Traktor/myenv/Lib/site-packages/pandas/tests/groupby/test_raises.py

717 lines
22 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
# Only tests that raise an error and have no better location should go here.
# Tests for specific groupby methods should go in their respective
# test file.
import datetime
import re
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
Grouper,
Series,
)
import pandas._testing as tm
from pandas.tests.groupby import get_groupby_method_args
@pytest.fixture(
params=[
"a",
["a"],
["a", "b"],
Grouper(key="a"),
lambda x: x % 2,
[0, 0, 0, 1, 2, 2, 2, 3, 3],
np.array([0, 0, 0, 1, 2, 2, 2, 3, 3]),
dict(zip(range(9), [0, 0, 0, 1, 2, 2, 2, 3, 3])),
Series([1, 1, 1, 1, 1, 2, 2, 2, 2]),
[Series([1, 1, 1, 1, 1, 2, 2, 2, 2]), Series([3, 3, 4, 4, 4, 4, 4, 3, 3])],
]
)
def by(request):
return request.param
@pytest.fixture(params=[True, False])
def groupby_series(request):
return request.param
@pytest.fixture
def df_with_string_col():
df = DataFrame(
{
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
"c": range(9),
"d": list("xyzwtyuio"),
}
)
return df
@pytest.fixture
def df_with_datetime_col():
df = DataFrame(
{
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
"c": range(9),
"d": datetime.datetime(2005, 1, 1, 10, 30, 23, 540000),
}
)
return df
@pytest.fixture
def df_with_timedelta_col():
df = DataFrame(
{
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
"c": range(9),
"d": datetime.timedelta(days=1),
}
)
return df
@pytest.fixture
def df_with_cat_col():
df = DataFrame(
{
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
"c": range(9),
"d": Categorical(
["a", "a", "a", "a", "b", "b", "b", "b", "c"],
categories=["a", "b", "c", "d"],
ordered=True,
),
}
)
return df
def _call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg=""):
warn_klass = None if warn_msg == "" else FutureWarning
with tm.assert_produces_warning(warn_klass, match=warn_msg):
if klass is None:
if how == "method":
getattr(gb, groupby_func)(*args)
elif how == "agg":
gb.agg(groupby_func, *args)
else:
gb.transform(groupby_func, *args)
else:
with pytest.raises(klass, match=msg):
if how == "method":
getattr(gb, groupby_func)(*args)
elif how == "agg":
gb.agg(groupby_func, *args)
else:
gb.transform(groupby_func, *args)
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
def test_groupby_raises_string(
how, by, groupby_series, groupby_func, df_with_string_col
):
df = df_with_string_col
args = get_groupby_method_args(groupby_func, df)
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
if groupby_func == "corrwith":
assert not hasattr(gb, "corrwith")
return
klass, msg = {
"all": (None, ""),
"any": (None, ""),
"bfill": (None, ""),
"corrwith": (TypeError, "Could not convert"),
"count": (None, ""),
"cumcount": (None, ""),
"cummax": (
(NotImplementedError, TypeError),
"(function|cummax) is not (implemented|supported) for (this|object) dtype",
),
"cummin": (
(NotImplementedError, TypeError),
"(function|cummin) is not (implemented|supported) for (this|object) dtype",
),
"cumprod": (
(NotImplementedError, TypeError),
"(function|cumprod) is not (implemented|supported) for (this|object) dtype",
),
"cumsum": (
(NotImplementedError, TypeError),
"(function|cumsum) is not (implemented|supported) for (this|object) dtype",
),
"diff": (TypeError, "unsupported operand type"),
"ffill": (None, ""),
"fillna": (None, ""),
"first": (None, ""),
"idxmax": (None, ""),
"idxmin": (None, ""),
"last": (None, ""),
"max": (None, ""),
"mean": (
TypeError,
re.escape("agg function failed [how->mean,dtype->object]"),
),
"median": (
TypeError,
re.escape("agg function failed [how->median,dtype->object]"),
),
"min": (None, ""),
"ngroup": (None, ""),
"nunique": (None, ""),
"pct_change": (TypeError, "unsupported operand type"),
"prod": (
TypeError,
re.escape("agg function failed [how->prod,dtype->object]"),
),
"quantile": (TypeError, "cannot be performed against 'object' dtypes!"),
"rank": (None, ""),
"sem": (ValueError, "could not convert string to float"),
"shift": (None, ""),
"size": (None, ""),
"skew": (ValueError, "could not convert string to float"),
"std": (ValueError, "could not convert string to float"),
"sum": (None, ""),
"var": (
TypeError,
re.escape("agg function failed [how->var,dtype->"),
),
}[groupby_func]
if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
else:
warn_msg = ""
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg)
@pytest.mark.parametrize("how", ["agg", "transform"])
def test_groupby_raises_string_udf(how, by, groupby_series, df_with_string_col):
df = df_with_string_col
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
def func(x):
raise TypeError("Test error message")
with pytest.raises(TypeError, match="Test error message"):
getattr(gb, how)(func)
@pytest.mark.parametrize("how", ["agg", "transform"])
@pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean])
def test_groupby_raises_string_np(
how, by, groupby_series, groupby_func_np, df_with_string_col
):
# GH#50749
df = df_with_string_col
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
klass, msg = {
np.sum: (None, ""),
np.mean: (
TypeError,
re.escape("agg function failed [how->mean,dtype->object]"),
),
}[groupby_func_np]
if groupby_series:
warn_msg = "using SeriesGroupBy.[sum|mean]"
else:
warn_msg = "using DataFrameGroupBy.[sum|mean]"
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg)
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
def test_groupby_raises_datetime(
how, by, groupby_series, groupby_func, df_with_datetime_col
):
df = df_with_datetime_col
args = get_groupby_method_args(groupby_func, df)
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
if groupby_func == "corrwith":
assert not hasattr(gb, "corrwith")
return
klass, msg = {
"all": (None, ""),
"any": (None, ""),
"bfill": (None, ""),
"corrwith": (TypeError, "cannot perform __mul__ with this index type"),
"count": (None, ""),
"cumcount": (None, ""),
"cummax": (None, ""),
"cummin": (None, ""),
"cumprod": (TypeError, "datetime64 type does not support cumprod operations"),
"cumsum": (TypeError, "datetime64 type does not support cumsum operations"),
"diff": (None, ""),
"ffill": (None, ""),
"fillna": (None, ""),
"first": (None, ""),
"idxmax": (None, ""),
"idxmin": (None, ""),
"last": (None, ""),
"max": (None, ""),
"mean": (None, ""),
"median": (None, ""),
"min": (None, ""),
"ngroup": (None, ""),
"nunique": (None, ""),
"pct_change": (TypeError, "cannot perform __truediv__ with this index type"),
"prod": (TypeError, "datetime64 type does not support prod"),
"quantile": (None, ""),
"rank": (None, ""),
"sem": (None, ""),
"shift": (None, ""),
"size": (None, ""),
"skew": (
TypeError,
"|".join(
[
r"dtype datetime64\[ns\] does not support reduction",
"datetime64 type does not support skew operations",
]
),
),
"std": (None, ""),
"sum": (TypeError, "datetime64 type does not support sum operations"),
"var": (TypeError, "datetime64 type does not support var operations"),
}[groupby_func]
if groupby_func in ["any", "all"]:
warn_msg = f"'{groupby_func}' with datetime64 dtypes is deprecated"
elif groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
else:
warn_msg = ""
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg=warn_msg)
@pytest.mark.parametrize("how", ["agg", "transform"])
def test_groupby_raises_datetime_udf(how, by, groupby_series, df_with_datetime_col):
df = df_with_datetime_col
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
def func(x):
raise TypeError("Test error message")
with pytest.raises(TypeError, match="Test error message"):
getattr(gb, how)(func)
@pytest.mark.parametrize("how", ["agg", "transform"])
@pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean])
def test_groupby_raises_datetime_np(
how, by, groupby_series, groupby_func_np, df_with_datetime_col
):
# GH#50749
df = df_with_datetime_col
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
klass, msg = {
np.sum: (TypeError, "datetime64 type does not support sum operations"),
np.mean: (None, ""),
}[groupby_func_np]
if groupby_series:
warn_msg = "using SeriesGroupBy.[sum|mean]"
else:
warn_msg = "using DataFrameGroupBy.[sum|mean]"
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg)
@pytest.mark.parametrize("func", ["prod", "cumprod", "skew", "var"])
def test_groupby_raises_timedelta(func, df_with_timedelta_col):
df = df_with_timedelta_col
gb = df.groupby(by="a")
_call_and_check(
TypeError,
"timedelta64 type does not support .* operations",
"method",
gb,
func,
[],
)
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
def test_groupby_raises_category(
how, by, groupby_series, groupby_func, using_copy_on_write, df_with_cat_col
):
# GH#50749
df = df_with_cat_col
args = get_groupby_method_args(groupby_func, df)
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
if groupby_func == "corrwith":
assert not hasattr(gb, "corrwith")
return
klass, msg = {
"all": (None, ""),
"any": (None, ""),
"bfill": (None, ""),
"corrwith": (
TypeError,
r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'",
),
"count": (None, ""),
"cumcount": (None, ""),
"cummax": (
(NotImplementedError, TypeError),
"(category type does not support cummax operations|"
"category dtype not supported|"
"cummax is not supported for category dtype)",
),
"cummin": (
(NotImplementedError, TypeError),
"(category type does not support cummin operations|"
"category dtype not supported|"
"cummin is not supported for category dtype)",
),
"cumprod": (
(NotImplementedError, TypeError),
"(category type does not support cumprod operations|"
"category dtype not supported|"
"cumprod is not supported for category dtype)",
),
"cumsum": (
(NotImplementedError, TypeError),
"(category type does not support cumsum operations|"
"category dtype not supported|"
"cumsum is not supported for category dtype)",
),
"diff": (
TypeError,
r"unsupported operand type\(s\) for -: 'Categorical' and 'Categorical'",
),
"ffill": (None, ""),
"fillna": (
TypeError,
r"Cannot setitem on a Categorical with a new category \(0\), "
"set the categories first",
)
if not using_copy_on_write
else (None, ""), # no-op with CoW
"first": (None, ""),
"idxmax": (None, ""),
"idxmin": (None, ""),
"last": (None, ""),
"max": (None, ""),
"mean": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'mean'",
"category dtype does not support aggregation 'mean'",
]
),
),
"median": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'median'",
"category dtype does not support aggregation 'median'",
]
),
),
"min": (None, ""),
"ngroup": (None, ""),
"nunique": (None, ""),
"pct_change": (
TypeError,
r"unsupported operand type\(s\) for /: 'Categorical' and 'Categorical'",
),
"prod": (TypeError, "category type does not support prod operations"),
"quantile": (TypeError, "No matching signature found"),
"rank": (None, ""),
"sem": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'sem'",
"category dtype does not support aggregation 'sem'",
]
),
),
"shift": (None, ""),
"size": (None, ""),
"skew": (
TypeError,
"|".join(
[
"dtype category does not support reduction 'skew'",
"category type does not support skew operations",
]
),
),
"std": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'std'",
"category dtype does not support aggregation 'std'",
]
),
),
"sum": (TypeError, "category type does not support sum operations"),
"var": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'var'",
"category dtype does not support aggregation 'var'",
]
),
),
}[groupby_func]
if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
else:
warn_msg = ""
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg)
@pytest.mark.parametrize("how", ["agg", "transform"])
def test_groupby_raises_category_udf(how, by, groupby_series, df_with_cat_col):
# GH#50749
df = df_with_cat_col
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
def func(x):
raise TypeError("Test error message")
with pytest.raises(TypeError, match="Test error message"):
getattr(gb, how)(func)
@pytest.mark.parametrize("how", ["agg", "transform"])
@pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean])
def test_groupby_raises_category_np(
how, by, groupby_series, groupby_func_np, df_with_cat_col
):
# GH#50749
df = df_with_cat_col
gb = df.groupby(by=by)
if groupby_series:
gb = gb["d"]
klass, msg = {
np.sum: (TypeError, "category type does not support sum operations"),
np.mean: (
TypeError,
"category dtype does not support aggregation 'mean'",
),
}[groupby_func_np]
if groupby_series:
warn_msg = "using SeriesGroupBy.[sum|mean]"
else:
warn_msg = "using DataFrameGroupBy.[sum|mean]"
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg)
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
def test_groupby_raises_category_on_category(
how,
by,
groupby_series,
groupby_func,
observed,
using_copy_on_write,
df_with_cat_col,
):
# GH#50749
df = df_with_cat_col
df["a"] = Categorical(
["a", "a", "a", "a", "b", "b", "b", "b", "c"],
categories=["a", "b", "c", "d"],
ordered=True,
)
args = get_groupby_method_args(groupby_func, df)
gb = df.groupby(by=by, observed=observed)
if groupby_series:
gb = gb["d"]
if groupby_func == "corrwith":
assert not hasattr(gb, "corrwith")
return
empty_groups = not observed and any(group.empty for group in gb.groups.values())
if (
not observed
and how != "transform"
and isinstance(by, list)
and isinstance(by[0], str)
and by == ["a", "b"]
):
assert not empty_groups
# TODO: empty_groups should be true due to unobserved categorical combinations
empty_groups = True
if how == "transform":
# empty groups will be ignored
empty_groups = False
klass, msg = {
"all": (None, ""),
"any": (None, ""),
"bfill": (None, ""),
"corrwith": (
TypeError,
r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'",
),
"count": (None, ""),
"cumcount": (None, ""),
"cummax": (
(NotImplementedError, TypeError),
"(cummax is not supported for category dtype|"
"category dtype not supported|"
"category type does not support cummax operations)",
),
"cummin": (
(NotImplementedError, TypeError),
"(cummin is not supported for category dtype|"
"category dtype not supported|"
"category type does not support cummin operations)",
),
"cumprod": (
(NotImplementedError, TypeError),
"(cumprod is not supported for category dtype|"
"category dtype not supported|"
"category type does not support cumprod operations)",
),
"cumsum": (
(NotImplementedError, TypeError),
"(cumsum is not supported for category dtype|"
"category dtype not supported|"
"category type does not support cumsum operations)",
),
"diff": (TypeError, "unsupported operand type"),
"ffill": (None, ""),
"fillna": (
TypeError,
r"Cannot setitem on a Categorical with a new category \(0\), "
"set the categories first",
)
if not using_copy_on_write
else (None, ""), # no-op with CoW
"first": (None, ""),
"idxmax": (ValueError, "empty group due to unobserved categories")
if empty_groups
else (None, ""),
"idxmin": (ValueError, "empty group due to unobserved categories")
if empty_groups
else (None, ""),
"last": (None, ""),
"max": (None, ""),
"mean": (TypeError, "category dtype does not support aggregation 'mean'"),
"median": (TypeError, "category dtype does not support aggregation 'median'"),
"min": (None, ""),
"ngroup": (None, ""),
"nunique": (None, ""),
"pct_change": (TypeError, "unsupported operand type"),
"prod": (TypeError, "category type does not support prod operations"),
"quantile": (TypeError, ""),
"rank": (None, ""),
"sem": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'sem'",
"category dtype does not support aggregation 'sem'",
]
),
),
"shift": (None, ""),
"size": (None, ""),
"skew": (
TypeError,
"|".join(
[
"category type does not support skew operations",
"dtype category does not support reduction 'skew'",
]
),
),
"std": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'std'",
"category dtype does not support aggregation 'std'",
]
),
),
"sum": (TypeError, "category type does not support sum operations"),
"var": (
TypeError,
"|".join(
[
"'Categorical' .* does not support reduction 'var'",
"category dtype does not support aggregation 'var'",
]
),
),
}[groupby_func]
if groupby_func == "fillna":
kind = "Series" if groupby_series else "DataFrame"
warn_msg = f"{kind}GroupBy.fillna is deprecated"
else:
warn_msg = ""
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg)
def test_subsetting_columns_axis_1_raises():
# GH 35443
df = DataFrame({"a": [1], "b": [2], "c": [3]})
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
gb = df.groupby("a", axis=1)
with pytest.raises(ValueError, match="Cannot subset columns when using axis=1"):
gb["b"]