92 lines
3.1 KiB
Python
92 lines
3.1 KiB
Python
|
import pytest
|
||
|
from mpmath import *
|
||
|
from mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \
|
||
|
Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton
|
||
|
|
||
|
def test_findroot():
|
||
|
# old tests, assuming secant
|
||
|
mp.dps = 15
|
||
|
assert findroot(lambda x: 4*x-3, mpf(5)).ae(0.75)
|
||
|
assert findroot(sin, mpf(3)).ae(pi)
|
||
|
assert findroot(sin, (mpf(3), mpf(3.14))).ae(pi)
|
||
|
assert findroot(lambda x: x*x+1, mpc(2+2j)).ae(1j)
|
||
|
# test all solvers with 1 starting point
|
||
|
f = lambda x: cos(x)
|
||
|
for solver in [Newton, Secant, MNewton, Muller, ANewton]:
|
||
|
x = findroot(f, 2., solver=solver)
|
||
|
assert abs(f(x)) < eps
|
||
|
# test all solvers with interval of 2 points
|
||
|
for solver in [Secant, Muller, Bisection, Illinois, Pegasus, Anderson,
|
||
|
Ridder]:
|
||
|
x = findroot(f, (1., 2.), solver=solver)
|
||
|
assert abs(f(x)) < eps
|
||
|
# test types
|
||
|
f = lambda x: (x - 2)**2
|
||
|
|
||
|
assert isinstance(findroot(f, 1, tol=1e-10), mpf)
|
||
|
assert isinstance(iv.findroot(f, 1., tol=1e-10), iv.mpf)
|
||
|
assert isinstance(fp.findroot(f, 1, tol=1e-10), float)
|
||
|
assert isinstance(fp.findroot(f, 1+0j, tol=1e-10), complex)
|
||
|
|
||
|
# issue 401
|
||
|
with pytest.raises(ValueError):
|
||
|
with workprec(2):
|
||
|
findroot(lambda x: x**2 - 4456178*x + 60372201703370,
|
||
|
mpc(real='5.278e+13', imag='-5.278e+13'))
|
||
|
|
||
|
# issue 192
|
||
|
with pytest.raises(ValueError):
|
||
|
findroot(lambda x: -1, 0)
|
||
|
|
||
|
# issue 387
|
||
|
with pytest.raises(ValueError):
|
||
|
findroot(lambda p: (1 - p)**30 - 1, 0.9)
|
||
|
|
||
|
def test_bisection():
|
||
|
# issue 273
|
||
|
assert findroot(lambda x: x**2-1,(0,2),solver='bisect') == 1
|
||
|
|
||
|
def test_mnewton():
|
||
|
f = lambda x: polyval([1,3,3,1],x)
|
||
|
x = findroot(f, -0.9, solver='mnewton')
|
||
|
assert abs(f(x)) < eps
|
||
|
|
||
|
def test_anewton():
|
||
|
f = lambda x: (x - 2)**100
|
||
|
x = findroot(f, 1., solver=ANewton)
|
||
|
assert abs(f(x)) < eps
|
||
|
|
||
|
def test_muller():
|
||
|
f = lambda x: (2 + x)**3 + 2
|
||
|
x = findroot(f, 1., solver=Muller)
|
||
|
assert abs(f(x)) < eps
|
||
|
|
||
|
def test_multiplicity():
|
||
|
for i in range(1, 5):
|
||
|
assert multiplicity(lambda x: (x - 1)**i, 1) == i
|
||
|
assert multiplicity(lambda x: x**2, 1) == 0
|
||
|
|
||
|
def test_multidimensional():
|
||
|
def f(*x):
|
||
|
return [3*x[0]**2-2*x[1]**2-1, x[0]**2-2*x[0]+x[1]**2+2*x[1]-8]
|
||
|
assert mnorm(jacobian(f, (1,-2)) - matrix([[6,8],[0,-2]]),1) < 1.e-7
|
||
|
for x, error in MDNewton(mp, f, (1,-2), verbose=0,
|
||
|
norm=lambda x: norm(x, inf)):
|
||
|
pass
|
||
|
assert norm(f(*x), 2) < 1e-14
|
||
|
# The Chinese mathematician Zhu Shijie was the very first to solve this
|
||
|
# nonlinear system 700 years ago
|
||
|
f1 = lambda x, y: -x + 2*y
|
||
|
f2 = lambda x, y: (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
|
||
|
f3 = lambda x, y: sqrt(x**2 + y**2)
|
||
|
def f(x, y):
|
||
|
f1x = f1(x, y)
|
||
|
return (f2(x, y) - f1x, f3(x, y) - f1x)
|
||
|
x = findroot(f, (10, 10))
|
||
|
assert [int(round(i)) for i in x] == [3, 4]
|
||
|
|
||
|
def test_trivial():
|
||
|
assert findroot(lambda x: 0, 1) == 1
|
||
|
assert findroot(lambda x: x, 0) == 0
|
||
|
#assert findroot(lambda x, y: x + y, (1, -1)) == (1, -1)
|