Traktor/myenv/Lib/site-packages/sympy/sets/sets.py

2750 lines
77 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
from typing import Any, Callable
from functools import reduce
from collections import defaultdict
import inspect
from sympy.core.kind import Kind, UndefinedKind, NumberKind
from sympy.core.basic import Basic
from sympy.core.containers import Tuple, TupleKind
from sympy.core.decorators import sympify_method_args, sympify_return
from sympy.core.evalf import EvalfMixin
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
fuzzy_not)
from sympy.core.numbers import Float, Integer
from sympy.core.operations import LatticeOp
from sympy.core.parameters import global_parameters
from sympy.core.relational import Eq, Ne, is_lt
from sympy.core.singleton import Singleton, S
from sympy.core.sorting import ordered
from sympy.core.symbol import symbols, Symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, _sympy_converter
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import Max, Min
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
from sympy.utilities.decorator import deprecated
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import (iproduct, sift, roundrobin, iterable,
subsets)
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
from mpmath.libmp.libmpf import prec_to_dps
tfn = defaultdict(lambda: None, {
True: S.true,
S.true: S.true,
False: S.false,
S.false: S.false})
@sympify_method_args
class Set(Basic, EvalfMixin):
"""
The base class for any kind of set.
Explanation
===========
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
__slots__ = ()
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection: FuzzyBool = None
is_UniversalSet: FuzzyBool = None
is_Complement: FuzzyBool = None
is_ComplexRegion = False
is_empty: FuzzyBool = None
is_finite_set: FuzzyBool = None
@property # type: ignore
@deprecated(
"""
The is_EmptySet attribute of Set objects is deprecated.
Use 's is S.EmptySet" or 's.is_empty' instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-is-emptyset",
)
def is_EmptySet(self):
return None
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
infimum = infimum.evalf() # issue #18505
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of ``self`` and ``other``.
Examples
========
As a shortcut it is possible to use the ``+`` operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union({3}, Interval.Lopen(1, 2))
Similarly it is possible to use the ``-`` operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if ``self`` and ``other`` are disjoint.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
# If self and other are disjoint then other - self == self
if len(self.sets) != len(other.sets):
return other
# There can be other ways to represent this but this gives:
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
overlaps = []
pairs = list(zip(self.sets, other.sets))
for n in range(len(pairs)):
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
overlaps.append(ProductSet(*sets))
return Union(*overlaps)
elif isinstance(other, Interval):
if isinstance(self, (Interval, FiniteSet)):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif other is S.EmptySet:
return S.EmptySet
elif isinstance(other, FiniteSet):
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of ``self`` and ``other``.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet)
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of ``self``.
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of ``self``.
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns a SymPy value indicating whether ``other`` is contained
in ``self``: ``true`` if it is, ``false`` if it is not, else
an unevaluated ``Contains`` expression (or, as in the case of
ConditionSet and a union of FiniteSet/Intervals, an expression
indicating the conditions for containment).
Examples
========
>>> from sympy import Interval, S
>>> from sympy.abc import x
>>> Interval(0, 1).contains(0.5)
True
As a shortcut it is possible to use the ``in`` operator, but that
will raise an error unless an affirmative true or false is not
obtained.
>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
Traceback (most recent call last):
...
TypeError: did not evaluate to a bool: None
The result of 'in' is a bool, not a SymPy value
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
"""
from .contains import Contains
other = sympify(other, strict=True)
c = self._contains(other)
if isinstance(c, Contains):
return c
if c is None:
return Contains(other, self, evaluate=False)
b = tfn[c]
if b is None:
return c
return b
def _contains(self, other):
raise NotImplementedError(filldedent('''
(%s)._contains(%s) is not defined. This method, when
defined, will receive a sympified object. The method
should return True, False, None or something that
expresses what must be true for the containment of that
object in self to be evaluated. If None is returned
then a generic Contains object will be returned
by the ``contains`` method.''' % (self, other)))
def is_subset(self, other):
"""
Returns True if ``self`` is a subset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if not isinstance(other, Set):
raise ValueError("Unknown argument '%s'" % other)
# Handle the trivial cases
if self == other:
return True
is_empty = self.is_empty
if is_empty is True:
return True
elif fuzzy_not(is_empty) and other.is_empty:
return False
if self.is_finite_set is False and other.is_finite_set:
return False
# Dispatch on subclass rules
ret = self._eval_is_subset(other)
if ret is not None:
return ret
ret = other._eval_is_superset(self)
if ret is not None:
return ret
# Use pairwise rules from multiple dispatch
from sympy.sets.handlers.issubset import is_subset_sets
ret = is_subset_sets(self, other)
if ret is not None:
return ret
# Fall back on computing the intersection
# XXX: We shouldn't do this. A query like this should be handled
# without evaluating new Set objects. It should be the other way round
# so that the intersect method uses is_subset for evaluation.
if self.intersect(other) == self:
return True
def _eval_is_subset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
def _eval_is_superset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
# This should be deprecated:
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if ``self`` is a proper subset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if ``self`` is a superset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
# This should be deprecated:
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if ``self`` is a proper superset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
from .powerset import PowerSet
return PowerSet(self)
def powerset(self):
"""
Find the Power set of ``self``.
Examples
========
>>> from sympy import EmptySet, FiniteSet, Interval
A power set of an empty set:
>>> A = EmptySet
>>> A.powerset()
{EmptySet}
A power set of a finite set:
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
A power set of an interval:
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of ``self``.
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def kind(self):
"""
The kind of a Set
Explanation
===========
Any :class:`Set` will have kind :class:`SetKind` which is
parametrised by the kind of the elements of the set. For example
most sets are sets of numbers and will have kind
``SetKind(NumberKind)``. If elements of sets are different in kind than
their kind will ``SetKind(UndefinedKind)``. See
:class:`sympy.core.kind.Kind` for an explanation of the kind system.
Examples
========
>>> from sympy import Interval, Matrix, FiniteSet, EmptySet, ProductSet, PowerSet
>>> FiniteSet(Matrix([1, 2])).kind
SetKind(MatrixKind(NumberKind))
>>> Interval(1, 2).kind
SetKind(NumberKind)
>>> EmptySet.kind
SetKind()
A :class:`sympy.sets.powerset.PowerSet` is a set of sets:
>>> PowerSet({1, 2, 3}).kind
SetKind(SetKind(NumberKind))
A :class:`ProductSet` represents the set of tuples of elements of
other sets. Its kind is :class:`sympy.core.containers.TupleKind`
parametrised by the kinds of the elements of those sets:
>>> p = ProductSet(FiniteSet(1, 2), FiniteSet(3, 4))
>>> list(p)
[(1, 3), (2, 3), (1, 4), (2, 4)]
>>> p.kind
SetKind(TupleKind(NumberKind, NumberKind))
When all elements of the set do not have same kind, the kind
will be returned as ``SetKind(UndefinedKind)``:
>>> FiniteSet(0, Matrix([1, 2])).kind
SetKind(UndefinedKind)
The kind of the elements of a set are given by the ``element_kind``
attribute of ``SetKind``:
>>> Interval(1, 2).kind.element_kind
NumberKind
See Also
========
NumberKind
sympy.core.kind.UndefinedKind
sympy.core.containers.TupleKind
MatrixKind
sympy.matrices.expressions.sets.MatrixSet
sympy.sets.conditionset.ConditionSet
Rationals
Naturals
Integers
sympy.sets.fancysets.ImageSet
sympy.sets.fancysets.Range
sympy.sets.fancysets.ComplexRegion
sympy.sets.powerset.PowerSet
sympy.sets.sets.ProductSet
sympy.sets.sets.Interval
sympy.sets.sets.Union
sympy.sets.sets.Intersection
sympy.sets.sets.Complement
sympy.sets.sets.EmptySet
sympy.sets.sets.UniversalSet
sympy.sets.sets.FiniteSet
sympy.sets.sets.SymmetricDifference
sympy.sets.sets.DisjointUnion
"""
return self._kind()
@property
def boundary(self):
"""
The boundary or frontier of a set.
Explanation
===========
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
{0, 1}
>>> Interval(0, 1, True, False).boundary
{0, 1}
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
Explanation
===========
A set is open if and only if it has an empty intersection with its
boundary. In particular, a subset A of the reals is open if and only
if each one of its points is contained in an open interval that is a
subset of A.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
"""
return Intersection(self, self.boundary).is_empty
@property
def is_closed(self):
"""
A property method to check whether a set is closed.
Explanation
===========
A set is closed if its complement is an open set. The closedness of a
subset of the reals is determined with respect to R and its standard
topology.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
def _kind(self):
return SetKind(UndefinedKind)
def _eval_evalf(self, prec):
dps = prec_to_dps(prec)
return self.func(*[arg.evalf(n=dps) for arg in self.args])
@sympify_return([('other', 'Set')], NotImplemented)
def __add__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __or__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __and__(self, other):
return self.intersect(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __mul__(self, other):
return ProductSet(self, other)
@sympify_return([('other', 'Set')], NotImplemented)
def __xor__(self, other):
return SymmetricDifference(self, other)
@sympify_return([('exp', Expr)], NotImplemented)
def __pow__(self, exp):
if not (exp.is_Integer and exp >= 0):
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet(*[self]*exp)
@sympify_return([('other', 'Set')], NotImplemented)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
other = _sympify(other)
c = self._contains(other)
b = tfn[c]
if b is None:
# x in y must evaluate to T or F; to entertain a None
# result with Set use y.contains(x)
raise TypeError('did not evaluate to a bool: %r' % c)
return b
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Explanation
===========
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use ``*`` operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), {1, 2, 3})
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
The Cartesian product is not commutative or associative e.g.:
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
Notes
=====
- Passes most operations down to the argument sets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
sympy_deprecation_warning(
"""
ProductSet(iterable) is deprecated. Use ProductSet(*iterable) instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-productset-iterable",
)
sets = tuple(sets[0])
sets = [sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Arguments to ProductSet should be of type Set")
# Nullary product of sets is *not* the empty set
if len(sets) == 0:
return FiniteSet(())
if S.EmptySet in sets:
return S.EmptySet
return Basic.__new__(cls, *sets, **assumptions)
@property
def sets(self):
return self.args
def flatten(self):
def _flatten(sets):
for s in sets:
if s.is_ProductSet:
yield from _flatten(s.sets)
else:
yield s
return ProductSet(*_flatten(self.sets))
def _contains(self, element):
"""
``in`` operator for ProductSets.
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
if element.is_Symbol:
return None
if not isinstance(element, Tuple) or len(element) != len(self.sets):
return False
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
def as_relational(self, *symbols):
symbols = [_sympify(s) for s in symbols]
if len(symbols) != len(self.sets) or not all(
i.is_Symbol for i in symbols):
raise ValueError(
'number of symbols must match the number of sets')
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
@property
def _boundary(self):
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets)))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
return iproduct(*self.sets)
@property
def is_empty(self):
return fuzzy_or(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def _measure(self):
measure = 1
for s in self.sets:
measure *= s.measure
return measure
def _kind(self):
return SetKind(TupleKind(*(i.kind.element_kind for i in self.args)))
def __len__(self):
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
def __bool__(self):
return all(self.sets)
class Interval(Set):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points ``start`` and ``end``.
For ``left_open=True`` (default ``left_open`` is ``False``) the interval
will be open on the left. Similarly, for ``right_open=True`` the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- ``Interval(a, b)`` with $a > b$ will return the empty set
- Use the ``evalf()`` method to turn an Interval into an mpmath
``mpi`` interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
# Only allow real intervals
if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if is_lt(end, start):
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start is S.Infinity or start is S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start is S.NegativeInfinity:
left_open = true
if end is S.Infinity:
right_open = true
if start == S.Infinity or end == S.NegativeInfinity:
return S.EmptySet
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of the interval.
This property takes the same value as the ``inf`` property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
@property
def end(self):
"""
The right end point of the interval.
This property takes the same value as the ``sup`` property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
@property
def left_open(self):
"""
True if interval is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if interval is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def _inf(self):
return self.start
@property
def _sup(self):
return self.end
@property
def left(self):
return self.start
@property
def right(self):
return self.end
@property
def is_empty(self):
if self.left_open or self.right_open:
cond = self.start >= self.end # One/both bounds open
else:
cond = self.start > self.end # Both bounds closed
return fuzzy_bool(cond)
@property
def is_finite_set(self):
return self.measure.is_zero
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if (not isinstance(other, Expr) or other is S.NaN
or other.is_real is False or other.has(S.ComplexInfinity)):
# if an expression has zoo it will be zoo or nan
# and neither of those is real
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if other.is_real is not None:
return other.is_real
d = Dummy()
return self.as_relational(d).subs(d, other)
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
@property
def _measure(self):
return self.end - self.start
def _kind(self):
return SetKind(NumberKind)
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._evalf(prec), self.right._evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
class Union(Set, LatticeOp):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
return Max(*[set.sup for set in self.args])
@property
def is_empty(self):
return fuzzy_and(set.is_empty for set in self.args)
@property
def is_finite_set(self):
return fuzzy_and(set.is_finite_set for set in self.args)
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for _set in sets:
if _set[0] in sos_list:
continue
else:
sos_list.append(_set[0])
sets_list.append(_set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
def _kind(self):
kinds = tuple(arg.kind for arg in self.args if arg is not S.EmptySet)
if not kinds:
return SetKind()
elif all(i == kinds[0] for i in kinds):
return kinds[0]
else:
return SetKind(UndefinedKind)
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def _contains(self, other):
return Or(*[s.contains(other) for s in self.args])
def is_subset(self, other):
return fuzzy_and(s.is_subset(other) for s in self.args)
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if (len(self.args) == 2 and
all(isinstance(i, Interval) for i in self.args)):
# optimization to give 3 args as (x > 1) & (x < 5) & Ne(x, 3)
# instead of as 4, ((1 <= x) & (x < 3)) | ((x <= 5) & (3 < x))
# XXX: This should be ideally be improved to handle any number of
# intervals and also not to assume that the intervals are in any
# particular sorted order.
a, b = self.args
if a.sup == b.inf and a.right_open and b.left_open:
mincond = symbol > a.inf if a.left_open else symbol >= a.inf
maxcond = symbol < b.sup if b.right_open else symbol <= b.sup
necond = Ne(symbol, a.sup)
return And(necond, mincond, maxcond)
return Or(*[i.as_relational(symbol) for i in self.args])
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def __iter__(self):
return roundrobin(*(iter(arg) for arg in self.args))
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = list(ordered(set(_sympify(args))))
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def is_finite_set(self):
if fuzzy_or(arg.is_finite_set for arg in self.args):
return True
def _kind(self):
kinds = tuple(arg.kind for arg in self.args if arg is not S.UniversalSet)
if not kinds:
return SetKind(UndefinedKind)
elif all(i == kinds[0] for i in kinds):
return kinds[0]
else:
return SetKind()
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
sets_sift = sift(self.args, lambda x: x.is_iterable)
completed = False
candidates = sets_sift[True] + sets_sift[None]
finite_candidates, others = [], []
for candidate in candidates:
length = None
try:
length = len(candidate)
except TypeError:
others.append(candidate)
if length is not None:
finite_candidates.append(candidate)
finite_candidates.sort(key=len)
for s in finite_candidates + others:
other_sets = set(self.args) - {s}
other = Intersection(*other_sets, evaluate=False)
completed = True
for x in s:
try:
if x in other:
yield x
except TypeError:
completed = False
if completed:
return
if not completed:
if not candidates:
raise TypeError("None of the constituent sets are iterable")
raise TypeError(
"The computation had not completed because of the "
"undecidable set membership is found in every candidates.")
@staticmethod
def _handle_finite_sets(args):
'''Simplify intersection of one or more FiniteSets and other sets'''
# First separate the FiniteSets from the others
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
# Let the caller handle intersection of non-FiniteSets
if not fs_args:
return
# Convert to Python sets and build the set of all elements
fs_sets = [set(fs) for fs in fs_args]
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Extract elements that are definitely in or definitely not in the
# intersection. Here we check contains for all of args.
definite = set()
for e in all_elements:
inall = fuzzy_and(s.contains(e) for s in args)
if inall is True:
definite.add(e)
if inall is not None:
for s in fs_sets:
s.discard(e)
# At this point all elements in all of fs_sets are possibly in the
# intersection. In some cases this is because they are definitely in
# the intersection of the finite sets but it's not clear if they are
# members of others. We might have {m, n}, {m}, and Reals where we
# don't know if m or n is real. We want to remove n here but it is
# possibly in because it might be equal to m. So what we do now is
# extract the elements that are definitely in the remaining finite
# sets iteratively until we end up with {n}, {}. At that point if we
# get any empty set all remaining elements are discarded.
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Need fuzzy containment testing
fs_symsets = [FiniteSet(*s) for s in fs_sets]
while fs_elements:
for e in fs_elements:
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
if infs is True:
definite.add(e)
if infs is not None:
for n, s in enumerate(fs_sets):
# Update Python set and FiniteSet
if e in s:
s.remove(e)
fs_symsets[n] = FiniteSet(*s)
fs_elements.remove(e)
break
# If we completed the for loop without removing anything we are
# done so quit the outer while loop
else:
break
# If any of the sets of remainder elements is empty then we discard
# all of them for the intersection.
if not all(fs_sets):
fs_sets = [set()]
# Here we fold back the definitely included elements into each fs.
# Since they are definitely included they must have been members of
# each FiniteSet to begin with. We could instead fold these in with a
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
if definite:
fs_sets = [fs | definite for fs in fs_sets]
if fs_sets == [set()]:
return S.EmptySet
sets = [FiniteSet(*s) for s in fs_sets]
# Any set in others is redundant if it contains all the elements that
# are in the finite sets so we don't need it in the Intersection
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
others = [o for o in others if not is_redundant(o)]
if others:
rest = Intersection(*others)
# XXX: Maybe this shortcut should be at the beginning. For large
# FiniteSets it could much more efficient to process the other
# sets first...
if rest is S.EmptySet:
return S.EmptySet
# Flatten the Intersection
if rest.is_Intersection:
sets.extend(rest.args)
else:
sets.append(rest)
if len(sets) == 1:
return sets[0]
else:
return Intersection(*sets, evaluate=False)
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set):
r"""Represents the set difference or relative complement of a set with
another set.
$$A - B = \{x \in A \mid x \notin B\}$$
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
{0, 2}
See Also
=========
Intersection, Union
References
==========
.. [1] https://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
a, b = map(_sympify, (a, b))
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return S.EmptySet
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
def as_relational(self, symbol):
"""Rewrite a complement in terms of equalities and logic
operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = Not(B.as_relational(symbol))
return And(A_rel, B_rel)
def _kind(self):
return self.args[0].kind
@property
def is_iterable(self):
if self.args[0].is_iterable:
return True
@property
def is_finite_set(self):
A, B = self.args
a_finite = A.is_finite_set
if a_finite is True:
return True
elif a_finite is False and B.is_finite_set:
return False
def __iter__(self):
A, B = self.args
for a in A:
if a not in B:
yield a
else:
continue
class EmptySet(Set, metaclass=Singleton):
"""
Represents the empty set. The empty set is available as a singleton
as ``S.EmptySet``.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_empty = True
is_finite_set = True
is_FiniteSet = True
@property # type: ignore
@deprecated(
"""
The is_EmptySet attribute of Set objects is deprecated.
Use 's is S.EmptySet" or 's.is_empty' instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-is-emptyset",
)
def is_EmptySet(self):
return True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _kind(self):
return SetKind()
def _symmetric_difference(self, other):
return other
class UniversalSet(Set, metaclass=Singleton):
"""
Represents the set of all things.
The universal set is available as a singleton as ``S.UniversalSet``.
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
is_empty = False
is_finite_set = False
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _kind(self):
return SetKind(UndefinedKind)
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return S.EmptySet
class FiniteSet(Set):
"""
Represents a finite set of Sympy expressions.
Examples
========
>>> from sympy import FiniteSet, Symbol, Interval, Naturals0
>>> FiniteSet(1, 2, 3, 4)
{1, 2, 3, 4}
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> FiniteSet(1, (1, 2), Symbol('x'))
{1, x, (1, 2)}
>>> FiniteSet(Interval(1, 2), Naturals0, {1, 2})
FiniteSet({1, 2}, Interval(1, 2), Naturals0)
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
{1, 2, 3, 4}
>>> f - FiniteSet(2)
{1, 3, 4}
>>> f + FiniteSet(2, 5)
{1, 2, 3, 4, 5}
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
is_empty = False
is_finite_set = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return S.EmptySet
else:
args = list(map(sympify, args))
# keep the form of the first canonical arg
dargs = {}
for i in reversed(list(ordered(args))):
if i.is_Symbol:
dargs[i] = i
else:
try:
dargs[i.as_dummy()] = i
except TypeError:
# e.g. i = class without args like `Interval`
dargs[i] = i
_args_set = set(dargs.values())
args = list(ordered(_args_set, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._args_set = _args_set
return obj
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
# Splitting in sub-intervals is only done for S.Reals;
# other cases that need splitting will first pass through
# Set._complement().
nums, syms = [], []
for m in self.args:
if m.is_number and m.is_real:
nums.append(m)
elif m.is_real == False:
pass # drop non-reals
else:
syms.append(m) # various symbolic expressions
if other == S.Reals and nums != []:
nums.sort()
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []: # no splitting necessary or possible:
if syms:
return Complement(other, FiniteSet(*syms), evaluate=False)
else:
return other
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
Explanation
===========
The actual test is for mathematical equality (as opposed to
syntactical equality). In the worst case all elements of the
set must be checked.
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
if other in self._args_set:
return True
else:
# evaluate=True is needed to override evaluate=False context;
# we need Eq to do the evaluation
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
for e in self.args)
def _eval_is_subset(self, other):
return fuzzy_and(other._contains(e) for e in self.args)
@property
def _boundary(self):
return self
@property
def _inf(self):
return Min(*self)
@property
def _sup(self):
return Max(*self)
@property
def measure(self):
return 0
def _kind(self):
if not self.args:
return SetKind()
elif all(i.kind == self.args[0].kind for i in self.args):
return SetKind(self.args[0].kind)
else:
return SetKind(UndefinedKind)
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
dps = prec_to_dps(prec)
return FiniteSet(*[elem.evalf(n=dps) for elem in self])
def _eval_simplify(self, **kwargs):
from sympy.simplify import simplify
return FiniteSet(*[simplify(elem, **kwargs) for elem in self])
@property
def _sorted_args(self):
return self.args
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
"""Rewriting method for a finite set to a power set."""
from .powerset import PowerSet
is2pow = lambda n: bool(n and not n & (n - 1))
if not is2pow(len(self)):
return None
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
if not all(fs_test(arg) for arg in args):
return None
biggest = max(args, key=len)
for arg in subsets(biggest.args):
arg_set = FiniteSet(*arg)
if arg_set not in args:
return None
return PowerSet(biggest)
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
def __eq__(self, other):
if isinstance(other, (set, frozenset)):
return self._args_set == other
return super().__eq__(other)
__hash__ : Callable[[Basic], Any] = Basic.__hash__
_sympy_converter[set] = lambda x: FiniteSet(*x)
_sympy_converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
{1, 2, 4, 5}
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def as_relational(self, symbol):
"""Rewrite a symmetric_difference in terms of equalities and
logic operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = B.as_relational(symbol)
return Xor(A_rel, B_rel)
@property
def is_iterable(self):
if all(arg.is_iterable for arg in self.args):
return True
def __iter__(self):
args = self.args
union = roundrobin(*(iter(arg) for arg in args))
for item in union:
count = 0
for s in args:
if item in s:
count += 1
if count % 2 == 1:
yield item
class DisjointUnion(Set):
""" Represents the disjoint union (also known as the external disjoint union)
of a finite number of sets.
Examples
========
>>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
>>> A = FiniteSet(1, 2, 3)
>>> B = Interval(0, 5)
>>> DisjointUnion(A, B)
DisjointUnion({1, 2, 3}, Interval(0, 5))
>>> DisjointUnion(A, B).rewrite(Union)
Union(ProductSet({1, 2, 3}, {0}), ProductSet(Interval(0, 5), {1}))
>>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
>>> DisjointUnion(C, C)
DisjointUnion({x, y, z}, {x, y, z})
>>> DisjointUnion(C, C).rewrite(Union)
ProductSet({x, y, z}, {0, 1})
References
==========
https://en.wikipedia.org/wiki/Disjoint_union
"""
def __new__(cls, *sets):
dj_collection = []
for set_i in sets:
if isinstance(set_i, Set):
dj_collection.append(set_i)
else:
raise TypeError("Invalid input: '%s', input args \
to DisjointUnion must be Sets" % set_i)
obj = Basic.__new__(cls, *dj_collection)
return obj
@property
def sets(self):
return self.args
@property
def is_empty(self):
return fuzzy_and(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def is_iterable(self):
if self.is_empty:
return False
iter_flag = True
for set_i in self.sets:
if not set_i.is_empty:
iter_flag = iter_flag and set_i.is_iterable
return iter_flag
def _eval_rewrite_as_Union(self, *sets):
"""
Rewrites the disjoint union as the union of (``set`` x {``i``})
where ``set`` is the element in ``sets`` at index = ``i``
"""
dj_union = S.EmptySet
index = 0
for set_i in sets:
if isinstance(set_i, Set):
cross = ProductSet(set_i, FiniteSet(index))
dj_union = Union(dj_union, cross)
index = index + 1
return dj_union
def _contains(self, element):
"""
``in`` operator for DisjointUnion
Examples
========
>>> from sympy import Interval, DisjointUnion
>>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
>>> (0.5, 0) in D
True
>>> (0.5, 1) in D
True
>>> (1.5, 0) in D
False
>>> (1.5, 1) in D
True
Passes operation on to constituent sets
"""
if not isinstance(element, Tuple) or len(element) != 2:
return False
if not element[1].is_Integer:
return False
if element[1] >= len(self.sets) or element[1] < 0:
return False
return element[0] in self.sets[element[1]]
def _kind(self):
if not self.args:
return SetKind()
elif all(i.kind == self.args[0].kind for i in self.args):
return self.args[0].kind
else:
return SetKind(UndefinedKind)
def __iter__(self):
if self.is_iterable:
iters = []
for i, s in enumerate(self.sets):
iters.append(iproduct(s, {Integer(i)}))
return iter(roundrobin(*iters))
else:
raise ValueError("'%s' is not iterable." % self)
def __len__(self):
"""
Returns the length of the disjoint union, i.e., the number of elements in the set.
Examples
========
>>> from sympy import FiniteSet, DisjointUnion, EmptySet
>>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
>>> len(D1)
7
>>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
>>> len(D2)
6
>>> D3 = DisjointUnion(EmptySet, EmptySet)
>>> len(D3)
0
Adds up the lengths of the constituent sets.
"""
if self.is_finite_set:
size = 0
for set in self.sets:
size += len(set)
return size
else:
raise ValueError("'%s' is not a finite set." % self)
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
Explanation
===========
If this function cannot compute the image, it returns an
unevaluated ImageSet object.
.. math::
\{ f(x) \mid x \in \mathrm{self} \}
Examples
========
>>> from sympy import S, Interval, imageset, sin, Lambda
>>> from sympy.abc import x
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from .fancysets import ImageSet
from .setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif callable(f):
nargs = getattr(f, 'nargs', {})
if nargs:
if len(nargs) != 1:
raise NotImplementedError(filldedent('''
This function can take more than 1 arg
but the potentially complicated set input
has not been analyzed at this point to
know its dimensions. TODO
'''))
N = nargs.args[0]
if N == 1:
s = 'x'
else:
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
else:
s = inspect.signature(f).parameters
dexpr = _sympify(f(*[Dummy() for i in s]))
var = tuple(uniquely_named_symbol(
Symbol(i), dexpr) for i in s)
f = Lambda(var, f(*var))
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass,
not \'%s\'.''' % func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
try:
# TypeError if arg count != set dimensions
r = set_function(f, set)
if r is None:
raise TypeError
if not r:
return r
except TypeError:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
# XXX: Maybe this should just be:
# f2 = set.lambda
# fun = Lambda(f2.signature, f(*f2.expr))
# return imageset(fun, *set.base_sets)
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
x = set.lamda.variables[0]
y = f.variables[0]
return imageset(
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules.
Explanation
===========
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - {s}:
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = {new_set}
new_args = (args - {s, t}).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules.
Explanation
===========
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if S.EmptySet in args:
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - {s}
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*s.args)
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - {s}:
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - {s, t}).union({new_set})
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from .fancysets import ImageSet
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
class SetKind(Kind):
"""
SetKind is kind for all Sets
Every instance of Set will have kind ``SetKind`` parametrised by the kind
of the elements of the ``Set``. The kind of the elements might be
``NumberKind``, or ``TupleKind`` or something else. When not all elements
have the same kind then the kind of the elements will be given as
``UndefinedKind``.
Parameters
==========
element_kind: Kind (optional)
The kind of the elements of the set. In a well defined set all elements
will have the same kind. Otherwise the kind should
:class:`sympy.core.kind.UndefinedKind`. The ``element_kind`` argument is optional but
should only be omitted in the case of ``EmptySet`` whose kind is simply
``SetKind()``
Examples
========
>>> from sympy import Interval
>>> Interval(1, 2).kind
SetKind(NumberKind)
>>> Interval(1,2).kind.element_kind
NumberKind
See Also
========
sympy.core.kind.NumberKind
sympy.matrices.common.MatrixKind
sympy.core.containers.TupleKind
"""
def __new__(cls, element_kind=None):
obj = super().__new__(cls, element_kind)
obj.element_kind = element_kind
return obj
def __repr__(self):
if not self.element_kind:
return "SetKind()"
else:
return "SetKind(%s)" % self.element_kind