Traktor/myenv/Lib/site-packages/sklearn/cluster/tests/test_spectral.py

336 lines
12 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""Testing for Spectral Clustering methods"""
import pickle
import re
import numpy as np
import pytest
from scipy.linalg import LinAlgError
from sklearn.cluster import SpectralClustering, spectral_clustering
from sklearn.cluster._spectral import cluster_qr, discretize
from sklearn.datasets import make_blobs
from sklearn.feature_extraction import img_to_graph
from sklearn.metrics import adjusted_rand_score
from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel
from sklearn.neighbors import NearestNeighbors
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.fixes import COO_CONTAINERS, CSR_CONTAINERS
try:
from pyamg import smoothed_aggregation_solver # noqa
amg_loaded = True
except ImportError:
amg_loaded = False
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(
n_samples=60,
n_features=2,
centers=centers,
cluster_std=0.4,
shuffle=True,
random_state=0,
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("eigen_solver", ("arpack", "lobpcg"))
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_spectral_clustering(eigen_solver, assign_labels, csr_container):
S = np.array(
[
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
[0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
]
)
for mat in (S, csr_container(S)):
model = SpectralClustering(
random_state=0,
n_clusters=2,
affinity="precomputed",
eigen_solver=eigen_solver,
assign_labels=assign_labels,
).fit(mat)
labels = model.labels_
if labels[0] == 0:
labels = 1 - labels
assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1
model_copy = pickle.loads(pickle.dumps(model))
assert model_copy.n_clusters == model.n_clusters
assert model_copy.eigen_solver == model.eigen_solver
assert_array_equal(model_copy.labels_, model.labels_)
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_spectral_clustering_sparse(assign_labels, coo_container):
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
S = rbf_kernel(X, gamma=1)
S = np.maximum(S - 1e-4, 0)
S = coo_container(S)
labels = (
SpectralClustering(
random_state=0,
n_clusters=2,
affinity="precomputed",
assign_labels=assign_labels,
)
.fit(S)
.labels_
)
assert adjusted_rand_score(y, labels) == 1
def test_precomputed_nearest_neighbors_filtering():
# Test precomputed graph filtering when containing too many neighbors
X, y = make_blobs(
n_samples=200, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
n_neighbors = 2
results = []
for additional_neighbors in [0, 10]:
nn = NearestNeighbors(n_neighbors=n_neighbors + additional_neighbors).fit(X)
graph = nn.kneighbors_graph(X, mode="connectivity")
labels = (
SpectralClustering(
random_state=0,
n_clusters=2,
affinity="precomputed_nearest_neighbors",
n_neighbors=n_neighbors,
)
.fit(graph)
.labels_
)
results.append(labels)
assert_array_equal(results[0], results[1])
def test_affinities():
# Note: in the following, random_state has been selected to have
# a dataset that yields a stable eigen decomposition both when built
# on OSX and Linux
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
# nearest neighbors affinity
sp = SpectralClustering(n_clusters=2, affinity="nearest_neighbors", random_state=0)
with pytest.warns(UserWarning, match="not fully connected"):
sp.fit(X)
assert adjusted_rand_score(y, sp.labels_) == 1
sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0)
labels = sp.fit(X).labels_
assert adjusted_rand_score(y, labels) == 1
X = check_random_state(10).rand(10, 5) * 10
kernels_available = kernel_metrics()
for kern in kernels_available:
# Additive chi^2 gives a negative similarity matrix which
# doesn't make sense for spectral clustering
if kern != "additive_chi2":
sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0)
labels = sp.fit(X).labels_
assert (X.shape[0],) == labels.shape
sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0)
labels = sp.fit(X).labels_
assert (X.shape[0],) == labels.shape
def histogram(x, y, **kwargs):
# Histogram kernel implemented as a callable.
assert kwargs == {} # no kernel_params that we didn't ask for
return np.minimum(x, y).sum()
sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0)
labels = sp.fit(X).labels_
assert (X.shape[0],) == labels.shape
def test_cluster_qr():
# cluster_qr by itself should not be used for clustering generic data
# other than the rows of the eigenvectors within spectral clustering,
# but cluster_qr must still preserve the labels for different dtypes
# of the generic fixed input even if the labels may be meaningless.
random_state = np.random.RandomState(seed=8)
n_samples, n_components = 10, 5
data = random_state.randn(n_samples, n_components)
labels_float64 = cluster_qr(data.astype(np.float64))
# Each sample is assigned a cluster identifier
assert labels_float64.shape == (n_samples,)
# All components should be covered by the assignment
assert np.array_equal(np.unique(labels_float64), np.arange(n_components))
# Single precision data should yield the same cluster assignments
labels_float32 = cluster_qr(data.astype(np.float32))
assert np.array_equal(labels_float64, labels_float32)
def test_cluster_qr_permutation_invariance():
# cluster_qr must be invariant to sample permutation.
random_state = np.random.RandomState(seed=8)
n_samples, n_components = 100, 5
data = random_state.randn(n_samples, n_components)
perm = random_state.permutation(n_samples)
assert np.array_equal(
cluster_qr(data)[perm],
cluster_qr(data[perm]),
)
@pytest.mark.parametrize("coo_container", COO_CONTAINERS)
@pytest.mark.parametrize("n_samples", [50, 100, 150, 500])
def test_discretize(n_samples, coo_container):
# Test the discretize using a noise assignment matrix
random_state = np.random.RandomState(seed=8)
for n_class in range(2, 10):
# random class labels
y_true = random_state.randint(0, n_class + 1, n_samples)
y_true = np.array(y_true, float)
# noise class assignment matrix
y_indicator = coo_container(
(np.ones(n_samples), (np.arange(n_samples), y_true)),
shape=(n_samples, n_class + 1),
)
y_true_noisy = y_indicator.toarray() + 0.1 * random_state.randn(
n_samples, n_class + 1
)
y_pred = discretize(y_true_noisy, random_state=random_state)
assert adjusted_rand_score(y_true, y_pred) > 0.8
# TODO: Remove when pyamg does replaces sp.rand call with np.random.rand
# https://github.com/scikit-learn/scikit-learn/issues/15913
@pytest.mark.filterwarnings(
"ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of np.float
@pytest.mark.filterwarnings(
"ignore:`np.float` is a deprecated alias:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of pinv2
@pytest.mark.filterwarnings(
"ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*"
)
# TODO: Remove when pyamg removes the use of np.find_common_type
@pytest.mark.filterwarnings(
"ignore:np.find_common_type is deprecated:DeprecationWarning:pyamg.*"
)
def test_spectral_clustering_with_arpack_amg_solvers():
# Test that spectral_clustering is the same for arpack and amg solver
# Based on toy example from plot_segmentation_toy.py
# a small two coin image
x, y = np.indices((40, 40))
center1, center2 = (14, 12), (20, 25)
radius1, radius2 = 8, 7
circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1**2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2**2
circles = circle1 | circle2
mask = circles.copy()
img = circles.astype(float)
graph = img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())
labels_arpack = spectral_clustering(
graph, n_clusters=2, eigen_solver="arpack", random_state=0
)
assert len(np.unique(labels_arpack)) == 2
if amg_loaded:
labels_amg = spectral_clustering(
graph, n_clusters=2, eigen_solver="amg", random_state=0
)
assert adjusted_rand_score(labels_arpack, labels_amg) == 1
else:
with pytest.raises(ValueError):
spectral_clustering(graph, n_clusters=2, eigen_solver="amg", random_state=0)
def test_n_components():
# Test that after adding n_components, result is different and
# n_components = n_clusters by default
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
sp = SpectralClustering(n_clusters=2, random_state=0)
labels = sp.fit(X).labels_
# set n_components = n_cluster and test if result is the same
labels_same_ncomp = (
SpectralClustering(n_clusters=2, n_components=2, random_state=0).fit(X).labels_
)
# test that n_components=n_clusters by default
assert_array_equal(labels, labels_same_ncomp)
# test that n_components affect result
# n_clusters=8 by default, and set n_components=2
labels_diff_ncomp = (
SpectralClustering(n_components=2, random_state=0).fit(X).labels_
)
assert not np.array_equal(labels, labels_diff_ncomp)
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr"))
def test_verbose(assign_labels, capsys):
# Check verbose mode of KMeans for better coverage.
X, y = make_blobs(
n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01
)
SpectralClustering(n_clusters=2, random_state=42, verbose=1).fit(X)
captured = capsys.readouterr()
assert re.search(r"Computing label assignment using", captured.out)
if assign_labels == "kmeans":
assert re.search(r"Initialization complete", captured.out)
assert re.search(r"Iteration [0-9]+, inertia", captured.out)
def test_spectral_clustering_np_matrix_raises():
"""Check that spectral_clustering raises an informative error when passed
a np.matrix. See #10993"""
X = np.matrix([[0.0, 2.0], [2.0, 0.0]])
msg = r"np\.matrix is not supported. Please convert to a numpy array"
with pytest.raises(TypeError, match=msg):
spectral_clustering(X)
def test_spectral_clustering_not_infinite_loop(capsys, monkeypatch):
"""Check that discretize raises LinAlgError when svd never converges.
Non-regression test for #21380
"""
def new_svd(*args, **kwargs):
raise LinAlgError()
monkeypatch.setattr(np.linalg, "svd", new_svd)
vectors = np.ones((10, 4))
with pytest.raises(LinAlgError, match="SVD did not converge"):
discretize(vectors)