215 lines
5.8 KiB
Python
215 lines
5.8 KiB
Python
|
from __future__ import annotations
|
||
|
from typing import (
|
||
|
Any,
|
||
|
Generic,
|
||
|
overload,
|
||
|
TypeVar,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
import numpy.typing as npt
|
||
|
from scipy.sparse import coo_matrix, dok_matrix
|
||
|
|
||
|
from typing import Literal
|
||
|
|
||
|
# TODO: Replace `ndarray` with a 1D float64 array when possible
|
||
|
_BoxType = TypeVar("_BoxType", None, npt.NDArray[np.float64])
|
||
|
|
||
|
# Copied from `numpy.typing._scalar_like._ScalarLike`
|
||
|
# TODO: Expand with 0D arrays once we have shape support
|
||
|
_ArrayLike0D = bool | int | float | complex | str | bytes | np.generic
|
||
|
|
||
|
_WeightType = npt.ArrayLike | tuple[npt.ArrayLike | None, npt.ArrayLike | None]
|
||
|
|
||
|
class cKDTreeNode:
|
||
|
@property
|
||
|
def data_points(self) -> npt.NDArray[np.float64]: ...
|
||
|
@property
|
||
|
def indices(self) -> npt.NDArray[np.intp]: ...
|
||
|
|
||
|
# These are read-only attributes in cython, which behave like properties
|
||
|
@property
|
||
|
def level(self) -> int: ...
|
||
|
@property
|
||
|
def split_dim(self) -> int: ...
|
||
|
@property
|
||
|
def children(self) -> int: ...
|
||
|
@property
|
||
|
def start_idx(self) -> int: ...
|
||
|
@property
|
||
|
def end_idx(self) -> int: ...
|
||
|
@property
|
||
|
def split(self) -> float: ...
|
||
|
@property
|
||
|
def lesser(self) -> cKDTreeNode | None: ...
|
||
|
@property
|
||
|
def greater(self) -> cKDTreeNode | None: ...
|
||
|
|
||
|
class cKDTree(Generic[_BoxType]):
|
||
|
@property
|
||
|
def n(self) -> int: ...
|
||
|
@property
|
||
|
def m(self) -> int: ...
|
||
|
@property
|
||
|
def leafsize(self) -> int: ...
|
||
|
@property
|
||
|
def size(self) -> int: ...
|
||
|
@property
|
||
|
def tree(self) -> cKDTreeNode: ...
|
||
|
|
||
|
# These are read-only attributes in cython, which behave like properties
|
||
|
@property
|
||
|
def data(self) -> npt.NDArray[np.float64]: ...
|
||
|
@property
|
||
|
def maxes(self) -> npt.NDArray[np.float64]: ...
|
||
|
@property
|
||
|
def mins(self) -> npt.NDArray[np.float64]: ...
|
||
|
@property
|
||
|
def indices(self) -> npt.NDArray[np.float64]: ...
|
||
|
@property
|
||
|
def boxsize(self) -> _BoxType: ...
|
||
|
|
||
|
# NOTE: In practice `__init__` is used as constructor, not `__new__`.
|
||
|
# The latter gives us more flexibility in setting the generic parameter
|
||
|
# though.
|
||
|
@overload
|
||
|
def __new__( # type: ignore[misc]
|
||
|
cls,
|
||
|
data: npt.ArrayLike,
|
||
|
leafsize: int = ...,
|
||
|
compact_nodes: bool = ...,
|
||
|
copy_data: bool = ...,
|
||
|
balanced_tree: bool = ...,
|
||
|
boxsize: None = ...,
|
||
|
) -> cKDTree[None]: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: npt.ArrayLike,
|
||
|
leafsize: int = ...,
|
||
|
compact_nodes: bool = ...,
|
||
|
copy_data: bool = ...,
|
||
|
balanced_tree: bool = ...,
|
||
|
boxsize: npt.ArrayLike = ...,
|
||
|
) -> cKDTree[npt.NDArray[np.float64]]: ...
|
||
|
|
||
|
# TODO: returns a 2-tuple of scalars if `x.ndim == 1` and `k == 1`,
|
||
|
# returns a 2-tuple of arrays otherwise
|
||
|
def query(
|
||
|
self,
|
||
|
x: npt.ArrayLike,
|
||
|
k: npt.ArrayLike = ...,
|
||
|
eps: float = ...,
|
||
|
p: float = ...,
|
||
|
distance_upper_bound: float = ...,
|
||
|
workers: int | None = ...,
|
||
|
) -> tuple[Any, Any]: ...
|
||
|
|
||
|
# TODO: returns a list scalars if `x.ndim <= 1`,
|
||
|
# returns an object array of lists otherwise
|
||
|
def query_ball_point(
|
||
|
self,
|
||
|
x: npt.ArrayLike,
|
||
|
r: npt.ArrayLike,
|
||
|
p: float,
|
||
|
eps: float = ...,
|
||
|
workers: int | None = ...,
|
||
|
return_sorted: bool | None = ...,
|
||
|
return_length: bool = ...
|
||
|
) -> Any: ...
|
||
|
|
||
|
def query_ball_tree(
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
r: float,
|
||
|
p: float,
|
||
|
eps: float = ...,
|
||
|
) -> list[list[int]]: ...
|
||
|
|
||
|
@overload
|
||
|
def query_pairs( # type: ignore[misc]
|
||
|
self,
|
||
|
r: float,
|
||
|
p: float = ...,
|
||
|
eps: float = ...,
|
||
|
output_type: Literal["set"] = ...,
|
||
|
) -> set[tuple[int, int]]: ...
|
||
|
@overload
|
||
|
def query_pairs(
|
||
|
self,
|
||
|
r: float,
|
||
|
p: float = ...,
|
||
|
eps: float = ...,
|
||
|
output_type: Literal["ndarray"] = ...,
|
||
|
) -> npt.NDArray[np.intp]: ...
|
||
|
|
||
|
@overload
|
||
|
def count_neighbors( # type: ignore[misc]
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
r: _ArrayLike0D,
|
||
|
p: float = ...,
|
||
|
weights: None | tuple[None, None] = ...,
|
||
|
cumulative: bool = ...,
|
||
|
) -> int: ...
|
||
|
@overload
|
||
|
def count_neighbors( # type: ignore[misc]
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
r: _ArrayLike0D,
|
||
|
p: float = ...,
|
||
|
weights: _WeightType = ...,
|
||
|
cumulative: bool = ...,
|
||
|
) -> np.float64: ...
|
||
|
@overload
|
||
|
def count_neighbors( # type: ignore[misc]
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
r: npt.ArrayLike,
|
||
|
p: float = ...,
|
||
|
weights: None | tuple[None, None] = ...,
|
||
|
cumulative: bool = ...,
|
||
|
) -> npt.NDArray[np.intp]: ...
|
||
|
@overload
|
||
|
def count_neighbors(
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
r: npt.ArrayLike,
|
||
|
p: float = ...,
|
||
|
weights: _WeightType = ...,
|
||
|
cumulative: bool = ...,
|
||
|
) -> npt.NDArray[np.float64]: ...
|
||
|
|
||
|
@overload
|
||
|
def sparse_distance_matrix( # type: ignore[misc]
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
max_distance: float,
|
||
|
p: float = ...,
|
||
|
output_type: Literal["dok_matrix"] = ...,
|
||
|
) -> dok_matrix: ...
|
||
|
@overload
|
||
|
def sparse_distance_matrix( # type: ignore[misc]
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
max_distance: float,
|
||
|
p: float = ...,
|
||
|
output_type: Literal["coo_matrix"] = ...,
|
||
|
) -> coo_matrix: ...
|
||
|
@overload
|
||
|
def sparse_distance_matrix( # type: ignore[misc]
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
max_distance: float,
|
||
|
p: float = ...,
|
||
|
output_type: Literal["dict"] = ...,
|
||
|
) -> dict[tuple[int, int], float]: ...
|
||
|
@overload
|
||
|
def sparse_distance_matrix(
|
||
|
self,
|
||
|
other: cKDTree,
|
||
|
max_distance: float,
|
||
|
p: float = ...,
|
||
|
output_type: Literal["ndarray"] = ...,
|
||
|
) -> npt.NDArray[np.void]: ...
|