) and (not derivative):
|
||
|
return ctx.mpf(0.5) - ctx._convert_param(a)[0]
|
||
|
if a == 1 and method != 'euler-maclaurin':
|
||
|
im = abs(ctx._im(s))
|
||
|
re = abs(ctx._re(s))
|
||
|
#if (im < prec or method == 'borwein') and not derivative:
|
||
|
# try:
|
||
|
# if verbose:
|
||
|
# print "zeta: Attempting to use the Borwein algorithm"
|
||
|
# return ctx._zeta(s, **kwargs)
|
||
|
# except NotImplementedError:
|
||
|
# if verbose:
|
||
|
# print "zeta: Could not use the Borwein algorithm"
|
||
|
# pass
|
||
|
if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \
|
||
|
method == 'riemann-siegel':
|
||
|
try: # py2.4 compatible try block
|
||
|
try:
|
||
|
if verbose:
|
||
|
print("zeta: Attempting to use the Riemann-Siegel algorithm")
|
||
|
return ctx.rs_zeta(s, derivative, **kwargs)
|
||
|
except NotImplementedError:
|
||
|
if verbose:
|
||
|
print("zeta: Could not use the Riemann-Siegel algorithm")
|
||
|
pass
|
||
|
finally:
|
||
|
ctx.prec = prec
|
||
|
if s == 1:
|
||
|
return ctx.inf
|
||
|
abss = abs(s)
|
||
|
if abss == ctx.inf:
|
||
|
if ctx.re(s) == ctx.inf:
|
||
|
if d == 0:
|
||
|
return ctx.one
|
||
|
return ctx.zero
|
||
|
return s*0
|
||
|
elif ctx.isnan(abss):
|
||
|
return 1/s
|
||
|
if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative:
|
||
|
return ctx.one + ctx.power(2, -s)
|
||
|
return +ctx._hurwitz(s, a, d, **kwargs)
|
||
|
|
||
|
@defun
|
||
|
def _hurwitz(ctx, s, a=1, d=0, **kwargs):
|
||
|
prec = ctx.prec
|
||
|
verbose = kwargs.get('verbose')
|
||
|
try:
|
||
|
extraprec = 10
|
||
|
ctx.prec += extraprec
|
||
|
# We strongly want to special-case rational a
|
||
|
a, atype = ctx._convert_param(a)
|
||
|
if ctx.re(s) < 0:
|
||
|
if verbose:
|
||
|
print("zeta: Attempting reflection formula")
|
||
|
try:
|
||
|
return _hurwitz_reflection(ctx, s, a, d, atype)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
if verbose:
|
||
|
print("zeta: Reflection formula failed")
|
||
|
if verbose:
|
||
|
print("zeta: Using the Euler-Maclaurin algorithm")
|
||
|
while 1:
|
||
|
ctx.prec = prec + extraprec
|
||
|
T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose)
|
||
|
cancellation = ctx.mag(T1) - ctx.mag(T1+T2)
|
||
|
if verbose:
|
||
|
print("Term 1:", T1)
|
||
|
print("Term 2:", T2)
|
||
|
print("Cancellation:", cancellation, "bits")
|
||
|
if cancellation < extraprec:
|
||
|
return T1 + T2
|
||
|
else:
|
||
|
extraprec = max(2*extraprec, min(cancellation + 5, 100*prec))
|
||
|
if extraprec > kwargs.get('maxprec', 100*prec):
|
||
|
raise ctx.NoConvergence("zeta: too much cancellation")
|
||
|
finally:
|
||
|
ctx.prec = prec
|
||
|
|
||
|
def _hurwitz_reflection(ctx, s, a, d, atype):
|
||
|
# TODO: implement for derivatives
|
||
|
if d != 0:
|
||
|
raise NotImplementedError
|
||
|
res = ctx.re(s)
|
||
|
negs = -s
|
||
|
# Integer reflection formula
|
||
|
if ctx.isnpint(s):
|
||
|
n = int(res)
|
||
|
if n <= 0:
|
||
|
return ctx.bernpoly(1-n, a) / (n-1)
|
||
|
if not (atype == 'Q' or atype == 'Z'):
|
||
|
raise NotImplementedError
|
||
|
t = 1-s
|
||
|
# We now require a to be standardized
|
||
|
v = 0
|
||
|
shift = 0
|
||
|
b = a
|
||
|
while ctx.re(b) > 1:
|
||
|
b -= 1
|
||
|
v -= b**negs
|
||
|
shift -= 1
|
||
|
while ctx.re(b) <= 0:
|
||
|
v += b**negs
|
||
|
b += 1
|
||
|
shift += 1
|
||
|
# Rational reflection formula
|
||
|
try:
|
||
|
p, q = a._mpq_
|
||
|
except:
|
||
|
assert a == int(a)
|
||
|
p = int(a)
|
||
|
q = 1
|
||
|
p += shift*q
|
||
|
assert 1 <= p <= q
|
||
|
g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \
|
||
|
for k in range(1,q+1))
|
||
|
g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t
|
||
|
v += g
|
||
|
return v
|
||
|
|
||
|
def _hurwitz_em(ctx, s, a, d, prec, verbose):
|
||
|
# May not be converted at this point
|
||
|
a = ctx.convert(a)
|
||
|
tol = -prec
|
||
|
# Estimate number of terms for Euler-Maclaurin summation; could be improved
|
||
|
M1 = 0
|
||
|
M2 = prec // 3
|
||
|
N = M2
|
||
|
lsum = 0
|
||
|
# This speeds up the recurrence for derivatives
|
||
|
if ctx.isint(s):
|
||
|
s = int(ctx._re(s))
|
||
|
s1 = s-1
|
||
|
while 1:
|
||
|
# Truncated L-series
|
||
|
l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0]
|
||
|
#if d:
|
||
|
# l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2))
|
||
|
#else:
|
||
|
# l = ctx.fsum((n+a)**negs for n in range(M1,M2))
|
||
|
lsum += l
|
||
|
M2a = M2+a
|
||
|
logM2a = ctx.ln(M2a)
|
||
|
logM2ad = logM2a**d
|
||
|
logs = [logM2ad]
|
||
|
logr = 1/logM2a
|
||
|
rM2a = 1/M2a
|
||
|
M2as = M2a**(-s)
|
||
|
if d:
|
||
|
tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1)
|
||
|
else:
|
||
|
tailsum = 1/((s1)*(M2a)**s1)
|
||
|
tailsum += 0.5 * logM2ad * M2as
|
||
|
U = [1]
|
||
|
r = M2as
|
||
|
fact = 2
|
||
|
for j in range(1, N+1):
|
||
|
# TODO: the following could perhaps be tidied a bit
|
||
|
j2 = 2*j
|
||
|
if j == 1:
|
||
|
upds = [1]
|
||
|
else:
|
||
|
upds = [j2-2, j2-1]
|
||
|
for m in upds:
|
||
|
D = min(m,d+1)
|
||
|
if m <= d:
|
||
|
logs.append(logs[-1] * logr)
|
||
|
Un = [0]*(D+1)
|
||
|
for i in xrange(D): Un[i] = (1-m-s)*U[i]
|
||
|
for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1]
|
||
|
U = Un
|
||
|
r *= rM2a
|
||
|
t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact)
|
||
|
tailsum += t
|
||
|
if ctx.mag(t) < tol:
|
||
|
return lsum, (-1)**d * tailsum
|
||
|
fact *= (j2+1)*(j2+2)
|
||
|
if verbose:
|
||
|
print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol)
|
||
|
M1, M2 = M2, M2*2
|
||
|
if ctx.re(s) < 0:
|
||
|
N += N//2
|
||
|
|
||
|
|
||
|
|
||
|
@defun
|
||
|
def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False):
|
||
|
"""
|
||
|
Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where
|
||
|
|
||
|
xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s )
|
||
|
ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) )
|
||
|
|
||
|
D^k = kth derivative with respect to s, k ranges over the given list of
|
||
|
derivatives (which should consist of either a single element
|
||
|
or a range 0,1,...r). If reflect=False, the ydks are not computed.
|
||
|
"""
|
||
|
#print "zetasum", s, a, n
|
||
|
# don't use the fixed-point code if there are large exponentials
|
||
|
if abs(ctx.re(s)) < 0.5 * ctx.prec:
|
||
|
try:
|
||
|
return ctx._zetasum_fast(s, a, n, derivatives, reflect)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
negs = ctx.fneg(s, exact=True)
|
||
|
have_derivatives = derivatives != [0]
|
||
|
have_one_derivative = len(derivatives) == 1
|
||
|
if not reflect:
|
||
|
if not have_derivatives:
|
||
|
return [ctx.fsum((a+k)**negs for k in xrange(n+1))], []
|
||
|
if have_one_derivative:
|
||
|
d = derivatives[0]
|
||
|
x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1))
|
||
|
return [(-1)**d * x], []
|
||
|
maxd = max(derivatives)
|
||
|
if not have_one_derivative:
|
||
|
derivatives = range(maxd+1)
|
||
|
xs = [ctx.zero for d in derivatives]
|
||
|
if reflect:
|
||
|
ys = [ctx.zero for d in derivatives]
|
||
|
else:
|
||
|
ys = []
|
||
|
for k in xrange(n+1):
|
||
|
w = a + k
|
||
|
xterm = w ** negs
|
||
|
if reflect:
|
||
|
yterm = ctx.conj(ctx.one / (w * xterm))
|
||
|
if have_derivatives:
|
||
|
logw = -ctx.ln(w)
|
||
|
if have_one_derivative:
|
||
|
logw = logw ** maxd
|
||
|
xs[0] += xterm * logw
|
||
|
if reflect:
|
||
|
ys[0] += yterm * logw
|
||
|
else:
|
||
|
t = ctx.one
|
||
|
for d in derivatives:
|
||
|
xs[d] += xterm * t
|
||
|
if reflect:
|
||
|
ys[d] += yterm * t
|
||
|
t *= logw
|
||
|
else:
|
||
|
xs[0] += xterm
|
||
|
if reflect:
|
||
|
ys[0] += yterm
|
||
|
return xs, ys
|
||
|
|
||
|
@defun
|
||
|
def dirichlet(ctx, s, chi=[1], derivative=0):
|
||
|
s = ctx.convert(s)
|
||
|
q = len(chi)
|
||
|
d = int(derivative)
|
||
|
if d > 2:
|
||
|
raise NotImplementedError("arbitrary order derivatives")
|
||
|
prec = ctx.prec
|
||
|
try:
|
||
|
ctx.prec += 10
|
||
|
if s == 1:
|
||
|
have_pole = True
|
||
|
for x in chi:
|
||
|
if x and x != 1:
|
||
|
have_pole = False
|
||
|
h = +ctx.eps
|
||
|
ctx.prec *= 2*(d+1)
|
||
|
s += h
|
||
|
if have_pole:
|
||
|
return +ctx.inf
|
||
|
z = ctx.zero
|
||
|
for p in range(1,q+1):
|
||
|
if chi[p%q]:
|
||
|
if d == 1:
|
||
|
z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \
|
||
|
ctx.zeta(s, (p,q))*ctx.log(q))
|
||
|
else:
|
||
|
z += chi[p%q] * ctx.zeta(s, (p,q))
|
||
|
z /= q**s
|
||
|
finally:
|
||
|
ctx.prec = prec
|
||
|
return +z
|
||
|
|
||
|
|
||
|
def secondzeta_main_term(ctx, s, a, **kwargs):
|
||
|
tol = ctx.eps
|
||
|
f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s)
|
||
|
totsum = term = ctx.zero
|
||
|
mg = ctx.inf
|
||
|
n = 0
|
||
|
while mg > tol:
|
||
|
totsum += term
|
||
|
n += 1
|
||
|
gamm = ctx.im(ctx.zetazero_memoized(n))
|
||
|
term = f(n)
|
||
|
mg = abs(term)
|
||
|
err = 0
|
||
|
if kwargs.get("error"):
|
||
|
sg = ctx.re(s)
|
||
|
err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\
|
||
|
ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2))
|
||
|
err = abs(err)
|
||
|
return +totsum, err, n
|
||
|
|
||
|
def secondzeta_prime_term(ctx, s, a, **kwargs):
|
||
|
tol = ctx.eps
|
||
|
f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\
|
||
|
((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\
|
||
|
(2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi))
|
||
|
totsum = term = ctx.zero
|
||
|
mg = ctx.inf
|
||
|
n = 1
|
||
|
while mg > tol or n < 9:
|
||
|
totsum += term
|
||
|
n += 1
|
||
|
term = f(n)
|
||
|
if term == 0:
|
||
|
mg = ctx.inf
|
||
|
else:
|
||
|
mg = abs(term)
|
||
|
if kwargs.get("error"):
|
||
|
err = mg
|
||
|
return +totsum, err, n
|
||
|
|
||
|
def secondzeta_exp_term(ctx, s, a):
|
||
|
if ctx.isint(s) and ctx.re(s) <= 0:
|
||
|
m = int(round(ctx.re(s)))
|
||
|
if not m & 1:
|
||
|
return ctx.mpf('-0.25')**(-m//2)
|
||
|
tol = ctx.eps
|
||
|
f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n))
|
||
|
totsum = ctx.zero
|
||
|
term = f(0)
|
||
|
mg = ctx.inf
|
||
|
n = 0
|
||
|
while mg > tol:
|
||
|
totsum += term
|
||
|
n += 1
|
||
|
term = f(n)
|
||
|
mg = abs(term)
|
||
|
v = a**(0.5*s)*totsum/ctx.gamma(0.5*s)
|
||
|
return v
|
||
|
|
||
|
def secondzeta_singular_term(ctx, s, a, **kwargs):
|
||
|
factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
|
||
|
extraprec = ctx.mag(factor)
|
||
|
ctx.prec += extraprec
|
||
|
factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s))
|
||
|
tol = ctx.eps
|
||
|
f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\
|
||
|
ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n))
|
||
|
totsum = ctx.zero
|
||
|
mg1 = ctx.inf
|
||
|
n = 1
|
||
|
term = f(n)
|
||
|
mg2 = abs(term)
|
||
|
while mg2 > tol and mg2 <= mg1:
|
||
|
totsum += term
|
||
|
n += 1
|
||
|
term = f(n)
|
||
|
totsum += term
|
||
|
n +=1
|
||
|
term = f(n)
|
||
|
mg1 = mg2
|
||
|
mg2 = abs(term)
|
||
|
totsum += term
|
||
|
pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1)
|
||
|
st = factor*(pole+totsum)
|
||
|
err = 0
|
||
|
if kwargs.get("error"):
|
||
|
if not ((mg2 > tol) and (mg2 <= mg1)):
|
||
|
if mg2 <= tol:
|
||
|
err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10))
|
||
|
if mg2 > mg1:
|
||
|
err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10))
|
||
|
err = max(err, ctx.eps*1.)
|
||
|
ctx.prec -= extraprec
|
||
|
return +st, err
|
||
|
|
||
|
@defun
|
||
|
def secondzeta(ctx, s, a = 0.015, **kwargs):
|
||
|
r"""
|
||
|
Evaluates the secondary zeta function `Z(s)`, defined for
|
||
|
`\mathrm{Re}(s)>1` by
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s}
|
||
|
|
||
|
where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with
|
||
|
imaginary part positive.
|
||
|
|
||
|
`Z(s)` extends to a meromorphic function on `\mathbb{C}` with a
|
||
|
double pole at `s=1` and simple poles at the points `-2n` for
|
||
|
`n=0`, 1, 2, ...
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.pretty = True; mp.dps = 15
|
||
|
>>> secondzeta(2)
|
||
|
0.023104993115419
|
||
|
>>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s)
|
||
|
>>> Xi = lambda t: xi(0.5+t*j)
|
||
|
>>> chop(-0.5*diff(Xi,0,n=2)/Xi(0))
|
||
|
0.023104993115419
|
||
|
|
||
|
We may ask for an approximate error value::
|
||
|
|
||
|
>>> secondzeta(0.5+100j, error=True)
|
||
|
((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16)
|
||
|
|
||
|
The function has poles at the negative odd integers,
|
||
|
and dyadic rational values at the negative even integers::
|
||
|
|
||
|
>>> mp.dps = 30
|
||
|
>>> secondzeta(-8)
|
||
|
-0.67236328125
|
||
|
>>> secondzeta(-7)
|
||
|
+inf
|
||
|
|
||
|
**Implementation notes**
|
||
|
|
||
|
The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)`
|
||
|
respectively main, prime, exponential and singular terms.
|
||
|
The main term `A(s)` is computed from the zeros of zeta.
|
||
|
The prime term depends on the von Mangoldt function.
|
||
|
The singular term is responsible for the poles of the function.
|
||
|
|
||
|
The four terms depends on a small parameter `a`. We may change the
|
||
|
value of `a`. Theoretically this has no effect on the sum of the four
|
||
|
terms, but in practice may be important.
|
||
|
|
||
|
A smaller value of the parameter `a` makes `A(s)` depend on
|
||
|
a smaller number of zeros of zeta, but `P(s)` uses more values of
|
||
|
von Mangoldt function.
|
||
|
|
||
|
We may also add a verbose option to obtain data about the
|
||
|
values of the four terms.
|
||
|
|
||
|
>>> mp.dps = 10
|
||
|
>>> secondzeta(0.5 + 40j, error=True, verbose=True)
|
||
|
main term = (-30190318549.138656312556 - 13964804384.624622876523j)
|
||
|
computed using 19 zeros of zeta
|
||
|
prime term = (132717176.89212754625045 + 188980555.17563978290601j)
|
||
|
computed using 9 values of the von Mangoldt function
|
||
|
exponential term = (542447428666.07179812536 + 362434922978.80192435203j)
|
||
|
singular term = (512124392939.98154322355 + 348281138038.65531023921j)
|
||
|
((0.059471043 + 0.3463514534j), 1.455191523e-11)
|
||
|
|
||
|
>>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True)
|
||
|
main term = (-151962888.19606243907725 - 217930683.90210294051982j)
|
||
|
computed using 9 zeros of zeta
|
||
|
prime term = (2476659342.3038722372461 + 28711581821.921627163136j)
|
||
|
computed using 37 values of the von Mangoldt function
|
||
|
exponential term = (178506047114.7838188264 + 819674143244.45677330576j)
|
||
|
singular term = (175877424884.22441310708 + 790744630738.28669174871j)
|
||
|
((0.059471043 + 0.3463514534j), 1.455191523e-11)
|
||
|
|
||
|
Notice the great cancellation between the four terms. Changing `a`, the
|
||
|
four terms are very different numbers but the cancellation gives
|
||
|
the good value of Z(s).
|
||
|
|
||
|
**References**
|
||
|
|
||
|
A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier,
|
||
|
53, (2003) 665--699.
|
||
|
|
||
|
A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes
|
||
|
of the Unione Matematica Italiana, Springer, 2009.
|
||
|
"""
|
||
|
s = ctx.convert(s)
|
||
|
a = ctx.convert(a)
|
||
|
tol = ctx.eps
|
||
|
if ctx.isint(s) and ctx.re(s) <= 1:
|
||
|
if abs(s-1) < tol*1000:
|
||
|
return ctx.inf
|
||
|
m = int(round(ctx.re(s)))
|
||
|
if m & 1:
|
||
|
return ctx.inf
|
||
|
else:
|
||
|
return ((-1)**(-m//2)*\
|
||
|
ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3)))
|
||
|
prec = ctx.prec
|
||
|
try:
|
||
|
t3 = secondzeta_exp_term(ctx, s, a)
|
||
|
extraprec = max(ctx.mag(t3),0)
|
||
|
ctx.prec += extraprec + 3
|
||
|
t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True')
|
||
|
t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True')
|
||
|
t4, r4 = secondzeta_singular_term(ctx,s,a,error='True')
|
||
|
t3 = secondzeta_exp_term(ctx, s, a)
|
||
|
err = r1+r2+r4
|
||
|
t = t1-t2+t3-t4
|
||
|
if kwargs.get("verbose"):
|
||
|
print('main term =', t1)
|
||
|
print(' computed using', gt, 'zeros of zeta')
|
||
|
print('prime term =', t2)
|
||
|
print(' computed using', pt, 'values of the von Mangoldt function')
|
||
|
print('exponential term =', t3)
|
||
|
print('singular term =', t4)
|
||
|
finally:
|
||
|
ctx.prec = prec
|
||
|
if kwargs.get("error"):
|
||
|
w = max(ctx.mag(abs(t)),0)
|
||
|
err = max(err*2**w, ctx.eps*1.*2**w)
|
||
|
return +t, err
|
||
|
return +t
|
||
|
|
||
|
|
||
|
@defun_wrapped
|
||
|
def lerchphi(ctx, z, s, a):
|
||
|
r"""
|
||
|
Gives the Lerch transcendent, defined for `|z| < 1` and
|
||
|
`\Re{a} > 0` by
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
\Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s}
|
||
|
|
||
|
and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}`
|
||
|
along with the integral representation valid for `\Re{a} > 0`
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
\Phi(z,s,a) = \frac{1}{2 a^s} +
|
||
|
\int_0^{\infty} \frac{z^t}{(a+t)^s} dt -
|
||
|
2 \int_0^{\infty} \frac{\sin(t \log z - s
|
||
|
\operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2}
|
||
|
(e^{2 \pi t}-1)} dt.
|
||
|
|
||
|
The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta`
|
||
|
(`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`).
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
Several evaluations in terms of simpler functions::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 25; mp.pretty = True
|
||
|
>>> lerchphi(-1,2,0.5); 4*catalan
|
||
|
3.663862376708876060218414
|
||
|
3.663862376708876060218414
|
||
|
>>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2)
|
||
|
0.2131391994087528954617607
|
||
|
0.2131391994087528954617607
|
||
|
>>> lerchphi(-4,1,1); log(5)/4
|
||
|
0.4023594781085250936501898
|
||
|
0.4023594781085250936501898
|
||
|
>>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j)
|
||
|
(1.142423447120257137774002 + 0.2118232380980201350495795j)
|
||
|
(1.142423447120257137774002 + 0.2118232380980201350495795j)
|
||
|
|
||
|
Evaluation works for complex arguments and `|z| \ge 1`::
|
||
|
|
||
|
>>> lerchphi(1+2j, 3-j, 4+2j)
|
||
|
(0.002025009957009908600539469 + 0.003327897536813558807438089j)
|
||
|
>>> lerchphi(-2,2,-2.5)
|
||
|
-12.28676272353094275265944
|
||
|
>>> lerchphi(10,10,10)
|
||
|
(-4.462130727102185701817349e-11 - 1.575172198981096218823481e-12j)
|
||
|
>>> lerchphi(10,10,-10.5)
|
||
|
(112658784011940.5605789002 - 498113185.5756221777743631j)
|
||
|
|
||
|
Some degenerate cases::
|
||
|
|
||
|
>>> lerchphi(0,1,2)
|
||
|
0.5
|
||
|
>>> lerchphi(0,1,-2)
|
||
|
-0.5
|
||
|
|
||
|
Reduction to simpler functions::
|
||
|
|
||
|
>>> lerchphi(1, 4.25+1j, 1)
|
||
|
(1.044674457556746668033975 - 0.04674508654012658932271226j)
|
||
|
>>> zeta(4.25+1j)
|
||
|
(1.044674457556746668033975 - 0.04674508654012658932271226j)
|
||
|
>>> lerchphi(1 - 0.5**10, 4.25+1j, 1)
|
||
|
(1.044629338021507546737197 - 0.04667768813963388181708101j)
|
||
|
>>> lerchphi(3, 4, 1)
|
||
|
(1.249503297023366545192592 - 0.2314252413375664776474462j)
|
||
|
>>> polylog(4, 3) / 3
|
||
|
(1.249503297023366545192592 - 0.2314252413375664776474462j)
|
||
|
>>> lerchphi(3, 4, 1 - 0.5**10)
|
||
|
(1.253978063946663945672674 - 0.2316736622836535468765376j)
|
||
|
|
||
|
**References**
|
||
|
|
||
|
1. [DLMF]_ section 25.14
|
||
|
|
||
|
"""
|
||
|
if z == 0:
|
||
|
return a ** (-s)
|
||
|
# Faster, but these cases are useful for testing right now
|
||
|
if z == 1:
|
||
|
return ctx.zeta(s, a)
|
||
|
if a == 1:
|
||
|
return ctx.polylog(s, z) / z
|
||
|
if ctx.re(a) < 1:
|
||
|
if ctx.isnpint(a):
|
||
|
raise ValueError("Lerch transcendent complex infinity")
|
||
|
m = int(ctx.ceil(1-ctx.re(a)))
|
||
|
v = ctx.zero
|
||
|
zpow = ctx.one
|
||
|
for n in xrange(m):
|
||
|
v += zpow / (a+n)**s
|
||
|
zpow *= z
|
||
|
return zpow * ctx.lerchphi(z,s, a+m) + v
|
||
|
g = ctx.ln(z)
|
||
|
v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a
|
||
|
h = s / 2
|
||
|
r = 2*ctx.pi
|
||
|
f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \
|
||
|
((a**2+t**2)**h * ctx.expm1(r*t))
|
||
|
v += 2*ctx.quad(f, [0, ctx.inf])
|
||
|
if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1:
|
||
|
v = ctx.chop(v)
|
||
|
return v
|