767 lines
29 KiB
Python
767 lines
29 KiB
Python
|
# mypy: disable-error-code="attr-defined"
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
from numpy import cos, sin, pi
|
||
|
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
|
||
|
assert_, suppress_warnings)
|
||
|
from hypothesis import given
|
||
|
import hypothesis.strategies as st
|
||
|
import hypothesis.extra.numpy as hyp_num
|
||
|
|
||
|
from scipy.integrate import (quadrature, romberg, romb, newton_cotes,
|
||
|
cumulative_trapezoid, cumtrapz, trapz, trapezoid,
|
||
|
quad, simpson, simps, fixed_quad, AccuracyWarning,
|
||
|
qmc_quad, cumulative_simpson)
|
||
|
from scipy.integrate._quadrature import _cumulative_simpson_unequal_intervals
|
||
|
from scipy import stats, special
|
||
|
|
||
|
|
||
|
class TestFixedQuad:
|
||
|
def test_scalar(self):
|
||
|
n = 4
|
||
|
expected = 1/(2*n)
|
||
|
got, _ = fixed_quad(lambda x: x**(2*n - 1), 0, 1, n=n)
|
||
|
# quadrature exact for this input
|
||
|
assert_allclose(got, expected, rtol=1e-12)
|
||
|
|
||
|
def test_vector(self):
|
||
|
n = 4
|
||
|
p = np.arange(1, 2*n)
|
||
|
expected = 1/(p + 1)
|
||
|
got, _ = fixed_quad(lambda x: x**p[:, None], 0, 1, n=n)
|
||
|
assert_allclose(got, expected, rtol=1e-12)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
|
||
|
class TestQuadrature:
|
||
|
def quad(self, x, a, b, args):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def test_quadrature(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return cos(n*x-z*sin(x))/pi
|
||
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8))
|
||
|
table_val = 0.30614353532540296487
|
||
|
assert_almost_equal(val, table_val, decimal=7)
|
||
|
|
||
|
def test_quadrature_rtol(self):
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return 1e90 * cos(n*x-z*sin(x))/pi
|
||
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8), rtol=1e-10)
|
||
|
table_val = 1e90 * 0.30614353532540296487
|
||
|
assert_allclose(val, table_val, rtol=1e-10)
|
||
|
|
||
|
def test_quadrature_miniter(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return cos(n*x-z*sin(x))/pi
|
||
|
table_val = 0.30614353532540296487
|
||
|
for miniter in [5, 52]:
|
||
|
val, err = quadrature(myfunc, 0, pi, (2, 1.8), miniter=miniter)
|
||
|
assert_almost_equal(val, table_val, decimal=7)
|
||
|
assert_(err < 1.0)
|
||
|
|
||
|
def test_quadrature_single_args(self):
|
||
|
def myfunc(x, n):
|
||
|
return 1e90 * cos(n*x-1.8*sin(x))/pi
|
||
|
val, err = quadrature(myfunc, 0, pi, args=2, rtol=1e-10)
|
||
|
table_val = 1e90 * 0.30614353532540296487
|
||
|
assert_allclose(val, table_val, rtol=1e-10)
|
||
|
|
||
|
def test_romberg(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return cos(n*x-z*sin(x))/pi
|
||
|
val = romberg(myfunc, 0, pi, args=(2, 1.8))
|
||
|
table_val = 0.30614353532540296487
|
||
|
assert_almost_equal(val, table_val, decimal=7)
|
||
|
|
||
|
def test_romberg_rtol(self):
|
||
|
# Typical function with two extra arguments:
|
||
|
def myfunc(x, n, z): # Bessel function integrand
|
||
|
return 1e19*cos(n*x-z*sin(x))/pi
|
||
|
val = romberg(myfunc, 0, pi, args=(2, 1.8), rtol=1e-10)
|
||
|
table_val = 1e19*0.30614353532540296487
|
||
|
assert_allclose(val, table_val, rtol=1e-10)
|
||
|
|
||
|
def test_romb(self):
|
||
|
assert_equal(romb(np.arange(17)), 128)
|
||
|
|
||
|
def test_romb_gh_3731(self):
|
||
|
# Check that romb makes maximal use of data points
|
||
|
x = np.arange(2**4+1)
|
||
|
y = np.cos(0.2*x)
|
||
|
val = romb(y)
|
||
|
val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
|
||
|
assert_allclose(val, val2, rtol=1e-8, atol=0)
|
||
|
|
||
|
# should be equal to romb with 2**k+1 samples
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(AccuracyWarning, "divmax .4. exceeded")
|
||
|
val3 = romberg(lambda x: np.cos(0.2*x), x.min(), x.max(), divmax=4)
|
||
|
assert_allclose(val, val3, rtol=1e-12, atol=0)
|
||
|
|
||
|
def test_non_dtype(self):
|
||
|
# Check that we work fine with functions returning float
|
||
|
import math
|
||
|
valmath = romberg(math.sin, 0, 1)
|
||
|
expected_val = 0.45969769413185085
|
||
|
assert_almost_equal(valmath, expected_val, decimal=7)
|
||
|
|
||
|
def test_newton_cotes(self):
|
||
|
"""Test the first few degrees, for evenly spaced points."""
|
||
|
n = 1
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_equal(wts, n*np.array([0.5, 0.5]))
|
||
|
assert_almost_equal(errcoff, -n**3/12.0)
|
||
|
|
||
|
n = 2
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_almost_equal(wts, n*np.array([1.0, 4.0, 1.0])/6.0)
|
||
|
assert_almost_equal(errcoff, -n**5/2880.0)
|
||
|
|
||
|
n = 3
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_almost_equal(wts, n*np.array([1.0, 3.0, 3.0, 1.0])/8.0)
|
||
|
assert_almost_equal(errcoff, -n**5/6480.0)
|
||
|
|
||
|
n = 4
|
||
|
wts, errcoff = newton_cotes(n, 1)
|
||
|
assert_almost_equal(wts, n*np.array([7.0, 32.0, 12.0, 32.0, 7.0])/90.0)
|
||
|
assert_almost_equal(errcoff, -n**7/1935360.0)
|
||
|
|
||
|
def test_newton_cotes2(self):
|
||
|
"""Test newton_cotes with points that are not evenly spaced."""
|
||
|
|
||
|
x = np.array([0.0, 1.5, 2.0])
|
||
|
y = x**2
|
||
|
wts, errcoff = newton_cotes(x)
|
||
|
exact_integral = 8.0/3
|
||
|
numeric_integral = np.dot(wts, y)
|
||
|
assert_almost_equal(numeric_integral, exact_integral)
|
||
|
|
||
|
x = np.array([0.0, 1.4, 2.1, 3.0])
|
||
|
y = x**2
|
||
|
wts, errcoff = newton_cotes(x)
|
||
|
exact_integral = 9.0
|
||
|
numeric_integral = np.dot(wts, y)
|
||
|
assert_almost_equal(numeric_integral, exact_integral)
|
||
|
|
||
|
# ignore the DeprecationWarning emitted by the even kwd
|
||
|
@pytest.mark.filterwarnings('ignore::DeprecationWarning')
|
||
|
def test_simpson(self):
|
||
|
y = np.arange(17)
|
||
|
assert_equal(simpson(y), 128)
|
||
|
assert_equal(simpson(y, dx=0.5), 64)
|
||
|
assert_equal(simpson(y, x=np.linspace(0, 4, 17)), 32)
|
||
|
|
||
|
y = np.arange(4)
|
||
|
x = 2**y
|
||
|
assert_equal(simpson(y, x=x, even='avg'), 13.875)
|
||
|
assert_equal(simpson(y, x=x, even='first'), 13.75)
|
||
|
assert_equal(simpson(y, x=x, even='last'), 14)
|
||
|
|
||
|
# `even='simpson'`
|
||
|
# integral should be exactly 21
|
||
|
x = np.linspace(1, 4, 4)
|
||
|
def f(x):
|
||
|
return x**2
|
||
|
|
||
|
assert_allclose(simpson(f(x), x=x, even='simpson'), 21.0)
|
||
|
assert_allclose(simpson(f(x), x=x, even='avg'), 21 + 1/6)
|
||
|
|
||
|
# integral should be exactly 114
|
||
|
x = np.linspace(1, 7, 4)
|
||
|
assert_allclose(simpson(f(x), dx=2.0, even='simpson'), 114)
|
||
|
assert_allclose(simpson(f(x), dx=2.0, even='avg'), 115 + 1/3)
|
||
|
|
||
|
# `even='simpson'`, test multi-axis behaviour
|
||
|
a = np.arange(16).reshape(4, 4)
|
||
|
x = np.arange(64.).reshape(4, 4, 4)
|
||
|
y = f(x)
|
||
|
for i in range(3):
|
||
|
r = simpson(y, x=x, even='simpson', axis=i)
|
||
|
it = np.nditer(a, flags=['multi_index'])
|
||
|
for _ in it:
|
||
|
idx = list(it.multi_index)
|
||
|
idx.insert(i, slice(None))
|
||
|
integral = x[tuple(idx)][-1]**3 / 3 - x[tuple(idx)][0]**3 / 3
|
||
|
assert_allclose(r[it.multi_index], integral)
|
||
|
|
||
|
# test when integration axis only has two points
|
||
|
x = np.arange(16).reshape(8, 2)
|
||
|
y = f(x)
|
||
|
for even in ['simpson', 'avg', 'first', 'last']:
|
||
|
r = simpson(y, x=x, even=even, axis=-1)
|
||
|
|
||
|
integral = 0.5 * (y[:, 1] + y[:, 0]) * (x[:, 1] - x[:, 0])
|
||
|
assert_allclose(r, integral)
|
||
|
|
||
|
# odd points, test multi-axis behaviour
|
||
|
a = np.arange(25).reshape(5, 5)
|
||
|
x = np.arange(125).reshape(5, 5, 5)
|
||
|
y = f(x)
|
||
|
for i in range(3):
|
||
|
r = simpson(y, x=x, axis=i)
|
||
|
it = np.nditer(a, flags=['multi_index'])
|
||
|
for _ in it:
|
||
|
idx = list(it.multi_index)
|
||
|
idx.insert(i, slice(None))
|
||
|
integral = x[tuple(idx)][-1]**3 / 3 - x[tuple(idx)][0]**3 / 3
|
||
|
assert_allclose(r[it.multi_index], integral)
|
||
|
|
||
|
# Tests for checking base case
|
||
|
x = np.array([3])
|
||
|
y = np.power(x, 2)
|
||
|
assert_allclose(simpson(y, x=x, axis=0), 0.0)
|
||
|
assert_allclose(simpson(y, x=x, axis=-1), 0.0)
|
||
|
|
||
|
x = np.array([3, 3, 3, 3])
|
||
|
y = np.power(x, 2)
|
||
|
assert_allclose(simpson(y, x=x, axis=0), 0.0)
|
||
|
assert_allclose(simpson(y, x=x, axis=-1), 0.0)
|
||
|
|
||
|
x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]])
|
||
|
y = np.power(x, 2)
|
||
|
zero_axis = [0.0, 0.0, 0.0, 0.0]
|
||
|
default_axis = [170 + 1/3] * 3 # 8**3 / 3 - 1/3
|
||
|
assert_allclose(simpson(y, x=x, axis=0), zero_axis)
|
||
|
# the following should be exact for even='simpson'
|
||
|
assert_allclose(simpson(y, x=x, axis=-1), default_axis)
|
||
|
|
||
|
x = np.array([[1, 2, 4, 8], [1, 2, 4, 8], [1, 8, 16, 32]])
|
||
|
y = np.power(x, 2)
|
||
|
zero_axis = [0.0, 136.0, 1088.0, 8704.0]
|
||
|
default_axis = [170 + 1/3, 170 + 1/3, 32**3 / 3 - 1/3]
|
||
|
assert_allclose(simpson(y, x=x, axis=0), zero_axis)
|
||
|
assert_allclose(simpson(y, x=x, axis=-1), default_axis)
|
||
|
|
||
|
def test_simpson_deprecations(self):
|
||
|
x = np.linspace(0, 3, 4)
|
||
|
y = x**2
|
||
|
with pytest.deprecated_call(match="The 'even' keyword is deprecated"):
|
||
|
simpson(y, x=x, even='first')
|
||
|
with pytest.deprecated_call(match="use keyword arguments"):
|
||
|
simpson(y, x)
|
||
|
|
||
|
@pytest.mark.parametrize('droplast', [False, True])
|
||
|
def test_simpson_2d_integer_no_x(self, droplast):
|
||
|
# The inputs are 2d integer arrays. The results should be
|
||
|
# identical to the results when the inputs are floating point.
|
||
|
y = np.array([[2, 2, 4, 4, 8, 8, -4, 5],
|
||
|
[4, 4, 2, -4, 10, 22, -2, 10]])
|
||
|
if droplast:
|
||
|
y = y[:, :-1]
|
||
|
result = simpson(y, axis=-1)
|
||
|
expected = simpson(np.array(y, dtype=np.float64), axis=-1)
|
||
|
assert_equal(result, expected)
|
||
|
|
||
|
def test_simps(self):
|
||
|
# Basic coverage test for the alias
|
||
|
y = np.arange(5)
|
||
|
x = 2**y
|
||
|
with pytest.deprecated_call(match="simpson"):
|
||
|
assert_allclose(
|
||
|
simpson(y, x=x, dx=0.5),
|
||
|
simps(y, x=x, dx=0.5)
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('func', [romberg, quadrature])
|
||
|
def test_deprecate_integrator(func):
|
||
|
message = f"`scipy.integrate.{func.__name__}` is deprecated..."
|
||
|
with pytest.deprecated_call(match=message):
|
||
|
func(np.exp, 0, 1)
|
||
|
|
||
|
|
||
|
class TestCumulative_trapezoid:
|
||
|
def test_1d(self):
|
||
|
x = np.linspace(-2, 2, num=5)
|
||
|
y = x
|
||
|
y_int = cumulative_trapezoid(y, x, initial=0)
|
||
|
y_expected = [0., -1.5, -2., -1.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumulative_trapezoid(y, x, initial=None)
|
||
|
assert_allclose(y_int, y_expected[1:])
|
||
|
|
||
|
def test_y_nd_x_nd(self):
|
||
|
x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
||
|
y = x
|
||
|
y_int = cumulative_trapezoid(y, x, initial=0)
|
||
|
y_expected = np.array([[[0., 0.5, 2., 4.5],
|
||
|
[0., 4.5, 10., 16.5]],
|
||
|
[[0., 8.5, 18., 28.5],
|
||
|
[0., 12.5, 26., 40.5]],
|
||
|
[[0., 16.5, 34., 52.5],
|
||
|
[0., 20.5, 42., 64.5]]])
|
||
|
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
# Try with all axes
|
||
|
shapes = [(2, 2, 4), (3, 1, 4), (3, 2, 3)]
|
||
|
for axis, shape in zip([0, 1, 2], shapes):
|
||
|
y_int = cumulative_trapezoid(y, x, initial=0, axis=axis)
|
||
|
assert_equal(y_int.shape, (3, 2, 4))
|
||
|
y_int = cumulative_trapezoid(y, x, initial=None, axis=axis)
|
||
|
assert_equal(y_int.shape, shape)
|
||
|
|
||
|
def test_y_nd_x_1d(self):
|
||
|
y = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
||
|
x = np.arange(4)**2
|
||
|
# Try with all axes
|
||
|
ys_expected = (
|
||
|
np.array([[[4., 5., 6., 7.],
|
||
|
[8., 9., 10., 11.]],
|
||
|
[[40., 44., 48., 52.],
|
||
|
[56., 60., 64., 68.]]]),
|
||
|
np.array([[[2., 3., 4., 5.]],
|
||
|
[[10., 11., 12., 13.]],
|
||
|
[[18., 19., 20., 21.]]]),
|
||
|
np.array([[[0.5, 5., 17.5],
|
||
|
[4.5, 21., 53.5]],
|
||
|
[[8.5, 37., 89.5],
|
||
|
[12.5, 53., 125.5]],
|
||
|
[[16.5, 69., 161.5],
|
||
|
[20.5, 85., 197.5]]]))
|
||
|
|
||
|
for axis, y_expected in zip([0, 1, 2], ys_expected):
|
||
|
y_int = cumulative_trapezoid(y, x=x[:y.shape[axis]], axis=axis,
|
||
|
initial=None)
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
def test_x_none(self):
|
||
|
y = np.linspace(-2, 2, num=5)
|
||
|
|
||
|
y_int = cumulative_trapezoid(y)
|
||
|
y_expected = [-1.5, -2., -1.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumulative_trapezoid(y, initial=0)
|
||
|
y_expected = [0, -1.5, -2., -1.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumulative_trapezoid(y, dx=3)
|
||
|
y_expected = [-4.5, -6., -4.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
y_int = cumulative_trapezoid(y, dx=3, initial=0)
|
||
|
y_expected = [0, -4.5, -6., -4.5, 0.]
|
||
|
assert_allclose(y_int, y_expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"initial", [1, 0.5]
|
||
|
)
|
||
|
def test_initial_warning(self, initial):
|
||
|
"""If initial is not None or 0, a ValueError is raised."""
|
||
|
y = np.linspace(0, 10, num=10)
|
||
|
with pytest.deprecated_call(match="`initial`"):
|
||
|
res = cumulative_trapezoid(y, initial=initial)
|
||
|
assert_allclose(res, [initial, *np.cumsum(y[1:] + y[:-1])/2])
|
||
|
|
||
|
def test_zero_len_y(self):
|
||
|
with pytest.raises(ValueError, match="At least one point is required"):
|
||
|
cumulative_trapezoid(y=[])
|
||
|
|
||
|
def test_cumtrapz(self):
|
||
|
# Basic coverage test for the alias
|
||
|
x = np.arange(3 * 2 * 4).reshape(3, 2, 4)
|
||
|
y = x
|
||
|
with pytest.deprecated_call(match="cumulative_trapezoid"):
|
||
|
assert_allclose(cumulative_trapezoid(y, x, dx=0.5, axis=0, initial=0),
|
||
|
cumtrapz(y, x, dx=0.5, axis=0, initial=0),
|
||
|
rtol=1e-14)
|
||
|
|
||
|
|
||
|
class TestTrapezoid:
|
||
|
def test_simple(self):
|
||
|
x = np.arange(-10, 10, .1)
|
||
|
r = trapezoid(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1)
|
||
|
# check integral of normal equals 1
|
||
|
assert_allclose(r, 1)
|
||
|
|
||
|
def test_ndim(self):
|
||
|
x = np.linspace(0, 1, 3)
|
||
|
y = np.linspace(0, 2, 8)
|
||
|
z = np.linspace(0, 3, 13)
|
||
|
|
||
|
wx = np.ones_like(x) * (x[1] - x[0])
|
||
|
wx[0] /= 2
|
||
|
wx[-1] /= 2
|
||
|
wy = np.ones_like(y) * (y[1] - y[0])
|
||
|
wy[0] /= 2
|
||
|
wy[-1] /= 2
|
||
|
wz = np.ones_like(z) * (z[1] - z[0])
|
||
|
wz[0] /= 2
|
||
|
wz[-1] /= 2
|
||
|
|
||
|
q = x[:, None, None] + y[None,:, None] + z[None, None,:]
|
||
|
|
||
|
qx = (q * wx[:, None, None]).sum(axis=0)
|
||
|
qy = (q * wy[None, :, None]).sum(axis=1)
|
||
|
qz = (q * wz[None, None, :]).sum(axis=2)
|
||
|
|
||
|
# n-d `x`
|
||
|
r = trapezoid(q, x=x[:, None, None], axis=0)
|
||
|
assert_allclose(r, qx)
|
||
|
r = trapezoid(q, x=y[None,:, None], axis=1)
|
||
|
assert_allclose(r, qy)
|
||
|
r = trapezoid(q, x=z[None, None,:], axis=2)
|
||
|
assert_allclose(r, qz)
|
||
|
|
||
|
# 1-d `x`
|
||
|
r = trapezoid(q, x=x, axis=0)
|
||
|
assert_allclose(r, qx)
|
||
|
r = trapezoid(q, x=y, axis=1)
|
||
|
assert_allclose(r, qy)
|
||
|
r = trapezoid(q, x=z, axis=2)
|
||
|
assert_allclose(r, qz)
|
||
|
|
||
|
def test_masked(self):
|
||
|
# Testing that masked arrays behave as if the function is 0 where
|
||
|
# masked
|
||
|
x = np.arange(5)
|
||
|
y = x * x
|
||
|
mask = x == 2
|
||
|
ym = np.ma.array(y, mask=mask)
|
||
|
r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16))
|
||
|
assert_allclose(trapezoid(ym, x), r)
|
||
|
|
||
|
xm = np.ma.array(x, mask=mask)
|
||
|
assert_allclose(trapezoid(ym, xm), r)
|
||
|
|
||
|
xm = np.ma.array(x, mask=mask)
|
||
|
assert_allclose(trapezoid(y, xm), r)
|
||
|
|
||
|
def test_trapz_alias(self):
|
||
|
# Basic coverage test for the alias
|
||
|
y = np.arange(4)
|
||
|
x = 2**y
|
||
|
with pytest.deprecated_call(match="trapezoid"):
|
||
|
assert_equal(trapezoid(y, x=x, dx=0.5, axis=0),
|
||
|
trapz(y, x=x, dx=0.5, axis=0))
|
||
|
|
||
|
|
||
|
class TestQMCQuad:
|
||
|
def test_input_validation(self):
|
||
|
message = "`func` must be callable."
|
||
|
with pytest.raises(TypeError, match=message):
|
||
|
qmc_quad("a duck", [0, 0], [1, 1])
|
||
|
|
||
|
message = "`func` must evaluate the integrand at points..."
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
qmc_quad(lambda: 1, [0, 0], [1, 1])
|
||
|
|
||
|
def func(x):
|
||
|
assert x.ndim == 1
|
||
|
return np.sum(x)
|
||
|
message = "Exception encountered when attempting vectorized call..."
|
||
|
with pytest.warns(UserWarning, match=message):
|
||
|
qmc_quad(func, [0, 0], [1, 1])
|
||
|
|
||
|
message = "`n_points` must be an integer."
|
||
|
with pytest.raises(TypeError, match=message):
|
||
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], n_points=1024.5)
|
||
|
|
||
|
message = "`n_estimates` must be an integer."
|
||
|
with pytest.raises(TypeError, match=message):
|
||
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], n_estimates=8.5)
|
||
|
|
||
|
message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
|
||
|
with pytest.raises(TypeError, match=message):
|
||
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng="a duck")
|
||
|
|
||
|
message = "`qrng` must be initialized with dimensionality equal to "
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], qrng=stats.qmc.Sobol(1))
|
||
|
|
||
|
message = r"`log` must be boolean \(`True` or `False`\)."
|
||
|
with pytest.raises(TypeError, match=message):
|
||
|
qmc_quad(lambda x: 1, [0, 0], [1, 1], log=10)
|
||
|
|
||
|
def basic_test(self, n_points=2**8, n_estimates=8, signs=np.ones(2)):
|
||
|
|
||
|
ndim = 2
|
||
|
mean = np.zeros(ndim)
|
||
|
cov = np.eye(ndim)
|
||
|
|
||
|
def func(x):
|
||
|
return stats.multivariate_normal.pdf(x.T, mean, cov)
|
||
|
|
||
|
rng = np.random.default_rng(2879434385674690281)
|
||
|
qrng = stats.qmc.Sobol(ndim, seed=rng)
|
||
|
a = np.zeros(ndim)
|
||
|
b = np.ones(ndim) * signs
|
||
|
res = qmc_quad(func, a, b, n_points=n_points,
|
||
|
n_estimates=n_estimates, qrng=qrng)
|
||
|
ref = stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
|
||
|
atol = special.stdtrit(n_estimates-1, 0.995) * res.standard_error # 99% CI
|
||
|
assert_allclose(res.integral, ref, atol=atol)
|
||
|
assert np.prod(signs)*res.integral > 0
|
||
|
|
||
|
rng = np.random.default_rng(2879434385674690281)
|
||
|
qrng = stats.qmc.Sobol(ndim, seed=rng)
|
||
|
logres = qmc_quad(lambda *args: np.log(func(*args)), a, b,
|
||
|
n_points=n_points, n_estimates=n_estimates,
|
||
|
log=True, qrng=qrng)
|
||
|
assert_allclose(np.exp(logres.integral), res.integral, rtol=1e-14)
|
||
|
assert np.imag(logres.integral) == (np.pi if np.prod(signs) < 0 else 0)
|
||
|
assert_allclose(np.exp(logres.standard_error),
|
||
|
res.standard_error, rtol=1e-14, atol=1e-16)
|
||
|
|
||
|
@pytest.mark.parametrize("n_points", [2**8, 2**12])
|
||
|
@pytest.mark.parametrize("n_estimates", [8, 16])
|
||
|
def test_basic(self, n_points, n_estimates):
|
||
|
self.basic_test(n_points, n_estimates)
|
||
|
|
||
|
@pytest.mark.parametrize("signs", [[1, 1], [-1, -1], [-1, 1], [1, -1]])
|
||
|
def test_sign(self, signs):
|
||
|
self.basic_test(signs=signs)
|
||
|
|
||
|
@pytest.mark.parametrize("log", [False, True])
|
||
|
def test_zero(self, log):
|
||
|
message = "A lower limit was equal to an upper limit, so"
|
||
|
with pytest.warns(UserWarning, match=message):
|
||
|
res = qmc_quad(lambda x: 1, [0, 0], [0, 1], log=log)
|
||
|
assert res.integral == (-np.inf if log else 0)
|
||
|
assert res.standard_error == 0
|
||
|
|
||
|
def test_flexible_input(self):
|
||
|
# check that qrng is not required
|
||
|
# also checks that for 1d problems, a and b can be scalars
|
||
|
def func(x):
|
||
|
return stats.norm.pdf(x, scale=2)
|
||
|
|
||
|
res = qmc_quad(func, 0, 1)
|
||
|
ref = stats.norm.cdf(1, scale=2) - stats.norm.cdf(0, scale=2)
|
||
|
assert_allclose(res.integral, ref, 1e-2)
|
||
|
|
||
|
|
||
|
def cumulative_simpson_nd_reference(y, *, x=None, dx=None, initial=None, axis=-1):
|
||
|
# Use cumulative_trapezoid if length of y < 3
|
||
|
if y.shape[axis] < 3:
|
||
|
if initial is None:
|
||
|
return cumulative_trapezoid(y, x=x, dx=dx, axis=axis, initial=None)
|
||
|
else:
|
||
|
return initial + cumulative_trapezoid(y, x=x, dx=dx, axis=axis, initial=0)
|
||
|
|
||
|
# Ensure that working axis is last axis
|
||
|
y = np.moveaxis(y, axis, -1)
|
||
|
x = np.moveaxis(x, axis, -1) if np.ndim(x) > 1 else x
|
||
|
dx = np.moveaxis(dx, axis, -1) if np.ndim(dx) > 1 else dx
|
||
|
initial = np.moveaxis(initial, axis, -1) if np.ndim(initial) > 1 else initial
|
||
|
|
||
|
# If `x` is not present, create it from `dx`
|
||
|
n = y.shape[-1]
|
||
|
x = dx * np.arange(n) if dx is not None else x
|
||
|
# Similarly, if `initial` is not present, set it to 0
|
||
|
initial_was_none = initial is None
|
||
|
initial = 0 if initial_was_none else initial
|
||
|
|
||
|
# `np.apply_along_axis` accepts only one array, so concatenate arguments
|
||
|
x = np.broadcast_to(x, y.shape)
|
||
|
initial = np.broadcast_to(initial, y.shape[:-1] + (1,))
|
||
|
z = np.concatenate((y, x, initial), axis=-1)
|
||
|
|
||
|
# Use `np.apply_along_axis` to compute result
|
||
|
def f(z):
|
||
|
return cumulative_simpson(z[:n], x=z[n:2*n], initial=z[2*n:])
|
||
|
res = np.apply_along_axis(f, -1, z)
|
||
|
|
||
|
# Remove `initial` and undo axis move as needed
|
||
|
res = res[..., 1:] if initial_was_none else res
|
||
|
res = np.moveaxis(res, -1, axis)
|
||
|
return res
|
||
|
|
||
|
|
||
|
class TestCumulativeSimpson:
|
||
|
x0 = np.arange(4)
|
||
|
y0 = x0**2
|
||
|
|
||
|
@pytest.mark.parametrize('use_dx', (False, True))
|
||
|
@pytest.mark.parametrize('use_initial', (False, True))
|
||
|
def test_1d(self, use_dx, use_initial):
|
||
|
# Test for exact agreement with polynomial of highest
|
||
|
# possible order (3 if `dx` is constant, 2 otherwise).
|
||
|
rng = np.random.default_rng(82456839535679456794)
|
||
|
n = 10
|
||
|
|
||
|
# Generate random polynomials and ground truth
|
||
|
# integral of appropriate order
|
||
|
order = 3 if use_dx else 2
|
||
|
dx = rng.random()
|
||
|
x = (np.sort(rng.random(n)) if order == 2
|
||
|
else np.arange(n)*dx + rng.random())
|
||
|
i = np.arange(order + 1)[:, np.newaxis]
|
||
|
c = rng.random(order + 1)[:, np.newaxis]
|
||
|
y = np.sum(c*x**i, axis=0)
|
||
|
Y = np.sum(c*x**(i + 1)/(i + 1), axis=0)
|
||
|
ref = Y if use_initial else (Y-Y[0])[1:]
|
||
|
|
||
|
# Integrate with `cumulative_simpson`
|
||
|
initial = Y[0] if use_initial else None
|
||
|
kwarg = {'dx': dx} if use_dx else {'x': x}
|
||
|
res = cumulative_simpson(y, **kwarg, initial=initial)
|
||
|
|
||
|
# Compare result against reference
|
||
|
if not use_dx:
|
||
|
assert_allclose(res, ref, rtol=2e-15)
|
||
|
else:
|
||
|
i0 = 0 if use_initial else 1
|
||
|
# all terms are "close"
|
||
|
assert_allclose(res, ref, rtol=0.0025)
|
||
|
# only even-interval terms are "exact"
|
||
|
assert_allclose(res[i0::2], ref[i0::2], rtol=2e-15)
|
||
|
|
||
|
@pytest.mark.parametrize('axis', np.arange(-3, 3))
|
||
|
@pytest.mark.parametrize('x_ndim', (1, 3))
|
||
|
@pytest.mark.parametrize('x_len', (1, 2, 7))
|
||
|
@pytest.mark.parametrize('i_ndim', (None, 0, 3,))
|
||
|
@pytest.mark.parametrize('dx', (None, True))
|
||
|
def test_nd(self, axis, x_ndim, x_len, i_ndim, dx):
|
||
|
# Test behavior of `cumulative_simpson` with N-D `y`
|
||
|
rng = np.random.default_rng(82456839535679456794)
|
||
|
|
||
|
# determine shapes
|
||
|
shape = [5, 6, x_len]
|
||
|
shape[axis], shape[-1] = shape[-1], shape[axis]
|
||
|
shape_len_1 = shape.copy()
|
||
|
shape_len_1[axis] = 1
|
||
|
i_shape = shape_len_1 if i_ndim == 3 else ()
|
||
|
|
||
|
# initialize arguments
|
||
|
y = rng.random(size=shape)
|
||
|
x, dx = None, None
|
||
|
if dx:
|
||
|
dx = rng.random(size=shape_len_1) if x_ndim > 1 else rng.random()
|
||
|
else:
|
||
|
x = (np.sort(rng.random(size=shape), axis=axis) if x_ndim > 1
|
||
|
else np.sort(rng.random(size=shape[axis])))
|
||
|
initial = None if i_ndim is None else rng.random(size=i_shape)
|
||
|
|
||
|
# compare results
|
||
|
res = cumulative_simpson(y, x=x, dx=dx, initial=initial, axis=axis)
|
||
|
ref = cumulative_simpson_nd_reference(y, x=x, dx=dx, initial=initial, axis=axis)
|
||
|
np.testing.assert_allclose(res, ref, rtol=1e-15)
|
||
|
|
||
|
@pytest.mark.parametrize(('message', 'kwarg_update'), [
|
||
|
("x must be strictly increasing", dict(x=[2, 2, 3, 4])),
|
||
|
("x must be strictly increasing", dict(x=[x0, [2, 2, 4, 8]], y=[y0, y0])),
|
||
|
("x must be strictly increasing", dict(x=[x0, x0, x0], y=[y0, y0, y0], axis=0)),
|
||
|
("At least one point is required", dict(x=[], y=[])),
|
||
|
("`axis=4` is not valid for `y` with `y.ndim=1`", dict(axis=4)),
|
||
|
("shape of `x` must be the same as `y` or 1-D", dict(x=np.arange(5))),
|
||
|
("`initial` must either be a scalar or...", dict(initial=np.arange(5))),
|
||
|
("`dx` must either be a scalar or...", dict(x=None, dx=np.arange(5))),
|
||
|
])
|
||
|
def test_simpson_exceptions(self, message, kwarg_update):
|
||
|
kwargs0 = dict(y=self.y0, x=self.x0, dx=None, initial=None, axis=-1)
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
cumulative_simpson(**dict(kwargs0, **kwarg_update))
|
||
|
|
||
|
def test_special_cases(self):
|
||
|
# Test special cases not checked elsewhere
|
||
|
rng = np.random.default_rng(82456839535679456794)
|
||
|
y = rng.random(size=10)
|
||
|
res = cumulative_simpson(y, dx=0)
|
||
|
assert_equal(res, 0)
|
||
|
|
||
|
# Should add tests of:
|
||
|
# - all elements of `x` identical
|
||
|
# These should work as they do for `simpson`
|
||
|
|
||
|
def _get_theoretical_diff_between_simps_and_cum_simps(self, y, x):
|
||
|
"""`cumulative_simpson` and `simpson` can be tested against other to verify
|
||
|
they give consistent results. `simpson` will iteratively be called with
|
||
|
successively higher upper limits of integration. This function calculates
|
||
|
the theoretical correction required to `simpson` at even intervals to match
|
||
|
with `cumulative_simpson`.
|
||
|
"""
|
||
|
d = np.diff(x, axis=-1)
|
||
|
sub_integrals_h1 = _cumulative_simpson_unequal_intervals(y, d)
|
||
|
sub_integrals_h2 = _cumulative_simpson_unequal_intervals(
|
||
|
y[..., ::-1], d[..., ::-1]
|
||
|
)[..., ::-1]
|
||
|
|
||
|
# Concatenate to build difference array
|
||
|
zeros_shape = (*y.shape[:-1], 1)
|
||
|
theoretical_difference = np.concatenate(
|
||
|
[
|
||
|
np.zeros(zeros_shape),
|
||
|
(sub_integrals_h1[..., 1:] - sub_integrals_h2[..., :-1]),
|
||
|
np.zeros(zeros_shape),
|
||
|
],
|
||
|
axis=-1,
|
||
|
)
|
||
|
# Differences only expected at even intervals. Odd intervals will
|
||
|
# match exactly so there is no correction
|
||
|
theoretical_difference[..., 1::2] = 0.0
|
||
|
# Note: the first interval will not match from this correction as
|
||
|
# `simpson` uses the trapezoidal rule
|
||
|
return theoretical_difference
|
||
|
|
||
|
@given(
|
||
|
y=hyp_num.arrays(
|
||
|
np.float64,
|
||
|
hyp_num.array_shapes(max_dims=4, min_side=3, max_side=10),
|
||
|
elements=st.floats(-10, 10, allow_nan=False).filter(lambda x: abs(x) > 1e-7)
|
||
|
)
|
||
|
)
|
||
|
def test_cumulative_simpson_against_simpson_with_default_dx(
|
||
|
self, y
|
||
|
):
|
||
|
"""Theoretically, the output of `cumulative_simpson` will be identical
|
||
|
to `simpson` at all even indices and in the last index. The first index
|
||
|
will not match as `simpson` uses the trapezoidal rule when there are only two
|
||
|
data points. Odd indices after the first index are shown to match with
|
||
|
a mathematically-derived correction."""
|
||
|
def simpson_reference(y):
|
||
|
return np.stack(
|
||
|
[simpson(y[..., :i], dx=1.0) for i in range(2, y.shape[-1]+1)], axis=-1,
|
||
|
)
|
||
|
|
||
|
res = cumulative_simpson(y, dx=1.0)
|
||
|
ref = simpson_reference(y)
|
||
|
theoretical_difference = self._get_theoretical_diff_between_simps_and_cum_simps(
|
||
|
y, x=np.arange(y.shape[-1])
|
||
|
)
|
||
|
np.testing.assert_allclose(
|
||
|
res[..., 1:], ref[..., 1:] + theoretical_difference[..., 1:]
|
||
|
)
|
||
|
|
||
|
|
||
|
@given(
|
||
|
y=hyp_num.arrays(
|
||
|
np.float64,
|
||
|
hyp_num.array_shapes(max_dims=4, min_side=3, max_side=10),
|
||
|
elements=st.floats(-10, 10, allow_nan=False).filter(lambda x: abs(x) > 1e-7)
|
||
|
)
|
||
|
)
|
||
|
def test_cumulative_simpson_against_simpson(
|
||
|
self, y
|
||
|
):
|
||
|
"""Theoretically, the output of `cumulative_simpson` will be identical
|
||
|
to `simpson` at all even indices and in the last index. The first index
|
||
|
will not match as `simpson` uses the trapezoidal rule when there are only two
|
||
|
data points. Odd indices after the first index are shown to match with
|
||
|
a mathematically-derived correction."""
|
||
|
interval = 10/(y.shape[-1] - 1)
|
||
|
x = np.linspace(0, 10, num=y.shape[-1])
|
||
|
x[1:] = x[1:] + 0.2*interval*np.random.uniform(-1, 1, len(x) - 1)
|
||
|
|
||
|
def simpson_reference(y, x):
|
||
|
return np.stack(
|
||
|
[simpson(y[..., :i], x=x[..., :i]) for i in range(2, y.shape[-1]+1)],
|
||
|
axis=-1,
|
||
|
)
|
||
|
|
||
|
res = cumulative_simpson(y, x=x)
|
||
|
ref = simpson_reference(y, x)
|
||
|
theoretical_difference = self._get_theoretical_diff_between_simps_and_cum_simps(
|
||
|
y, x
|
||
|
)
|
||
|
np.testing.assert_allclose(
|
||
|
res[..., 1:], ref[..., 1:] + theoretical_difference[..., 1:]
|
||
|
)
|