1596 lines
61 KiB
Python
1596 lines
61 KiB
Python
|
"""shgo: The simplicial homology global optimisation algorithm."""
|
||
|
from collections import namedtuple
|
||
|
import time
|
||
|
import logging
|
||
|
import warnings
|
||
|
import sys
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy import spatial
|
||
|
from scipy.optimize import OptimizeResult, minimize, Bounds
|
||
|
from scipy.optimize._optimize import MemoizeJac
|
||
|
from scipy.optimize._constraints import new_bounds_to_old
|
||
|
from scipy.optimize._minimize import standardize_constraints
|
||
|
from scipy._lib._util import _FunctionWrapper
|
||
|
|
||
|
from scipy.optimize._shgo_lib._complex import Complex
|
||
|
|
||
|
__all__ = ['shgo']
|
||
|
|
||
|
|
||
|
def shgo(
|
||
|
func, bounds, args=(), constraints=None, n=100, iters=1, callback=None,
|
||
|
minimizer_kwargs=None, options=None, sampling_method='simplicial', *,
|
||
|
workers=1
|
||
|
):
|
||
|
"""
|
||
|
Finds the global minimum of a function using SHG optimization.
|
||
|
|
||
|
SHGO stands for "simplicial homology global optimization".
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : callable
|
||
|
The objective function to be minimized. Must be in the form
|
||
|
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
|
||
|
and ``args`` is a tuple of any additional fixed parameters needed to
|
||
|
completely specify the function.
|
||
|
bounds : sequence or `Bounds`
|
||
|
Bounds for variables. There are two ways to specify the bounds:
|
||
|
|
||
|
1. Instance of `Bounds` class.
|
||
|
2. Sequence of ``(min, max)`` pairs for each element in `x`.
|
||
|
|
||
|
args : tuple, optional
|
||
|
Any additional fixed parameters needed to completely specify the
|
||
|
objective function.
|
||
|
constraints : {Constraint, dict} or List of {Constraint, dict}, optional
|
||
|
Constraints definition. Only for COBYLA, SLSQP and trust-constr.
|
||
|
See the tutorial [5]_ for further details on specifying constraints.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
Only COBYLA, SLSQP, and trust-constr local minimize methods
|
||
|
currently support constraint arguments. If the ``constraints``
|
||
|
sequence used in the local optimization problem is not defined in
|
||
|
``minimizer_kwargs`` and a constrained method is used then the
|
||
|
global ``constraints`` will be used.
|
||
|
(Defining a ``constraints`` sequence in ``minimizer_kwargs``
|
||
|
means that ``constraints`` will not be added so if equality
|
||
|
constraints and so forth need to be added then the inequality
|
||
|
functions in ``constraints`` need to be added to
|
||
|
``minimizer_kwargs`` too).
|
||
|
COBYLA only supports inequality constraints.
|
||
|
|
||
|
.. versionchanged:: 1.11.0
|
||
|
|
||
|
``constraints`` accepts `NonlinearConstraint`, `LinearConstraint`.
|
||
|
|
||
|
n : int, optional
|
||
|
Number of sampling points used in the construction of the simplicial
|
||
|
complex. For the default ``simplicial`` sampling method 2**dim + 1
|
||
|
sampling points are generated instead of the default `n=100`. For all
|
||
|
other specified values `n` sampling points are generated. For
|
||
|
``sobol``, ``halton`` and other arbitrary `sampling_methods` `n=100` or
|
||
|
another specified number of sampling points are generated.
|
||
|
iters : int, optional
|
||
|
Number of iterations used in the construction of the simplicial
|
||
|
complex. Default is 1.
|
||
|
callback : callable, optional
|
||
|
Called after each iteration, as ``callback(xk)``, where ``xk`` is the
|
||
|
current parameter vector.
|
||
|
minimizer_kwargs : dict, optional
|
||
|
Extra keyword arguments to be passed to the minimizer
|
||
|
``scipy.optimize.minimize`` Some important options could be:
|
||
|
|
||
|
* method : str
|
||
|
The minimization method. If not given, chosen to be one of
|
||
|
BFGS, L-BFGS-B, SLSQP, depending on whether or not the
|
||
|
problem has constraints or bounds.
|
||
|
* args : tuple
|
||
|
Extra arguments passed to the objective function (``func``) and
|
||
|
its derivatives (Jacobian, Hessian).
|
||
|
* options : dict, optional
|
||
|
Note that by default the tolerance is specified as
|
||
|
``{ftol: 1e-12}``
|
||
|
|
||
|
options : dict, optional
|
||
|
A dictionary of solver options. Many of the options specified for the
|
||
|
global routine are also passed to the scipy.optimize.minimize routine.
|
||
|
The options that are also passed to the local routine are marked with
|
||
|
"(L)".
|
||
|
|
||
|
Stopping criteria, the algorithm will terminate if any of the specified
|
||
|
criteria are met. However, the default algorithm does not require any
|
||
|
to be specified:
|
||
|
|
||
|
* maxfev : int (L)
|
||
|
Maximum number of function evaluations in the feasible domain.
|
||
|
(Note only methods that support this option will terminate
|
||
|
the routine at precisely exact specified value. Otherwise the
|
||
|
criterion will only terminate during a global iteration)
|
||
|
* f_min
|
||
|
Specify the minimum objective function value, if it is known.
|
||
|
* f_tol : float
|
||
|
Precision goal for the value of f in the stopping
|
||
|
criterion. Note that the global routine will also
|
||
|
terminate if a sampling point in the global routine is
|
||
|
within this tolerance.
|
||
|
* maxiter : int
|
||
|
Maximum number of iterations to perform.
|
||
|
* maxev : int
|
||
|
Maximum number of sampling evaluations to perform (includes
|
||
|
searching in infeasible points).
|
||
|
* maxtime : float
|
||
|
Maximum processing runtime allowed
|
||
|
* minhgrd : int
|
||
|
Minimum homology group rank differential. The homology group of the
|
||
|
objective function is calculated (approximately) during every
|
||
|
iteration. The rank of this group has a one-to-one correspondence
|
||
|
with the number of locally convex subdomains in the objective
|
||
|
function (after adequate sampling points each of these subdomains
|
||
|
contain a unique global minimum). If the difference in the hgr is 0
|
||
|
between iterations for ``maxhgrd`` specified iterations the
|
||
|
algorithm will terminate.
|
||
|
|
||
|
Objective function knowledge:
|
||
|
|
||
|
* symmetry : list or bool
|
||
|
Specify if the objective function contains symmetric variables.
|
||
|
The search space (and therefore performance) is decreased by up to
|
||
|
O(n!) times in the fully symmetric case. If `True` is specified
|
||
|
then all variables will be set symmetric to the first variable.
|
||
|
Default
|
||
|
is set to False.
|
||
|
|
||
|
E.g. f(x) = (x_1 + x_2 + x_3) + (x_4)**2 + (x_5)**2 + (x_6)**2
|
||
|
|
||
|
In this equation x_2 and x_3 are symmetric to x_1, while x_5 and
|
||
|
x_6 are symmetric to x_4, this can be specified to the solver as:
|
||
|
|
||
|
symmetry = [0, # Variable 1
|
||
|
0, # symmetric to variable 1
|
||
|
0, # symmetric to variable 1
|
||
|
3, # Variable 4
|
||
|
3, # symmetric to variable 4
|
||
|
3, # symmetric to variable 4
|
||
|
]
|
||
|
|
||
|
* jac : bool or callable, optional
|
||
|
Jacobian (gradient) of objective function. Only for CG, BFGS,
|
||
|
Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg. If ``jac`` is a
|
||
|
boolean and is True, ``fun`` is assumed to return the gradient
|
||
|
along with the objective function. If False, the gradient will be
|
||
|
estimated numerically. ``jac`` can also be a callable returning the
|
||
|
gradient of the objective. In this case, it must accept the same
|
||
|
arguments as ``fun``. (Passed to `scipy.optimize.minimize`
|
||
|
automatically)
|
||
|
|
||
|
* hess, hessp : callable, optional
|
||
|
Hessian (matrix of second-order derivatives) of objective function
|
||
|
or Hessian of objective function times an arbitrary vector p.
|
||
|
Only for Newton-CG, dogleg, trust-ncg. Only one of ``hessp`` or
|
||
|
``hess`` needs to be given. If ``hess`` is provided, then
|
||
|
``hessp`` will be ignored. If neither ``hess`` nor ``hessp`` is
|
||
|
provided, then the Hessian product will be approximated using
|
||
|
finite differences on ``jac``. ``hessp`` must compute the Hessian
|
||
|
times an arbitrary vector. (Passed to `scipy.optimize.minimize`
|
||
|
automatically)
|
||
|
|
||
|
Algorithm settings:
|
||
|
|
||
|
* minimize_every_iter : bool
|
||
|
If True then promising global sampling points will be passed to a
|
||
|
local minimization routine every iteration. If True then only the
|
||
|
final minimizer pool will be run. Defaults to True.
|
||
|
* local_iter : int
|
||
|
Only evaluate a few of the best minimizer pool candidates every
|
||
|
iteration. If False all potential points are passed to the local
|
||
|
minimization routine.
|
||
|
* infty_constraints : bool
|
||
|
If True then any sampling points generated which are outside will
|
||
|
the feasible domain will be saved and given an objective function
|
||
|
value of ``inf``. If False then these points will be discarded.
|
||
|
Using this functionality could lead to higher performance with
|
||
|
respect to function evaluations before the global minimum is found,
|
||
|
specifying False will use less memory at the cost of a slight
|
||
|
decrease in performance. Defaults to True.
|
||
|
|
||
|
Feedback:
|
||
|
|
||
|
* disp : bool (L)
|
||
|
Set to True to print convergence messages.
|
||
|
|
||
|
sampling_method : str or function, optional
|
||
|
Current built in sampling method options are ``halton``, ``sobol`` and
|
||
|
``simplicial``. The default ``simplicial`` provides
|
||
|
the theoretical guarantee of convergence to the global minimum in
|
||
|
finite time. ``halton`` and ``sobol`` method are faster in terms of
|
||
|
sampling point generation at the cost of the loss of
|
||
|
guaranteed convergence. It is more appropriate for most "easier"
|
||
|
problems where the convergence is relatively fast.
|
||
|
User defined sampling functions must accept two arguments of ``n``
|
||
|
sampling points of dimension ``dim`` per call and output an array of
|
||
|
sampling points with shape `n x dim`.
|
||
|
|
||
|
workers : int or map-like callable, optional
|
||
|
Sample and run the local serial minimizations in parallel.
|
||
|
Supply -1 to use all available CPU cores, or an int to use
|
||
|
that many Processes (uses `multiprocessing.Pool <multiprocessing>`).
|
||
|
|
||
|
Alternatively supply a map-like callable, such as
|
||
|
`multiprocessing.Pool.map` for parallel evaluation.
|
||
|
This evaluation is carried out as ``workers(func, iterable)``.
|
||
|
Requires that `func` be pickleable.
|
||
|
|
||
|
.. versionadded:: 1.11.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : OptimizeResult
|
||
|
The optimization result represented as a `OptimizeResult` object.
|
||
|
Important attributes are:
|
||
|
``x`` the solution array corresponding to the global minimum,
|
||
|
``fun`` the function output at the global solution,
|
||
|
``xl`` an ordered list of local minima solutions,
|
||
|
``funl`` the function output at the corresponding local solutions,
|
||
|
``success`` a Boolean flag indicating if the optimizer exited
|
||
|
successfully,
|
||
|
``message`` which describes the cause of the termination,
|
||
|
``nfev`` the total number of objective function evaluations including
|
||
|
the sampling calls,
|
||
|
``nlfev`` the total number of objective function evaluations
|
||
|
culminating from all local search optimizations,
|
||
|
``nit`` number of iterations performed by the global routine.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Global optimization using simplicial homology global optimization [1]_.
|
||
|
Appropriate for solving general purpose NLP and blackbox optimization
|
||
|
problems to global optimality (low-dimensional problems).
|
||
|
|
||
|
In general, the optimization problems are of the form::
|
||
|
|
||
|
minimize f(x) subject to
|
||
|
|
||
|
g_i(x) >= 0, i = 1,...,m
|
||
|
h_j(x) = 0, j = 1,...,p
|
||
|
|
||
|
where x is a vector of one or more variables. ``f(x)`` is the objective
|
||
|
function ``R^n -> R``, ``g_i(x)`` are the inequality constraints, and
|
||
|
``h_j(x)`` are the equality constraints.
|
||
|
|
||
|
Optionally, the lower and upper bounds for each element in x can also be
|
||
|
specified using the `bounds` argument.
|
||
|
|
||
|
While most of the theoretical advantages of SHGO are only proven for when
|
||
|
``f(x)`` is a Lipschitz smooth function, the algorithm is also proven to
|
||
|
converge to the global optimum for the more general case where ``f(x)`` is
|
||
|
non-continuous, non-convex and non-smooth, if the default sampling method
|
||
|
is used [1]_.
|
||
|
|
||
|
The local search method may be specified using the ``minimizer_kwargs``
|
||
|
parameter which is passed on to ``scipy.optimize.minimize``. By default,
|
||
|
the ``SLSQP`` method is used. In general, it is recommended to use the
|
||
|
``SLSQP`` or ``COBYLA`` local minimization if inequality constraints
|
||
|
are defined for the problem since the other methods do not use constraints.
|
||
|
|
||
|
The ``halton`` and ``sobol`` method points are generated using
|
||
|
`scipy.stats.qmc`. Any other QMC method could be used.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Endres, SC, Sandrock, C, Focke, WW (2018) "A simplicial homology
|
||
|
algorithm for lipschitz optimisation", Journal of Global
|
||
|
Optimization.
|
||
|
.. [2] Joe, SW and Kuo, FY (2008) "Constructing Sobol' sequences with
|
||
|
better two-dimensional projections", SIAM J. Sci. Comput. 30,
|
||
|
2635-2654.
|
||
|
.. [3] Hock, W and Schittkowski, K (1981) "Test examples for nonlinear
|
||
|
programming codes", Lecture Notes in Economics and Mathematical
|
||
|
Systems, 187. Springer-Verlag, New York.
|
||
|
http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf
|
||
|
.. [4] Wales, DJ (2015) "Perspective: Insight into reaction coordinates and
|
||
|
dynamics from the potential energy landscape",
|
||
|
Journal of Chemical Physics, 142(13), 2015.
|
||
|
.. [5] https://docs.scipy.org/doc/scipy/tutorial/optimize.html#constrained-minimization-of-multivariate-scalar-functions-minimize
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
First consider the problem of minimizing the Rosenbrock function, `rosen`:
|
||
|
|
||
|
>>> from scipy.optimize import rosen, shgo
|
||
|
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
|
||
|
>>> result = shgo(rosen, bounds)
|
||
|
>>> result.x, result.fun
|
||
|
(array([1., 1., 1., 1., 1.]), 2.920392374190081e-18)
|
||
|
|
||
|
Note that bounds determine the dimensionality of the objective
|
||
|
function and is therefore a required input, however you can specify
|
||
|
empty bounds using ``None`` or objects like ``np.inf`` which will be
|
||
|
converted to large float numbers.
|
||
|
|
||
|
>>> bounds = [(None, None), ]*4
|
||
|
>>> result = shgo(rosen, bounds)
|
||
|
>>> result.x
|
||
|
array([0.99999851, 0.99999704, 0.99999411, 0.9999882 ])
|
||
|
|
||
|
Next, we consider the Eggholder function, a problem with several local
|
||
|
minima and one global minimum. We will demonstrate the use of arguments and
|
||
|
the capabilities of `shgo`.
|
||
|
(https://en.wikipedia.org/wiki/Test_functions_for_optimization)
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> def eggholder(x):
|
||
|
... return (-(x[1] + 47.0)
|
||
|
... * np.sin(np.sqrt(abs(x[0]/2.0 + (x[1] + 47.0))))
|
||
|
... - x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0))))
|
||
|
... )
|
||
|
...
|
||
|
>>> bounds = [(-512, 512), (-512, 512)]
|
||
|
|
||
|
`shgo` has built-in low discrepancy sampling sequences. First, we will
|
||
|
input 64 initial sampling points of the *Sobol'* sequence:
|
||
|
|
||
|
>>> result = shgo(eggholder, bounds, n=64, sampling_method='sobol')
|
||
|
>>> result.x, result.fun
|
||
|
(array([512. , 404.23180824]), -959.6406627208397)
|
||
|
|
||
|
`shgo` also has a return for any other local minima that was found, these
|
||
|
can be called using:
|
||
|
|
||
|
>>> result.xl
|
||
|
array([[ 512. , 404.23180824],
|
||
|
[ 283.0759062 , -487.12565635],
|
||
|
[-294.66820039, -462.01964031],
|
||
|
[-105.87688911, 423.15323845],
|
||
|
[-242.97926 , 274.38030925],
|
||
|
[-506.25823477, 6.3131022 ],
|
||
|
[-408.71980731, -156.10116949],
|
||
|
[ 150.23207937, 301.31376595],
|
||
|
[ 91.00920901, -391.283763 ],
|
||
|
[ 202.89662724, -269.38043241],
|
||
|
[ 361.66623976, -106.96493868],
|
||
|
[-219.40612786, -244.06020508]])
|
||
|
|
||
|
>>> result.funl
|
||
|
array([-959.64066272, -718.16745962, -704.80659592, -565.99778097,
|
||
|
-559.78685655, -557.36868733, -507.87385942, -493.9605115 ,
|
||
|
-426.48799655, -421.15571437, -419.31194957, -410.98477763])
|
||
|
|
||
|
These results are useful in applications where there are many global minima
|
||
|
and the values of other global minima are desired or where the local minima
|
||
|
can provide insight into the system (for example morphologies
|
||
|
in physical chemistry [4]_).
|
||
|
|
||
|
If we want to find a larger number of local minima, we can increase the
|
||
|
number of sampling points or the number of iterations. We'll increase the
|
||
|
number of sampling points to 64 and the number of iterations from the
|
||
|
default of 1 to 3. Using ``simplicial`` this would have given us
|
||
|
64 x 3 = 192 initial sampling points.
|
||
|
|
||
|
>>> result_2 = shgo(eggholder,
|
||
|
... bounds, n=64, iters=3, sampling_method='sobol')
|
||
|
>>> len(result.xl), len(result_2.xl)
|
||
|
(12, 23)
|
||
|
|
||
|
Note the difference between, e.g., ``n=192, iters=1`` and ``n=64,
|
||
|
iters=3``.
|
||
|
In the first case the promising points contained in the minimiser pool
|
||
|
are processed only once. In the latter case it is processed every 64
|
||
|
sampling points for a total of 3 times.
|
||
|
|
||
|
To demonstrate solving problems with non-linear constraints consider the
|
||
|
following example from Hock and Schittkowski problem 73 (cattle-feed)
|
||
|
[3]_::
|
||
|
|
||
|
minimize: f = 24.55 * x_1 + 26.75 * x_2 + 39 * x_3 + 40.50 * x_4
|
||
|
|
||
|
subject to: 2.3 * x_1 + 5.6 * x_2 + 11.1 * x_3 + 1.3 * x_4 - 5 >= 0,
|
||
|
|
||
|
12 * x_1 + 11.9 * x_2 + 41.8 * x_3 + 52.1 * x_4 - 21
|
||
|
-1.645 * sqrt(0.28 * x_1**2 + 0.19 * x_2**2 +
|
||
|
20.5 * x_3**2 + 0.62 * x_4**2) >= 0,
|
||
|
|
||
|
x_1 + x_2 + x_3 + x_4 - 1 == 0,
|
||
|
|
||
|
1 >= x_i >= 0 for all i
|
||
|
|
||
|
The approximate answer given in [3]_ is::
|
||
|
|
||
|
f([0.6355216, -0.12e-11, 0.3127019, 0.05177655]) = 29.894378
|
||
|
|
||
|
>>> def f(x): # (cattle-feed)
|
||
|
... return 24.55*x[0] + 26.75*x[1] + 39*x[2] + 40.50*x[3]
|
||
|
...
|
||
|
>>> def g1(x):
|
||
|
... return 2.3*x[0] + 5.6*x[1] + 11.1*x[2] + 1.3*x[3] - 5 # >=0
|
||
|
...
|
||
|
>>> def g2(x):
|
||
|
... return (12*x[0] + 11.9*x[1] +41.8*x[2] + 52.1*x[3] - 21
|
||
|
... - 1.645 * np.sqrt(0.28*x[0]**2 + 0.19*x[1]**2
|
||
|
... + 20.5*x[2]**2 + 0.62*x[3]**2)
|
||
|
... ) # >=0
|
||
|
...
|
||
|
>>> def h1(x):
|
||
|
... return x[0] + x[1] + x[2] + x[3] - 1 # == 0
|
||
|
...
|
||
|
>>> cons = ({'type': 'ineq', 'fun': g1},
|
||
|
... {'type': 'ineq', 'fun': g2},
|
||
|
... {'type': 'eq', 'fun': h1})
|
||
|
>>> bounds = [(0, 1.0),]*4
|
||
|
>>> res = shgo(f, bounds, n=150, constraints=cons)
|
||
|
>>> res
|
||
|
message: Optimization terminated successfully.
|
||
|
success: True
|
||
|
fun: 29.894378159142136
|
||
|
funl: [ 2.989e+01]
|
||
|
x: [ 6.355e-01 1.137e-13 3.127e-01 5.178e-02] # may vary
|
||
|
xl: [[ 6.355e-01 1.137e-13 3.127e-01 5.178e-02]] # may vary
|
||
|
nit: 1
|
||
|
nfev: 142 # may vary
|
||
|
nlfev: 35 # may vary
|
||
|
nljev: 5
|
||
|
nlhev: 0
|
||
|
|
||
|
>>> g1(res.x), g2(res.x), h1(res.x)
|
||
|
(-5.062616992290714e-14, -2.9594104944408173e-12, 0.0)
|
||
|
|
||
|
"""
|
||
|
# if necessary, convert bounds class to old bounds
|
||
|
if isinstance(bounds, Bounds):
|
||
|
bounds = new_bounds_to_old(bounds.lb, bounds.ub, len(bounds.lb))
|
||
|
|
||
|
# Initiate SHGO class
|
||
|
# use in context manager to make sure that any parallelization
|
||
|
# resources are freed.
|
||
|
with SHGO(func, bounds, args=args, constraints=constraints, n=n,
|
||
|
iters=iters, callback=callback,
|
||
|
minimizer_kwargs=minimizer_kwargs,
|
||
|
options=options, sampling_method=sampling_method,
|
||
|
workers=workers) as shc:
|
||
|
# Run the algorithm, process results and test success
|
||
|
shc.iterate_all()
|
||
|
|
||
|
if not shc.break_routine:
|
||
|
if shc.disp:
|
||
|
logging.info("Successfully completed construction of complex.")
|
||
|
|
||
|
# Test post iterations success
|
||
|
if len(shc.LMC.xl_maps) == 0:
|
||
|
# If sampling failed to find pool, return lowest sampled point
|
||
|
# with a warning
|
||
|
shc.find_lowest_vertex()
|
||
|
shc.break_routine = True
|
||
|
shc.fail_routine(mes="Failed to find a feasible minimizer point. "
|
||
|
f"Lowest sampling point = {shc.f_lowest}")
|
||
|
shc.res.fun = shc.f_lowest
|
||
|
shc.res.x = shc.x_lowest
|
||
|
shc.res.nfev = shc.fn
|
||
|
shc.res.tnev = shc.n_sampled
|
||
|
else:
|
||
|
# Test that the optimal solutions do not violate any constraints
|
||
|
pass # TODO
|
||
|
|
||
|
# Confirm the routine ran successfully
|
||
|
if not shc.break_routine:
|
||
|
shc.res.message = 'Optimization terminated successfully.'
|
||
|
shc.res.success = True
|
||
|
|
||
|
# Return the final results
|
||
|
return shc.res
|
||
|
|
||
|
|
||
|
class SHGO:
|
||
|
def __init__(self, func, bounds, args=(), constraints=None, n=None,
|
||
|
iters=None, callback=None, minimizer_kwargs=None,
|
||
|
options=None, sampling_method='simplicial', workers=1):
|
||
|
from scipy.stats import qmc
|
||
|
# Input checks
|
||
|
methods = ['halton', 'sobol', 'simplicial']
|
||
|
if isinstance(sampling_method, str) and sampling_method not in methods:
|
||
|
raise ValueError(("Unknown sampling_method specified."
|
||
|
" Valid methods: {}").format(', '.join(methods)))
|
||
|
|
||
|
# Split obj func if given with Jac
|
||
|
try:
|
||
|
if ((minimizer_kwargs['jac'] is True) and
|
||
|
(not callable(minimizer_kwargs['jac']))):
|
||
|
self.func = MemoizeJac(func)
|
||
|
jac = self.func.derivative
|
||
|
minimizer_kwargs['jac'] = jac
|
||
|
func = self.func # .fun
|
||
|
else:
|
||
|
self.func = func # Normal definition of objective function
|
||
|
except (TypeError, KeyError):
|
||
|
self.func = func # Normal definition of objective function
|
||
|
|
||
|
# Initiate class
|
||
|
self.func = _FunctionWrapper(func, args)
|
||
|
self.bounds = bounds
|
||
|
self.args = args
|
||
|
self.callback = callback
|
||
|
|
||
|
# Bounds
|
||
|
abound = np.array(bounds, float)
|
||
|
self.dim = np.shape(abound)[0] # Dimensionality of problem
|
||
|
|
||
|
# Set none finite values to large floats
|
||
|
infind = ~np.isfinite(abound)
|
||
|
abound[infind[:, 0], 0] = -1e50
|
||
|
abound[infind[:, 1], 1] = 1e50
|
||
|
|
||
|
# Check if bounds are correctly specified
|
||
|
bnderr = abound[:, 0] > abound[:, 1]
|
||
|
if bnderr.any():
|
||
|
raise ValueError('Error: lb > ub in bounds {}.'
|
||
|
.format(', '.join(str(b) for b in bnderr)))
|
||
|
|
||
|
self.bounds = abound
|
||
|
|
||
|
# Constraints
|
||
|
# Process constraint dict sequence:
|
||
|
self.constraints = constraints
|
||
|
if constraints is not None:
|
||
|
self.min_cons = constraints
|
||
|
self.g_cons = []
|
||
|
self.g_args = []
|
||
|
|
||
|
# shgo internals deals with old-style constraints
|
||
|
# self.constraints is used to create Complex, so need
|
||
|
# to be stored internally in old-style.
|
||
|
# `minimize` takes care of normalising these constraints
|
||
|
# for slsqp/cobyla/trust-constr.
|
||
|
self.constraints = standardize_constraints(
|
||
|
constraints,
|
||
|
np.empty(self.dim, float),
|
||
|
'old'
|
||
|
)
|
||
|
for cons in self.constraints:
|
||
|
if cons['type'] in ('ineq'):
|
||
|
self.g_cons.append(cons['fun'])
|
||
|
try:
|
||
|
self.g_args.append(cons['args'])
|
||
|
except KeyError:
|
||
|
self.g_args.append(())
|
||
|
self.g_cons = tuple(self.g_cons)
|
||
|
self.g_args = tuple(self.g_args)
|
||
|
else:
|
||
|
self.g_cons = None
|
||
|
self.g_args = None
|
||
|
|
||
|
# Define local minimization keyword arguments
|
||
|
# Start with defaults
|
||
|
self.minimizer_kwargs = {'method': 'SLSQP',
|
||
|
'bounds': self.bounds,
|
||
|
'options': {},
|
||
|
'callback': self.callback
|
||
|
}
|
||
|
if minimizer_kwargs is not None:
|
||
|
# Overwrite with supplied values
|
||
|
self.minimizer_kwargs.update(minimizer_kwargs)
|
||
|
|
||
|
else:
|
||
|
self.minimizer_kwargs['options'] = {'ftol': 1e-12}
|
||
|
|
||
|
if (
|
||
|
self.minimizer_kwargs['method'].lower() in ('slsqp', 'cobyla',
|
||
|
'trust-constr')
|
||
|
and (
|
||
|
minimizer_kwargs is not None and
|
||
|
'constraints' not in minimizer_kwargs and
|
||
|
constraints is not None
|
||
|
) or
|
||
|
(self.g_cons is not None)
|
||
|
):
|
||
|
self.minimizer_kwargs['constraints'] = self.min_cons
|
||
|
|
||
|
# Process options dict
|
||
|
if options is not None:
|
||
|
self.init_options(options)
|
||
|
else: # Default settings:
|
||
|
self.f_min_true = None
|
||
|
self.minimize_every_iter = True
|
||
|
|
||
|
# Algorithm limits
|
||
|
self.maxiter = None
|
||
|
self.maxfev = None
|
||
|
self.maxev = None
|
||
|
self.maxtime = None
|
||
|
self.f_min_true = None
|
||
|
self.minhgrd = None
|
||
|
|
||
|
# Objective function knowledge
|
||
|
self.symmetry = None
|
||
|
|
||
|
# Algorithm functionality
|
||
|
self.infty_cons_sampl = True
|
||
|
self.local_iter = False
|
||
|
|
||
|
# Feedback
|
||
|
self.disp = False
|
||
|
|
||
|
# Remove unknown arguments in self.minimizer_kwargs
|
||
|
# Start with arguments all the solvers have in common
|
||
|
self.min_solver_args = ['fun', 'x0', 'args',
|
||
|
'callback', 'options', 'method']
|
||
|
# then add the ones unique to specific solvers
|
||
|
solver_args = {
|
||
|
'_custom': ['jac', 'hess', 'hessp', 'bounds', 'constraints'],
|
||
|
'nelder-mead': [],
|
||
|
'powell': [],
|
||
|
'cg': ['jac'],
|
||
|
'bfgs': ['jac'],
|
||
|
'newton-cg': ['jac', 'hess', 'hessp'],
|
||
|
'l-bfgs-b': ['jac', 'bounds'],
|
||
|
'tnc': ['jac', 'bounds'],
|
||
|
'cobyla': ['constraints', 'catol'],
|
||
|
'slsqp': ['jac', 'bounds', 'constraints'],
|
||
|
'dogleg': ['jac', 'hess'],
|
||
|
'trust-ncg': ['jac', 'hess', 'hessp'],
|
||
|
'trust-krylov': ['jac', 'hess', 'hessp'],
|
||
|
'trust-exact': ['jac', 'hess'],
|
||
|
'trust-constr': ['jac', 'hess', 'hessp', 'constraints'],
|
||
|
}
|
||
|
method = self.minimizer_kwargs['method']
|
||
|
self.min_solver_args += solver_args[method.lower()]
|
||
|
|
||
|
# Only retain the known arguments
|
||
|
def _restrict_to_keys(dictionary, goodkeys):
|
||
|
"""Remove keys from dictionary if not in goodkeys - inplace"""
|
||
|
existingkeys = set(dictionary)
|
||
|
for key in existingkeys - set(goodkeys):
|
||
|
dictionary.pop(key, None)
|
||
|
|
||
|
_restrict_to_keys(self.minimizer_kwargs, self.min_solver_args)
|
||
|
_restrict_to_keys(self.minimizer_kwargs['options'],
|
||
|
self.min_solver_args + ['ftol'])
|
||
|
|
||
|
# Algorithm controls
|
||
|
# Global controls
|
||
|
self.stop_global = False # Used in the stopping_criteria method
|
||
|
self.break_routine = False # Break the algorithm globally
|
||
|
self.iters = iters # Iterations to be ran
|
||
|
self.iters_done = 0 # Iterations completed
|
||
|
self.n = n # Sampling points per iteration
|
||
|
self.nc = 0 # n # Sampling points to sample in current iteration
|
||
|
self.n_prc = 0 # Processed points (used to track Delaunay iters)
|
||
|
self.n_sampled = 0 # To track no. of sampling points already generated
|
||
|
self.fn = 0 # Number of feasible sampling points evaluations performed
|
||
|
self.hgr = 0 # Homology group rank
|
||
|
# Initially attempt to build the triangulation incrementally:
|
||
|
self.qhull_incremental = True
|
||
|
|
||
|
# Default settings if no sampling criteria.
|
||
|
if (self.n is None) and (self.iters is None) \
|
||
|
and (sampling_method == 'simplicial'):
|
||
|
self.n = 2 ** self.dim + 1
|
||
|
self.nc = 0 # self.n
|
||
|
if self.iters is None:
|
||
|
self.iters = 1
|
||
|
if (self.n is None) and not (sampling_method == 'simplicial'):
|
||
|
self.n = self.n = 100
|
||
|
self.nc = 0 # self.n
|
||
|
if (self.n == 100) and (sampling_method == 'simplicial'):
|
||
|
self.n = 2 ** self.dim + 1
|
||
|
|
||
|
if not ((self.maxiter is None) and (self.maxfev is None) and (
|
||
|
self.maxev is None)
|
||
|
and (self.minhgrd is None) and (self.f_min_true is None)):
|
||
|
self.iters = None
|
||
|
|
||
|
# Set complex construction mode based on a provided stopping criteria:
|
||
|
# Initialise sampling Complex and function cache
|
||
|
# Note that sfield_args=() since args are already wrapped in self.func
|
||
|
# using the_FunctionWrapper class.
|
||
|
self.HC = Complex(dim=self.dim, domain=self.bounds,
|
||
|
sfield=self.func, sfield_args=(),
|
||
|
symmetry=self.symmetry,
|
||
|
constraints=self.constraints,
|
||
|
workers=workers)
|
||
|
|
||
|
# Choose complex constructor
|
||
|
if sampling_method == 'simplicial':
|
||
|
self.iterate_complex = self.iterate_hypercube
|
||
|
self.sampling_method = sampling_method
|
||
|
|
||
|
elif sampling_method in ['halton', 'sobol'] or \
|
||
|
not isinstance(sampling_method, str):
|
||
|
self.iterate_complex = self.iterate_delaunay
|
||
|
# Sampling method used
|
||
|
if sampling_method in ['halton', 'sobol']:
|
||
|
if sampling_method == 'sobol':
|
||
|
self.n = int(2 ** np.ceil(np.log2(self.n)))
|
||
|
# self.n #TODO: Should always be self.n, this is
|
||
|
# unacceptable for shgo, check that nfev behaves as
|
||
|
# expected.
|
||
|
self.nc = 0
|
||
|
self.sampling_method = 'sobol'
|
||
|
self.qmc_engine = qmc.Sobol(d=self.dim, scramble=False,
|
||
|
seed=0)
|
||
|
else:
|
||
|
self.sampling_method = 'halton'
|
||
|
self.qmc_engine = qmc.Halton(d=self.dim, scramble=True,
|
||
|
seed=0)
|
||
|
|
||
|
def sampling_method(n, d):
|
||
|
return self.qmc_engine.random(n)
|
||
|
|
||
|
else:
|
||
|
# A user defined sampling method:
|
||
|
self.sampling_method = 'custom'
|
||
|
|
||
|
self.sampling = self.sampling_custom
|
||
|
self.sampling_function = sampling_method # F(n, d)
|
||
|
|
||
|
# Local controls
|
||
|
self.stop_l_iter = False # Local minimisation iterations
|
||
|
self.stop_complex_iter = False # Sampling iterations
|
||
|
|
||
|
# Initiate storage objects used in algorithm classes
|
||
|
self.minimizer_pool = []
|
||
|
|
||
|
# Cache of local minimizers mapped
|
||
|
self.LMC = LMapCache()
|
||
|
|
||
|
# Initialize return object
|
||
|
self.res = OptimizeResult() # scipy.optimize.OptimizeResult object
|
||
|
self.res.nfev = 0 # Includes each sampling point as func evaluation
|
||
|
self.res.nlfev = 0 # Local function evals for all minimisers
|
||
|
self.res.nljev = 0 # Local Jacobian evals for all minimisers
|
||
|
self.res.nlhev = 0 # Local Hessian evals for all minimisers
|
||
|
|
||
|
# Initiation aids
|
||
|
def init_options(self, options):
|
||
|
"""
|
||
|
Initiates the options.
|
||
|
|
||
|
Can also be useful to change parameters after class initiation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
options : dict
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
None
|
||
|
|
||
|
"""
|
||
|
# Update 'options' dict passed to optimize.minimize
|
||
|
# Do this first so we don't mutate `options` below.
|
||
|
self.minimizer_kwargs['options'].update(options)
|
||
|
|
||
|
# Ensure that 'jac', 'hess', and 'hessp' are passed directly to
|
||
|
# `minimize` as keywords, not as part of its 'options' dictionary.
|
||
|
for opt in ['jac', 'hess', 'hessp']:
|
||
|
if opt in self.minimizer_kwargs['options']:
|
||
|
self.minimizer_kwargs[opt] = (
|
||
|
self.minimizer_kwargs['options'].pop(opt))
|
||
|
|
||
|
# Default settings:
|
||
|
self.minimize_every_iter = options.get('minimize_every_iter', True)
|
||
|
|
||
|
# Algorithm limits
|
||
|
# Maximum number of iterations to perform.
|
||
|
self.maxiter = options.get('maxiter', None)
|
||
|
# Maximum number of function evaluations in the feasible domain
|
||
|
self.maxfev = options.get('maxfev', None)
|
||
|
# Maximum number of sampling evaluations (includes searching in
|
||
|
# infeasible points
|
||
|
self.maxev = options.get('maxev', None)
|
||
|
# Maximum processing runtime allowed
|
||
|
self.init = time.time()
|
||
|
self.maxtime = options.get('maxtime', None)
|
||
|
if 'f_min' in options:
|
||
|
# Specify the minimum objective function value, if it is known.
|
||
|
self.f_min_true = options['f_min']
|
||
|
self.f_tol = options.get('f_tol', 1e-4)
|
||
|
else:
|
||
|
self.f_min_true = None
|
||
|
|
||
|
self.minhgrd = options.get('minhgrd', None)
|
||
|
|
||
|
# Objective function knowledge
|
||
|
self.symmetry = options.get('symmetry', False)
|
||
|
if self.symmetry:
|
||
|
self.symmetry = [0, ]*len(self.bounds)
|
||
|
else:
|
||
|
self.symmetry = None
|
||
|
# Algorithm functionality
|
||
|
# Only evaluate a few of the best candidates
|
||
|
self.local_iter = options.get('local_iter', False)
|
||
|
self.infty_cons_sampl = options.get('infty_constraints', True)
|
||
|
|
||
|
# Feedback
|
||
|
self.disp = options.get('disp', False)
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, *args):
|
||
|
return self.HC.V._mapwrapper.__exit__(*args)
|
||
|
|
||
|
# Iteration properties
|
||
|
# Main construction loop:
|
||
|
def iterate_all(self):
|
||
|
"""
|
||
|
Construct for `iters` iterations.
|
||
|
|
||
|
If uniform sampling is used, every iteration adds 'n' sampling points.
|
||
|
|
||
|
Iterations if a stopping criteria (e.g., sampling points or
|
||
|
processing time) has been met.
|
||
|
|
||
|
"""
|
||
|
if self.disp:
|
||
|
logging.info('Splitting first generation')
|
||
|
|
||
|
while not self.stop_global:
|
||
|
if self.break_routine:
|
||
|
break
|
||
|
# Iterate complex, process minimisers
|
||
|
self.iterate()
|
||
|
self.stopping_criteria()
|
||
|
|
||
|
# Build minimiser pool
|
||
|
# Final iteration only needed if pools weren't minimised every
|
||
|
# iteration
|
||
|
if not self.minimize_every_iter:
|
||
|
if not self.break_routine:
|
||
|
self.find_minima()
|
||
|
|
||
|
self.res.nit = self.iters_done # + 1
|
||
|
self.fn = self.HC.V.nfev
|
||
|
|
||
|
def find_minima(self):
|
||
|
"""
|
||
|
Construct the minimizer pool, map the minimizers to local minima
|
||
|
and sort the results into a global return object.
|
||
|
"""
|
||
|
if self.disp:
|
||
|
logging.info('Searching for minimizer pool...')
|
||
|
|
||
|
self.minimizers()
|
||
|
|
||
|
if len(self.X_min) != 0:
|
||
|
# Minimize the pool of minimizers with local minimization methods
|
||
|
# Note that if Options['local_iter'] is an `int` instead of default
|
||
|
# value False then only that number of candidates will be minimized
|
||
|
self.minimise_pool(self.local_iter)
|
||
|
# Sort results and build the global return object
|
||
|
self.sort_result()
|
||
|
|
||
|
# Lowest values used to report in case of failures
|
||
|
self.f_lowest = self.res.fun
|
||
|
self.x_lowest = self.res.x
|
||
|
else:
|
||
|
self.find_lowest_vertex()
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info(f"Minimiser pool = SHGO.X_min = {self.X_min}")
|
||
|
|
||
|
def find_lowest_vertex(self):
|
||
|
# Find the lowest objective function value on one of
|
||
|
# the vertices of the simplicial complex
|
||
|
self.f_lowest = np.inf
|
||
|
for x in self.HC.V.cache:
|
||
|
if self.HC.V[x].f < self.f_lowest:
|
||
|
if self.disp:
|
||
|
logging.info(f'self.HC.V[x].f = {self.HC.V[x].f}')
|
||
|
self.f_lowest = self.HC.V[x].f
|
||
|
self.x_lowest = self.HC.V[x].x_a
|
||
|
for lmc in self.LMC.cache:
|
||
|
if self.LMC[lmc].f_min < self.f_lowest:
|
||
|
self.f_lowest = self.LMC[lmc].f_min
|
||
|
self.x_lowest = self.LMC[lmc].x_l
|
||
|
|
||
|
if self.f_lowest == np.inf: # no feasible point
|
||
|
self.f_lowest = None
|
||
|
self.x_lowest = None
|
||
|
|
||
|
# Stopping criteria functions:
|
||
|
def finite_iterations(self):
|
||
|
mi = min(x for x in [self.iters, self.maxiter] if x is not None)
|
||
|
if self.disp:
|
||
|
logging.info(f'Iterations done = {self.iters_done} / {mi}')
|
||
|
if self.iters is not None:
|
||
|
if self.iters_done >= (self.iters):
|
||
|
self.stop_global = True
|
||
|
|
||
|
if self.maxiter is not None: # Stop for infeasible sampling
|
||
|
if self.iters_done >= (self.maxiter):
|
||
|
self.stop_global = True
|
||
|
return self.stop_global
|
||
|
|
||
|
def finite_fev(self):
|
||
|
# Finite function evals in the feasible domain
|
||
|
if self.disp:
|
||
|
logging.info(f'Function evaluations done = {self.fn} / {self.maxfev}')
|
||
|
if self.fn >= self.maxfev:
|
||
|
self.stop_global = True
|
||
|
return self.stop_global
|
||
|
|
||
|
def finite_ev(self):
|
||
|
# Finite evaluations including infeasible sampling points
|
||
|
if self.disp:
|
||
|
logging.info(f'Sampling evaluations done = {self.n_sampled} '
|
||
|
f'/ {self.maxev}')
|
||
|
if self.n_sampled >= self.maxev:
|
||
|
self.stop_global = True
|
||
|
|
||
|
def finite_time(self):
|
||
|
if self.disp:
|
||
|
logging.info(f'Time elapsed = {time.time() - self.init} '
|
||
|
f'/ {self.maxtime}')
|
||
|
if (time.time() - self.init) >= self.maxtime:
|
||
|
self.stop_global = True
|
||
|
|
||
|
def finite_precision(self):
|
||
|
"""
|
||
|
Stop the algorithm if the final function value is known
|
||
|
|
||
|
Specify in options (with ``self.f_min_true = options['f_min']``)
|
||
|
and the tolerance with ``f_tol = options['f_tol']``
|
||
|
"""
|
||
|
# If no minimizer has been found use the lowest sampling value
|
||
|
self.find_lowest_vertex()
|
||
|
if self.disp:
|
||
|
logging.info(f'Lowest function evaluation = {self.f_lowest}')
|
||
|
logging.info(f'Specified minimum = {self.f_min_true}')
|
||
|
# If no feasible point was return from test
|
||
|
if self.f_lowest is None:
|
||
|
return self.stop_global
|
||
|
|
||
|
# Function to stop algorithm at specified percentage error:
|
||
|
if self.f_min_true == 0.0:
|
||
|
if self.f_lowest <= self.f_tol:
|
||
|
self.stop_global = True
|
||
|
else:
|
||
|
pe = (self.f_lowest - self.f_min_true) / abs(self.f_min_true)
|
||
|
if self.f_lowest <= self.f_min_true:
|
||
|
self.stop_global = True
|
||
|
# 2if (pe - self.f_tol) <= abs(1.0 / abs(self.f_min_true)):
|
||
|
if abs(pe) >= 2 * self.f_tol:
|
||
|
warnings.warn(
|
||
|
f"A much lower value than expected f* = {self.f_min_true} "
|
||
|
f"was found f_lowest = {self.f_lowest}",
|
||
|
stacklevel=3
|
||
|
)
|
||
|
if pe <= self.f_tol:
|
||
|
self.stop_global = True
|
||
|
|
||
|
return self.stop_global
|
||
|
|
||
|
def finite_homology_growth(self):
|
||
|
"""
|
||
|
Stop the algorithm if homology group rank did not grow in iteration.
|
||
|
"""
|
||
|
if self.LMC.size == 0:
|
||
|
return # pass on no reason to stop yet.
|
||
|
self.hgrd = self.LMC.size - self.hgr
|
||
|
|
||
|
self.hgr = self.LMC.size
|
||
|
if self.hgrd <= self.minhgrd:
|
||
|
self.stop_global = True
|
||
|
if self.disp:
|
||
|
logging.info(f'Current homology growth = {self.hgrd} '
|
||
|
f' (minimum growth = {self.minhgrd})')
|
||
|
return self.stop_global
|
||
|
|
||
|
def stopping_criteria(self):
|
||
|
"""
|
||
|
Various stopping criteria ran every iteration
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
stop : bool
|
||
|
"""
|
||
|
if self.maxiter is not None:
|
||
|
self.finite_iterations()
|
||
|
if self.iters is not None:
|
||
|
self.finite_iterations()
|
||
|
if self.maxfev is not None:
|
||
|
self.finite_fev()
|
||
|
if self.maxev is not None:
|
||
|
self.finite_ev()
|
||
|
if self.maxtime is not None:
|
||
|
self.finite_time()
|
||
|
if self.f_min_true is not None:
|
||
|
self.finite_precision()
|
||
|
if self.minhgrd is not None:
|
||
|
self.finite_homology_growth()
|
||
|
return self.stop_global
|
||
|
|
||
|
def iterate(self):
|
||
|
self.iterate_complex()
|
||
|
|
||
|
# Build minimizer pool
|
||
|
if self.minimize_every_iter:
|
||
|
if not self.break_routine:
|
||
|
self.find_minima() # Process minimizer pool
|
||
|
|
||
|
# Algorithm updates
|
||
|
self.iters_done += 1
|
||
|
|
||
|
def iterate_hypercube(self):
|
||
|
"""
|
||
|
Iterate a subdivision of the complex
|
||
|
|
||
|
Note: called with ``self.iterate_complex()`` after class initiation
|
||
|
"""
|
||
|
# Iterate the complex
|
||
|
if self.disp:
|
||
|
logging.info('Constructing and refining simplicial complex graph '
|
||
|
'structure')
|
||
|
if self.n is None:
|
||
|
self.HC.refine_all()
|
||
|
self.n_sampled = self.HC.V.size() # nevs counted
|
||
|
else:
|
||
|
self.HC.refine(self.n)
|
||
|
self.n_sampled += self.n
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info('Triangulation completed, evaluating all constraints '
|
||
|
'and objective function values.')
|
||
|
|
||
|
# Re-add minimisers to complex
|
||
|
if len(self.LMC.xl_maps) > 0:
|
||
|
for xl in self.LMC.cache:
|
||
|
v = self.HC.V[xl]
|
||
|
v_near = v.star()
|
||
|
for v in v.nn:
|
||
|
v_near = v_near.union(v.nn)
|
||
|
# Reconnect vertices to complex
|
||
|
# if self.HC.connect_vertex_non_symm(tuple(self.LMC[xl].x_l),
|
||
|
# near=v_near):
|
||
|
# continue
|
||
|
# else:
|
||
|
# If failure to find in v_near, then search all vertices
|
||
|
# (very expensive operation:
|
||
|
# self.HC.connect_vertex_non_symm(tuple(self.LMC[xl].x_l)
|
||
|
# )
|
||
|
|
||
|
# Evaluate all constraints and functions
|
||
|
self.HC.V.process_pools()
|
||
|
if self.disp:
|
||
|
logging.info('Evaluations completed.')
|
||
|
|
||
|
# feasible sampling points counted by the triangulation.py routines
|
||
|
self.fn = self.HC.V.nfev
|
||
|
return
|
||
|
|
||
|
def iterate_delaunay(self):
|
||
|
"""
|
||
|
Build a complex of Delaunay triangulated points
|
||
|
|
||
|
Note: called with ``self.iterate_complex()`` after class initiation
|
||
|
"""
|
||
|
self.nc += self.n
|
||
|
self.sampled_surface(infty_cons_sampl=self.infty_cons_sampl)
|
||
|
|
||
|
# Add sampled points to a triangulation, construct self.Tri
|
||
|
if self.disp:
|
||
|
logging.info(f'self.n = {self.n}')
|
||
|
logging.info(f'self.nc = {self.nc}')
|
||
|
logging.info('Constructing and refining simplicial complex graph '
|
||
|
'structure from sampling points.')
|
||
|
|
||
|
if self.dim < 2:
|
||
|
self.Ind_sorted = np.argsort(self.C, axis=0)
|
||
|
self.Ind_sorted = self.Ind_sorted.flatten()
|
||
|
tris = []
|
||
|
for ind, ind_s in enumerate(self.Ind_sorted):
|
||
|
if ind > 0:
|
||
|
tris.append(self.Ind_sorted[ind - 1:ind + 1])
|
||
|
|
||
|
tris = np.array(tris)
|
||
|
# Store 1D triangulation:
|
||
|
self.Tri = namedtuple('Tri', ['points', 'simplices'])(self.C, tris)
|
||
|
self.points = {}
|
||
|
else:
|
||
|
if self.C.shape[0] > self.dim + 1: # Ensure a simplex can be built
|
||
|
self.delaunay_triangulation(n_prc=self.n_prc)
|
||
|
self.n_prc = self.C.shape[0]
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info('Triangulation completed, evaluating all '
|
||
|
'constraints and objective function values.')
|
||
|
|
||
|
if hasattr(self, 'Tri'):
|
||
|
self.HC.vf_to_vv(self.Tri.points, self.Tri.simplices)
|
||
|
|
||
|
# Process all pools
|
||
|
# Evaluate all constraints and functions
|
||
|
if self.disp:
|
||
|
logging.info('Triangulation completed, evaluating all constraints '
|
||
|
'and objective function values.')
|
||
|
|
||
|
# Evaluate all constraints and functions
|
||
|
self.HC.V.process_pools()
|
||
|
if self.disp:
|
||
|
logging.info('Evaluations completed.')
|
||
|
|
||
|
# feasible sampling points counted by the triangulation.py routines
|
||
|
self.fn = self.HC.V.nfev
|
||
|
self.n_sampled = self.nc # nevs counted in triangulation
|
||
|
return
|
||
|
|
||
|
# Hypercube minimizers
|
||
|
def minimizers(self):
|
||
|
"""
|
||
|
Returns the indexes of all minimizers
|
||
|
"""
|
||
|
self.minimizer_pool = []
|
||
|
# Note: Can implement parallelization here
|
||
|
for x in self.HC.V.cache:
|
||
|
in_LMC = False
|
||
|
if len(self.LMC.xl_maps) > 0:
|
||
|
for xlmi in self.LMC.xl_maps:
|
||
|
if np.all(np.array(x) == np.array(xlmi)):
|
||
|
in_LMC = True
|
||
|
if in_LMC:
|
||
|
continue
|
||
|
|
||
|
if self.HC.V[x].minimiser():
|
||
|
if self.disp:
|
||
|
logging.info('=' * 60)
|
||
|
logging.info(f'v.x = {self.HC.V[x].x_a} is minimizer')
|
||
|
logging.info(f'v.f = {self.HC.V[x].f} is minimizer')
|
||
|
logging.info('=' * 30)
|
||
|
|
||
|
if self.HC.V[x] not in self.minimizer_pool:
|
||
|
self.minimizer_pool.append(self.HC.V[x])
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info('Neighbors:')
|
||
|
logging.info('=' * 30)
|
||
|
for vn in self.HC.V[x].nn:
|
||
|
logging.info(f'x = {vn.x} || f = {vn.f}')
|
||
|
|
||
|
logging.info('=' * 60)
|
||
|
self.minimizer_pool_F = []
|
||
|
self.X_min = []
|
||
|
# normalized tuple in the Vertex cache
|
||
|
self.X_min_cache = {} # Cache used in hypercube sampling
|
||
|
|
||
|
for v in self.minimizer_pool:
|
||
|
self.X_min.append(v.x_a)
|
||
|
self.minimizer_pool_F.append(v.f)
|
||
|
self.X_min_cache[tuple(v.x_a)] = v.x
|
||
|
|
||
|
self.minimizer_pool_F = np.array(self.minimizer_pool_F)
|
||
|
self.X_min = np.array(self.X_min)
|
||
|
|
||
|
# TODO: Only do this if global mode
|
||
|
self.sort_min_pool()
|
||
|
|
||
|
return self.X_min
|
||
|
|
||
|
# Local minimisation
|
||
|
# Minimiser pool processing
|
||
|
def minimise_pool(self, force_iter=False):
|
||
|
"""
|
||
|
This processing method can optionally minimise only the best candidate
|
||
|
solutions in the minimiser pool
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
force_iter : int
|
||
|
Number of starting minimizers to process (can be specified
|
||
|
globally or locally)
|
||
|
|
||
|
"""
|
||
|
# Find first local minimum
|
||
|
# NOTE: Since we always minimize this value regardless it is a waste to
|
||
|
# build the topograph first before minimizing
|
||
|
lres_f_min = self.minimize(self.X_min[0], ind=self.minimizer_pool[0])
|
||
|
|
||
|
# Trim minimized point from current minimizer set
|
||
|
self.trim_min_pool(0)
|
||
|
|
||
|
while not self.stop_l_iter:
|
||
|
# Global stopping criteria:
|
||
|
self.stopping_criteria()
|
||
|
|
||
|
# Note first iteration is outside loop:
|
||
|
if force_iter:
|
||
|
force_iter -= 1
|
||
|
if force_iter == 0:
|
||
|
self.stop_l_iter = True
|
||
|
break
|
||
|
|
||
|
if np.shape(self.X_min)[0] == 0:
|
||
|
self.stop_l_iter = True
|
||
|
break
|
||
|
|
||
|
# Construct topograph from current minimizer set
|
||
|
# (NOTE: This is a very small topograph using only the minizer pool
|
||
|
# , it might be worth using some graph theory tools instead.
|
||
|
self.g_topograph(lres_f_min.x, self.X_min)
|
||
|
|
||
|
# Find local minimum at the miniser with the greatest Euclidean
|
||
|
# distance from the current solution
|
||
|
ind_xmin_l = self.Z[:, -1]
|
||
|
lres_f_min = self.minimize(self.Ss[-1, :], self.minimizer_pool[-1])
|
||
|
|
||
|
# Trim minimised point from current minimizer set
|
||
|
self.trim_min_pool(ind_xmin_l)
|
||
|
|
||
|
# Reset controls
|
||
|
self.stop_l_iter = False
|
||
|
return
|
||
|
|
||
|
def sort_min_pool(self):
|
||
|
# Sort to find minimum func value in min_pool
|
||
|
self.ind_f_min = np.argsort(self.minimizer_pool_F)
|
||
|
self.minimizer_pool = np.array(self.minimizer_pool)[self.ind_f_min]
|
||
|
self.minimizer_pool_F = np.array(self.minimizer_pool_F)[
|
||
|
self.ind_f_min]
|
||
|
return
|
||
|
|
||
|
def trim_min_pool(self, trim_ind):
|
||
|
self.X_min = np.delete(self.X_min, trim_ind, axis=0)
|
||
|
self.minimizer_pool_F = np.delete(self.minimizer_pool_F, trim_ind)
|
||
|
self.minimizer_pool = np.delete(self.minimizer_pool, trim_ind)
|
||
|
return
|
||
|
|
||
|
def g_topograph(self, x_min, X_min):
|
||
|
"""
|
||
|
Returns the topographical vector stemming from the specified value
|
||
|
``x_min`` for the current feasible set ``X_min`` with True boolean
|
||
|
values indicating positive entries and False values indicating
|
||
|
negative entries.
|
||
|
|
||
|
"""
|
||
|
x_min = np.array([x_min])
|
||
|
self.Y = spatial.distance.cdist(x_min, X_min, 'euclidean')
|
||
|
# Find sorted indexes of spatial distances:
|
||
|
self.Z = np.argsort(self.Y, axis=-1)
|
||
|
|
||
|
self.Ss = X_min[self.Z][0]
|
||
|
self.minimizer_pool = self.minimizer_pool[self.Z]
|
||
|
self.minimizer_pool = self.minimizer_pool[0]
|
||
|
return self.Ss
|
||
|
|
||
|
# Local bound functions
|
||
|
def construct_lcb_simplicial(self, v_min):
|
||
|
"""
|
||
|
Construct locally (approximately) convex bounds
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v_min : Vertex object
|
||
|
The minimizer vertex
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cbounds : list of lists
|
||
|
List of size dimension with length-2 list of bounds for each
|
||
|
dimension.
|
||
|
|
||
|
"""
|
||
|
cbounds = [[x_b_i[0], x_b_i[1]] for x_b_i in self.bounds]
|
||
|
# Loop over all bounds
|
||
|
for vn in v_min.nn:
|
||
|
for i, x_i in enumerate(vn.x_a):
|
||
|
# Lower bound
|
||
|
if (x_i < v_min.x_a[i]) and (x_i > cbounds[i][0]):
|
||
|
cbounds[i][0] = x_i
|
||
|
|
||
|
# Upper bound
|
||
|
if (x_i > v_min.x_a[i]) and (x_i < cbounds[i][1]):
|
||
|
cbounds[i][1] = x_i
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info(f'cbounds found for v_min.x_a = {v_min.x_a}')
|
||
|
logging.info(f'cbounds = {cbounds}')
|
||
|
|
||
|
return cbounds
|
||
|
|
||
|
def construct_lcb_delaunay(self, v_min, ind=None):
|
||
|
"""
|
||
|
Construct locally (approximately) convex bounds
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
v_min : Vertex object
|
||
|
The minimizer vertex
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cbounds : list of lists
|
||
|
List of size dimension with length-2 list of bounds for each
|
||
|
dimension.
|
||
|
"""
|
||
|
cbounds = [[x_b_i[0], x_b_i[1]] for x_b_i in self.bounds]
|
||
|
|
||
|
return cbounds
|
||
|
|
||
|
# Minimize a starting point locally
|
||
|
def minimize(self, x_min, ind=None):
|
||
|
"""
|
||
|
This function is used to calculate the local minima using the specified
|
||
|
sampling point as a starting value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x_min : vector of floats
|
||
|
Current starting point to minimize.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lres : OptimizeResult
|
||
|
The local optimization result represented as a `OptimizeResult`
|
||
|
object.
|
||
|
"""
|
||
|
# Use minima maps if vertex was already run
|
||
|
if self.disp:
|
||
|
logging.info(f'Vertex minimiser maps = {self.LMC.v_maps}')
|
||
|
|
||
|
if self.LMC[x_min].lres is not None:
|
||
|
logging.info(f'Found self.LMC[x_min].lres = '
|
||
|
f'{self.LMC[x_min].lres}')
|
||
|
return self.LMC[x_min].lres
|
||
|
|
||
|
if self.callback is not None:
|
||
|
logging.info(f'Callback for minimizer starting at {x_min}:')
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info(f'Starting minimization at {x_min}...')
|
||
|
|
||
|
if self.sampling_method == 'simplicial':
|
||
|
x_min_t = tuple(x_min)
|
||
|
# Find the normalized tuple in the Vertex cache:
|
||
|
x_min_t_norm = self.X_min_cache[tuple(x_min_t)]
|
||
|
x_min_t_norm = tuple(x_min_t_norm)
|
||
|
g_bounds = self.construct_lcb_simplicial(self.HC.V[x_min_t_norm])
|
||
|
if 'bounds' in self.min_solver_args:
|
||
|
self.minimizer_kwargs['bounds'] = g_bounds
|
||
|
logging.info(self.minimizer_kwargs['bounds'])
|
||
|
|
||
|
else:
|
||
|
g_bounds = self.construct_lcb_delaunay(x_min, ind=ind)
|
||
|
if 'bounds' in self.min_solver_args:
|
||
|
self.minimizer_kwargs['bounds'] = g_bounds
|
||
|
logging.info(self.minimizer_kwargs['bounds'])
|
||
|
|
||
|
if self.disp and 'bounds' in self.minimizer_kwargs:
|
||
|
logging.info('bounds in kwarg:')
|
||
|
logging.info(self.minimizer_kwargs['bounds'])
|
||
|
|
||
|
# Local minimization using scipy.optimize.minimize:
|
||
|
lres = minimize(self.func, x_min, **self.minimizer_kwargs)
|
||
|
|
||
|
if self.disp:
|
||
|
logging.info(f'lres = {lres}')
|
||
|
|
||
|
# Local function evals for all minimizers
|
||
|
self.res.nlfev += lres.nfev
|
||
|
if 'njev' in lres:
|
||
|
self.res.nljev += lres.njev
|
||
|
if 'nhev' in lres:
|
||
|
self.res.nlhev += lres.nhev
|
||
|
|
||
|
try: # Needed because of the brain dead 1x1 NumPy arrays
|
||
|
lres.fun = lres.fun[0]
|
||
|
except (IndexError, TypeError):
|
||
|
lres.fun
|
||
|
|
||
|
# Append minima maps
|
||
|
self.LMC[x_min]
|
||
|
self.LMC.add_res(x_min, lres, bounds=g_bounds)
|
||
|
|
||
|
return lres
|
||
|
|
||
|
# Post local minimization processing
|
||
|
def sort_result(self):
|
||
|
"""
|
||
|
Sort results and build the global return object
|
||
|
"""
|
||
|
# Sort results in local minima cache
|
||
|
results = self.LMC.sort_cache_result()
|
||
|
self.res.xl = results['xl']
|
||
|
self.res.funl = results['funl']
|
||
|
self.res.x = results['x']
|
||
|
self.res.fun = results['fun']
|
||
|
|
||
|
# Add local func evals to sampling func evals
|
||
|
# Count the number of feasible vertices and add to local func evals:
|
||
|
self.res.nfev = self.fn + self.res.nlfev
|
||
|
return self.res
|
||
|
|
||
|
# Algorithm controls
|
||
|
def fail_routine(self, mes=("Failed to converge")):
|
||
|
self.break_routine = True
|
||
|
self.res.success = False
|
||
|
self.X_min = [None]
|
||
|
self.res.message = mes
|
||
|
|
||
|
def sampled_surface(self, infty_cons_sampl=False):
|
||
|
"""
|
||
|
Sample the function surface.
|
||
|
|
||
|
There are 2 modes, if ``infty_cons_sampl`` is True then the sampled
|
||
|
points that are generated outside the feasible domain will be
|
||
|
assigned an ``inf`` value in accordance with SHGO rules.
|
||
|
This guarantees convergence and usually requires less objective
|
||
|
function evaluations at the computational costs of more Delaunay
|
||
|
triangulation points.
|
||
|
|
||
|
If ``infty_cons_sampl`` is False, then the infeasible points are
|
||
|
discarded and only a subspace of the sampled points are used. This
|
||
|
comes at the cost of the loss of guaranteed convergence and usually
|
||
|
requires more objective function evaluations.
|
||
|
"""
|
||
|
# Generate sampling points
|
||
|
if self.disp:
|
||
|
logging.info('Generating sampling points')
|
||
|
self.sampling(self.nc, self.dim)
|
||
|
if len(self.LMC.xl_maps) > 0:
|
||
|
self.C = np.vstack((self.C, np.array(self.LMC.xl_maps)))
|
||
|
if not infty_cons_sampl:
|
||
|
# Find subspace of feasible points
|
||
|
if self.g_cons is not None:
|
||
|
self.sampling_subspace()
|
||
|
|
||
|
# Sort remaining samples
|
||
|
self.sorted_samples()
|
||
|
|
||
|
# Find objective function references
|
||
|
self.n_sampled = self.nc
|
||
|
|
||
|
def sampling_custom(self, n, dim):
|
||
|
"""
|
||
|
Generates uniform sampling points in a hypercube and scales the points
|
||
|
to the bound limits.
|
||
|
"""
|
||
|
# Generate sampling points.
|
||
|
# Generate uniform sample points in [0, 1]^m \subset R^m
|
||
|
if self.n_sampled == 0:
|
||
|
self.C = self.sampling_function(n, dim)
|
||
|
else:
|
||
|
self.C = self.sampling_function(n, dim)
|
||
|
# Distribute over bounds
|
||
|
for i in range(len(self.bounds)):
|
||
|
self.C[:, i] = (self.C[:, i] *
|
||
|
(self.bounds[i][1] - self.bounds[i][0])
|
||
|
+ self.bounds[i][0])
|
||
|
return self.C
|
||
|
|
||
|
def sampling_subspace(self):
|
||
|
"""Find subspace of feasible points from g_func definition"""
|
||
|
# Subspace of feasible points.
|
||
|
for ind, g in enumerate(self.g_cons):
|
||
|
# C.shape = (Z, dim) where Z is the number of sampling points to
|
||
|
# evaluate and dim is the dimensionality of the problem.
|
||
|
# the constraint function may not be vectorised so have to step
|
||
|
# through each sampling point sequentially.
|
||
|
feasible = np.array(
|
||
|
[np.all(g(x_C, *self.g_args[ind]) >= 0.0) for x_C in self.C],
|
||
|
dtype=bool
|
||
|
)
|
||
|
self.C = self.C[feasible]
|
||
|
|
||
|
if self.C.size == 0:
|
||
|
self.res.message = ('No sampling point found within the '
|
||
|
+ 'feasible set. Increasing sampling '
|
||
|
+ 'size.')
|
||
|
# sampling correctly for both 1-D and >1-D cases
|
||
|
if self.disp:
|
||
|
logging.info(self.res.message)
|
||
|
|
||
|
def sorted_samples(self): # Validated
|
||
|
"""Find indexes of the sorted sampling points"""
|
||
|
self.Ind_sorted = np.argsort(self.C, axis=0)
|
||
|
self.Xs = self.C[self.Ind_sorted]
|
||
|
return self.Ind_sorted, self.Xs
|
||
|
|
||
|
def delaunay_triangulation(self, n_prc=0):
|
||
|
if hasattr(self, 'Tri') and self.qhull_incremental:
|
||
|
# TODO: Uncertain if n_prc needs to add len(self.LMC.xl_maps)
|
||
|
# in self.sampled_surface
|
||
|
self.Tri.add_points(self.C[n_prc:, :])
|
||
|
else:
|
||
|
try:
|
||
|
self.Tri = spatial.Delaunay(self.C,
|
||
|
incremental=self.qhull_incremental,
|
||
|
)
|
||
|
except spatial.QhullError:
|
||
|
if str(sys.exc_info()[1])[:6] == 'QH6239':
|
||
|
logging.warning('QH6239 Qhull precision error detected, '
|
||
|
'this usually occurs when no bounds are '
|
||
|
'specified, Qhull can only run with '
|
||
|
'handling cocircular/cospherical points'
|
||
|
' and in this case incremental mode is '
|
||
|
'switched off. The performance of shgo '
|
||
|
'will be reduced in this mode.')
|
||
|
self.qhull_incremental = False
|
||
|
self.Tri = spatial.Delaunay(self.C,
|
||
|
incremental=
|
||
|
self.qhull_incremental)
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
return self.Tri
|
||
|
|
||
|
|
||
|
class LMap:
|
||
|
def __init__(self, v):
|
||
|
self.v = v
|
||
|
self.x_l = None
|
||
|
self.lres = None
|
||
|
self.f_min = None
|
||
|
self.lbounds = []
|
||
|
|
||
|
|
||
|
class LMapCache:
|
||
|
def __init__(self):
|
||
|
self.cache = {}
|
||
|
|
||
|
# Lists for search queries
|
||
|
self.v_maps = []
|
||
|
self.xl_maps = []
|
||
|
self.xl_maps_set = set()
|
||
|
self.f_maps = []
|
||
|
self.lbound_maps = []
|
||
|
self.size = 0
|
||
|
|
||
|
def __getitem__(self, v):
|
||
|
try:
|
||
|
v = np.ndarray.tolist(v)
|
||
|
except TypeError:
|
||
|
pass
|
||
|
v = tuple(v)
|
||
|
try:
|
||
|
return self.cache[v]
|
||
|
except KeyError:
|
||
|
xval = LMap(v)
|
||
|
self.cache[v] = xval
|
||
|
|
||
|
return self.cache[v]
|
||
|
|
||
|
def add_res(self, v, lres, bounds=None):
|
||
|
v = np.ndarray.tolist(v)
|
||
|
v = tuple(v)
|
||
|
self.cache[v].x_l = lres.x
|
||
|
self.cache[v].lres = lres
|
||
|
self.cache[v].f_min = lres.fun
|
||
|
self.cache[v].lbounds = bounds
|
||
|
|
||
|
# Update cache size
|
||
|
self.size += 1
|
||
|
|
||
|
# Cache lists for search queries
|
||
|
self.v_maps.append(v)
|
||
|
self.xl_maps.append(lres.x)
|
||
|
self.xl_maps_set.add(tuple(lres.x))
|
||
|
self.f_maps.append(lres.fun)
|
||
|
self.lbound_maps.append(bounds)
|
||
|
|
||
|
def sort_cache_result(self):
|
||
|
"""
|
||
|
Sort results and build the global return object
|
||
|
"""
|
||
|
results = {}
|
||
|
# Sort results and save
|
||
|
self.xl_maps = np.array(self.xl_maps)
|
||
|
self.f_maps = np.array(self.f_maps)
|
||
|
|
||
|
# Sorted indexes in Func_min
|
||
|
ind_sorted = np.argsort(self.f_maps)
|
||
|
|
||
|
# Save ordered list of minima
|
||
|
results['xl'] = self.xl_maps[ind_sorted] # Ordered x vals
|
||
|
self.f_maps = np.array(self.f_maps)
|
||
|
results['funl'] = self.f_maps[ind_sorted]
|
||
|
results['funl'] = results['funl'].T
|
||
|
|
||
|
# Find global of all minimizers
|
||
|
results['x'] = self.xl_maps[ind_sorted[0]] # Save global minima
|
||
|
results['fun'] = self.f_maps[ind_sorted[0]] # Save global fun value
|
||
|
|
||
|
self.xl_maps = np.ndarray.tolist(self.xl_maps)
|
||
|
self.f_maps = np.ndarray.tolist(self.f_maps)
|
||
|
return results
|