1659 lines
54 KiB
Python
1659 lines
54 KiB
Python
|
"""Test the openml loader."""
|
||
|
|
||
|
import gzip
|
||
|
import json
|
||
|
import os
|
||
|
import re
|
||
|
from functools import partial
|
||
|
from importlib import resources
|
||
|
from io import BytesIO
|
||
|
from urllib.error import HTTPError
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import scipy.sparse
|
||
|
|
||
|
import sklearn
|
||
|
from sklearn import config_context
|
||
|
from sklearn.datasets import fetch_openml as fetch_openml_orig
|
||
|
from sklearn.datasets._openml import (
|
||
|
_OPENML_PREFIX,
|
||
|
_get_local_path,
|
||
|
_open_openml_url,
|
||
|
_retry_with_clean_cache,
|
||
|
)
|
||
|
from sklearn.utils import Bunch
|
||
|
from sklearn.utils._optional_dependencies import check_pandas_support
|
||
|
from sklearn.utils._testing import (
|
||
|
SkipTest,
|
||
|
assert_allclose,
|
||
|
assert_array_equal,
|
||
|
fails_if_pypy,
|
||
|
)
|
||
|
|
||
|
OPENML_TEST_DATA_MODULE = "sklearn.datasets.tests.data.openml"
|
||
|
# if True, urlopen will be monkey patched to only use local files
|
||
|
test_offline = True
|
||
|
|
||
|
|
||
|
class _MockHTTPResponse:
|
||
|
def __init__(self, data, is_gzip):
|
||
|
self.data = data
|
||
|
self.is_gzip = is_gzip
|
||
|
|
||
|
def read(self, amt=-1):
|
||
|
return self.data.read(amt)
|
||
|
|
||
|
def close(self):
|
||
|
self.data.close()
|
||
|
|
||
|
def info(self):
|
||
|
if self.is_gzip:
|
||
|
return {"Content-Encoding": "gzip"}
|
||
|
return {}
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self.data)
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||
|
return False
|
||
|
|
||
|
|
||
|
# Disable the disk-based cache when testing `fetch_openml`:
|
||
|
# the mock data in sklearn/datasets/tests/data/openml/ is not always consistent
|
||
|
# with the version on openml.org. If one were to load the dataset outside of
|
||
|
# the tests, it may result in data that does not represent openml.org.
|
||
|
fetch_openml = partial(fetch_openml_orig, data_home=None)
|
||
|
|
||
|
|
||
|
def _monkey_patch_webbased_functions(context, data_id, gzip_response):
|
||
|
# monkey patches the urlopen function. Important note: Do NOT use this
|
||
|
# in combination with a regular cache directory, as the files that are
|
||
|
# stored as cache should not be mixed up with real openml datasets
|
||
|
url_prefix_data_description = "https://api.openml.org/api/v1/json/data/"
|
||
|
url_prefix_data_features = "https://api.openml.org/api/v1/json/data/features/"
|
||
|
url_prefix_download_data = "https://api.openml.org/data/v1/"
|
||
|
url_prefix_data_list = "https://api.openml.org/api/v1/json/data/list/"
|
||
|
|
||
|
path_suffix = ".gz"
|
||
|
read_fn = gzip.open
|
||
|
|
||
|
data_module = OPENML_TEST_DATA_MODULE + "." + f"id_{data_id}"
|
||
|
|
||
|
def _file_name(url, suffix):
|
||
|
output = (
|
||
|
re.sub(r"\W", "-", url[len("https://api.openml.org/") :])
|
||
|
+ suffix
|
||
|
+ path_suffix
|
||
|
)
|
||
|
# Shorten the filenames to have better compatibility with windows 10
|
||
|
# and filenames > 260 characters
|
||
|
return (
|
||
|
output.replace("-json-data-list", "-jdl")
|
||
|
.replace("-json-data-features", "-jdf")
|
||
|
.replace("-json-data-qualities", "-jdq")
|
||
|
.replace("-json-data", "-jd")
|
||
|
.replace("-data_name", "-dn")
|
||
|
.replace("-download", "-dl")
|
||
|
.replace("-limit", "-l")
|
||
|
.replace("-data_version", "-dv")
|
||
|
.replace("-status", "-s")
|
||
|
.replace("-deactivated", "-dact")
|
||
|
.replace("-active", "-act")
|
||
|
)
|
||
|
|
||
|
def _mock_urlopen_shared(url, has_gzip_header, expected_prefix, suffix):
|
||
|
assert url.startswith(expected_prefix)
|
||
|
|
||
|
data_file_name = _file_name(url, suffix)
|
||
|
data_file_path = resources.files(data_module) / data_file_name
|
||
|
|
||
|
with data_file_path.open("rb") as f:
|
||
|
if has_gzip_header and gzip_response:
|
||
|
fp = BytesIO(f.read())
|
||
|
return _MockHTTPResponse(fp, True)
|
||
|
else:
|
||
|
decompressed_f = read_fn(f, "rb")
|
||
|
fp = BytesIO(decompressed_f.read())
|
||
|
return _MockHTTPResponse(fp, False)
|
||
|
|
||
|
def _mock_urlopen_data_description(url, has_gzip_header):
|
||
|
return _mock_urlopen_shared(
|
||
|
url=url,
|
||
|
has_gzip_header=has_gzip_header,
|
||
|
expected_prefix=url_prefix_data_description,
|
||
|
suffix=".json",
|
||
|
)
|
||
|
|
||
|
def _mock_urlopen_data_features(url, has_gzip_header):
|
||
|
return _mock_urlopen_shared(
|
||
|
url=url,
|
||
|
has_gzip_header=has_gzip_header,
|
||
|
expected_prefix=url_prefix_data_features,
|
||
|
suffix=".json",
|
||
|
)
|
||
|
|
||
|
def _mock_urlopen_download_data(url, has_gzip_header):
|
||
|
return _mock_urlopen_shared(
|
||
|
url=url,
|
||
|
has_gzip_header=has_gzip_header,
|
||
|
expected_prefix=url_prefix_download_data,
|
||
|
suffix=".arff",
|
||
|
)
|
||
|
|
||
|
def _mock_urlopen_data_list(url, has_gzip_header):
|
||
|
assert url.startswith(url_prefix_data_list)
|
||
|
|
||
|
data_file_name = _file_name(url, ".json")
|
||
|
data_file_path = resources.files(data_module) / data_file_name
|
||
|
|
||
|
# load the file itself, to simulate a http error
|
||
|
with data_file_path.open("rb") as f:
|
||
|
decompressed_f = read_fn(f, "rb")
|
||
|
decoded_s = decompressed_f.read().decode("utf-8")
|
||
|
json_data = json.loads(decoded_s)
|
||
|
if "error" in json_data:
|
||
|
raise HTTPError(
|
||
|
url=None, code=412, msg="Simulated mock error", hdrs=None, fp=BytesIO()
|
||
|
)
|
||
|
|
||
|
with data_file_path.open("rb") as f:
|
||
|
if has_gzip_header:
|
||
|
fp = BytesIO(f.read())
|
||
|
return _MockHTTPResponse(fp, True)
|
||
|
else:
|
||
|
decompressed_f = read_fn(f, "rb")
|
||
|
fp = BytesIO(decompressed_f.read())
|
||
|
return _MockHTTPResponse(fp, False)
|
||
|
|
||
|
def _mock_urlopen(request, *args, **kwargs):
|
||
|
url = request.get_full_url()
|
||
|
has_gzip_header = request.get_header("Accept-encoding") == "gzip"
|
||
|
if url.startswith(url_prefix_data_list):
|
||
|
return _mock_urlopen_data_list(url, has_gzip_header)
|
||
|
elif url.startswith(url_prefix_data_features):
|
||
|
return _mock_urlopen_data_features(url, has_gzip_header)
|
||
|
elif url.startswith(url_prefix_download_data):
|
||
|
return _mock_urlopen_download_data(url, has_gzip_header)
|
||
|
elif url.startswith(url_prefix_data_description):
|
||
|
return _mock_urlopen_data_description(url, has_gzip_header)
|
||
|
else:
|
||
|
raise ValueError("Unknown mocking URL pattern: %s" % url)
|
||
|
|
||
|
# XXX: Global variable
|
||
|
if test_offline:
|
||
|
context.setattr(sklearn.datasets._openml, "urlopen", _mock_urlopen)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Test the behaviour of `fetch_openml` depending of the input parameters.
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize(
|
||
|
"data_id, dataset_params, n_samples, n_features, n_targets",
|
||
|
[
|
||
|
# iris
|
||
|
(61, {"data_id": 61}, 150, 4, 1),
|
||
|
(61, {"name": "iris", "version": 1}, 150, 4, 1),
|
||
|
# anneal
|
||
|
(2, {"data_id": 2}, 11, 38, 1),
|
||
|
(2, {"name": "anneal", "version": 1}, 11, 38, 1),
|
||
|
# cpu
|
||
|
(561, {"data_id": 561}, 209, 7, 1),
|
||
|
(561, {"name": "cpu", "version": 1}, 209, 7, 1),
|
||
|
# emotions
|
||
|
(40589, {"data_id": 40589}, 13, 72, 6),
|
||
|
# adult-census
|
||
|
(1119, {"data_id": 1119}, 10, 14, 1),
|
||
|
(1119, {"name": "adult-census"}, 10, 14, 1),
|
||
|
# miceprotein
|
||
|
(40966, {"data_id": 40966}, 7, 77, 1),
|
||
|
(40966, {"name": "MiceProtein"}, 7, 77, 1),
|
||
|
# titanic
|
||
|
(40945, {"data_id": 40945}, 1309, 13, 1),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_fetch_openml_as_frame_true(
|
||
|
monkeypatch,
|
||
|
data_id,
|
||
|
dataset_params,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_targets,
|
||
|
parser,
|
||
|
gzip_response,
|
||
|
):
|
||
|
"""Check the behaviour of `fetch_openml` with `as_frame=True`.
|
||
|
|
||
|
Fetch by ID and/or name (depending if the file was previously cached).
|
||
|
"""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=gzip_response)
|
||
|
bunch = fetch_openml(
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
**dataset_params,
|
||
|
)
|
||
|
|
||
|
assert int(bunch.details["id"]) == data_id
|
||
|
assert isinstance(bunch, Bunch)
|
||
|
|
||
|
assert isinstance(bunch.frame, pd.DataFrame)
|
||
|
assert bunch.frame.shape == (n_samples, n_features + n_targets)
|
||
|
|
||
|
assert isinstance(bunch.data, pd.DataFrame)
|
||
|
assert bunch.data.shape == (n_samples, n_features)
|
||
|
|
||
|
if n_targets == 1:
|
||
|
assert isinstance(bunch.target, pd.Series)
|
||
|
assert bunch.target.shape == (n_samples,)
|
||
|
else:
|
||
|
assert isinstance(bunch.target, pd.DataFrame)
|
||
|
assert bunch.target.shape == (n_samples, n_targets)
|
||
|
|
||
|
assert bunch.categories is None
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize(
|
||
|
"data_id, dataset_params, n_samples, n_features, n_targets",
|
||
|
[
|
||
|
# iris
|
||
|
(61, {"data_id": 61}, 150, 4, 1),
|
||
|
(61, {"name": "iris", "version": 1}, 150, 4, 1),
|
||
|
# anneal
|
||
|
(2, {"data_id": 2}, 11, 38, 1),
|
||
|
(2, {"name": "anneal", "version": 1}, 11, 38, 1),
|
||
|
# cpu
|
||
|
(561, {"data_id": 561}, 209, 7, 1),
|
||
|
(561, {"name": "cpu", "version": 1}, 209, 7, 1),
|
||
|
# emotions
|
||
|
(40589, {"data_id": 40589}, 13, 72, 6),
|
||
|
# adult-census
|
||
|
(1119, {"data_id": 1119}, 10, 14, 1),
|
||
|
(1119, {"name": "adult-census"}, 10, 14, 1),
|
||
|
# miceprotein
|
||
|
(40966, {"data_id": 40966}, 7, 77, 1),
|
||
|
(40966, {"name": "MiceProtein"}, 7, 77, 1),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_fetch_openml_as_frame_false(
|
||
|
monkeypatch,
|
||
|
data_id,
|
||
|
dataset_params,
|
||
|
n_samples,
|
||
|
n_features,
|
||
|
n_targets,
|
||
|
parser,
|
||
|
):
|
||
|
"""Check the behaviour of `fetch_openml` with `as_frame=False`.
|
||
|
|
||
|
Fetch both by ID and/or name + version.
|
||
|
"""
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=True)
|
||
|
bunch = fetch_openml(
|
||
|
as_frame=False,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
**dataset_params,
|
||
|
)
|
||
|
assert int(bunch.details["id"]) == data_id
|
||
|
assert isinstance(bunch, Bunch)
|
||
|
|
||
|
assert bunch.frame is None
|
||
|
|
||
|
assert isinstance(bunch.data, np.ndarray)
|
||
|
assert bunch.data.shape == (n_samples, n_features)
|
||
|
|
||
|
assert isinstance(bunch.target, np.ndarray)
|
||
|
if n_targets == 1:
|
||
|
assert bunch.target.shape == (n_samples,)
|
||
|
else:
|
||
|
assert bunch.target.shape == (n_samples, n_targets)
|
||
|
|
||
|
assert isinstance(bunch.categories, dict)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize("data_id", [61, 1119, 40945])
|
||
|
def test_fetch_openml_consistency_parser(monkeypatch, data_id):
|
||
|
"""Check the consistency of the LIAC-ARFF and pandas parsers."""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=True)
|
||
|
bunch_liac = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
bunch_pandas = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser="pandas",
|
||
|
)
|
||
|
|
||
|
# The data frames for the input features should match up to some numerical
|
||
|
# dtype conversions (e.g. float64 <=> Int64) due to limitations of the
|
||
|
# LIAC-ARFF parser.
|
||
|
data_liac, data_pandas = bunch_liac.data, bunch_pandas.data
|
||
|
|
||
|
def convert_numerical_dtypes(series):
|
||
|
pandas_series = data_pandas[series.name]
|
||
|
if pd.api.types.is_numeric_dtype(pandas_series):
|
||
|
return series.astype(pandas_series.dtype)
|
||
|
else:
|
||
|
return series
|
||
|
|
||
|
data_liac_with_fixed_dtypes = data_liac.apply(convert_numerical_dtypes)
|
||
|
pd.testing.assert_frame_equal(data_liac_with_fixed_dtypes, data_pandas)
|
||
|
|
||
|
# Let's also check that the .frame attributes also match
|
||
|
frame_liac, frame_pandas = bunch_liac.frame, bunch_pandas.frame
|
||
|
|
||
|
# Note that the .frame attribute is a superset of the .data attribute:
|
||
|
pd.testing.assert_frame_equal(frame_pandas[bunch_pandas.feature_names], data_pandas)
|
||
|
|
||
|
# However the remaining columns, typically the target(s), are not necessarily
|
||
|
# dtyped similarly by both parsers due to limitations of the LIAC-ARFF parser.
|
||
|
# Therefore, extra dtype conversions are required for those columns:
|
||
|
|
||
|
def convert_numerical_and_categorical_dtypes(series):
|
||
|
pandas_series = frame_pandas[series.name]
|
||
|
if pd.api.types.is_numeric_dtype(pandas_series):
|
||
|
return series.astype(pandas_series.dtype)
|
||
|
elif isinstance(pandas_series.dtype, pd.CategoricalDtype):
|
||
|
# Compare categorical features by converting categorical liac uses
|
||
|
# strings to denote the categories, we rename the categories to make
|
||
|
# them comparable to the pandas parser. Fixing this behavior in
|
||
|
# LIAC-ARFF would allow to check the consistency in the future but
|
||
|
# we do not plan to maintain the LIAC-ARFF on the long term.
|
||
|
return series.cat.rename_categories(pandas_series.cat.categories)
|
||
|
else:
|
||
|
return series
|
||
|
|
||
|
frame_liac_with_fixed_dtypes = frame_liac.apply(
|
||
|
convert_numerical_and_categorical_dtypes
|
||
|
)
|
||
|
pd.testing.assert_frame_equal(frame_liac_with_fixed_dtypes, frame_pandas)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_fetch_openml_equivalence_array_dataframe(monkeypatch, parser):
|
||
|
"""Check the equivalence of the dataset when using `as_frame=False` and
|
||
|
`as_frame=True`.
|
||
|
"""
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
data_id = 61
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=True)
|
||
|
bunch_as_frame_true = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
|
||
|
bunch_as_frame_false = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=False,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
|
||
|
assert_allclose(bunch_as_frame_false.data, bunch_as_frame_true.data)
|
||
|
assert_array_equal(bunch_as_frame_false.target, bunch_as_frame_true.target)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_fetch_openml_iris_pandas(monkeypatch, parser):
|
||
|
"""Check fetching on a numerical only dataset with string labels."""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
CategoricalDtype = pd.api.types.CategoricalDtype
|
||
|
data_id = 61
|
||
|
data_shape = (150, 4)
|
||
|
target_shape = (150,)
|
||
|
frame_shape = (150, 5)
|
||
|
|
||
|
target_dtype = CategoricalDtype(
|
||
|
["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
|
||
|
)
|
||
|
data_dtypes = [np.float64] * 4
|
||
|
data_names = ["sepallength", "sepalwidth", "petallength", "petalwidth"]
|
||
|
target_name = "class"
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
|
||
|
bunch = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
data = bunch.data
|
||
|
target = bunch.target
|
||
|
frame = bunch.frame
|
||
|
|
||
|
assert isinstance(data, pd.DataFrame)
|
||
|
assert np.all(data.dtypes == data_dtypes)
|
||
|
assert data.shape == data_shape
|
||
|
assert np.all(data.columns == data_names)
|
||
|
assert np.all(bunch.feature_names == data_names)
|
||
|
assert bunch.target_names == [target_name]
|
||
|
|
||
|
assert isinstance(target, pd.Series)
|
||
|
assert target.dtype == target_dtype
|
||
|
assert target.shape == target_shape
|
||
|
assert target.name == target_name
|
||
|
assert target.index.is_unique
|
||
|
|
||
|
assert isinstance(frame, pd.DataFrame)
|
||
|
assert frame.shape == frame_shape
|
||
|
assert np.all(frame.dtypes == data_dtypes + [target_dtype])
|
||
|
assert frame.index.is_unique
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
@pytest.mark.parametrize("target_column", ["petalwidth", ["petalwidth", "petallength"]])
|
||
|
def test_fetch_openml_forcing_targets(monkeypatch, parser, target_column):
|
||
|
"""Check that we can force the target to not be the default target."""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
|
||
|
data_id = 61
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
bunch_forcing_target = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
target_column=target_column,
|
||
|
parser=parser,
|
||
|
)
|
||
|
bunch_default = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
|
||
|
pd.testing.assert_frame_equal(bunch_forcing_target.frame, bunch_default.frame)
|
||
|
if isinstance(target_column, list):
|
||
|
pd.testing.assert_index_equal(
|
||
|
bunch_forcing_target.target.columns, pd.Index(target_column)
|
||
|
)
|
||
|
assert bunch_forcing_target.data.shape == (150, 3)
|
||
|
else:
|
||
|
assert bunch_forcing_target.target.name == target_column
|
||
|
assert bunch_forcing_target.data.shape == (150, 4)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize("data_id", [61, 2, 561, 40589, 1119])
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_fetch_openml_equivalence_frame_return_X_y(monkeypatch, data_id, parser):
|
||
|
"""Check the behaviour of `return_X_y=True` when `as_frame=True`."""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=True)
|
||
|
bunch = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
return_X_y=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
X, y = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
return_X_y=True,
|
||
|
parser=parser,
|
||
|
)
|
||
|
|
||
|
pd.testing.assert_frame_equal(bunch.data, X)
|
||
|
if isinstance(y, pd.Series):
|
||
|
pd.testing.assert_series_equal(bunch.target, y)
|
||
|
else:
|
||
|
pd.testing.assert_frame_equal(bunch.target, y)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize("data_id", [61, 561, 40589, 1119])
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_fetch_openml_equivalence_array_return_X_y(monkeypatch, data_id, parser):
|
||
|
"""Check the behaviour of `return_X_y=True` when `as_frame=False`."""
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=True)
|
||
|
bunch = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=False,
|
||
|
cache=False,
|
||
|
return_X_y=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
X, y = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=False,
|
||
|
cache=False,
|
||
|
return_X_y=True,
|
||
|
parser=parser,
|
||
|
)
|
||
|
|
||
|
assert_array_equal(bunch.data, X)
|
||
|
assert_array_equal(bunch.target, y)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
def test_fetch_openml_difference_parsers(monkeypatch):
|
||
|
"""Check the difference between liac-arff and pandas parser."""
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
data_id = 1119
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=True)
|
||
|
# When `as_frame=False`, the categories will be ordinally encoded with
|
||
|
# liac-arff parser while this is not the case with pandas parser.
|
||
|
as_frame = False
|
||
|
bunch_liac_arff = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=as_frame,
|
||
|
cache=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
bunch_pandas = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=as_frame,
|
||
|
cache=False,
|
||
|
parser="pandas",
|
||
|
)
|
||
|
|
||
|
assert bunch_liac_arff.data.dtype.kind == "f"
|
||
|
assert bunch_pandas.data.dtype == "O"
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Test the ARFF parsing on several dataset to check if detect the correct
|
||
|
# types (categories, integers, floats).
|
||
|
|
||
|
|
||
|
@pytest.fixture(scope="module")
|
||
|
def datasets_column_names():
|
||
|
"""Returns the columns names for each dataset."""
|
||
|
return {
|
||
|
61: ["sepallength", "sepalwidth", "petallength", "petalwidth", "class"],
|
||
|
2: [
|
||
|
"family",
|
||
|
"product-type",
|
||
|
"steel",
|
||
|
"carbon",
|
||
|
"hardness",
|
||
|
"temper_rolling",
|
||
|
"condition",
|
||
|
"formability",
|
||
|
"strength",
|
||
|
"non-ageing",
|
||
|
"surface-finish",
|
||
|
"surface-quality",
|
||
|
"enamelability",
|
||
|
"bc",
|
||
|
"bf",
|
||
|
"bt",
|
||
|
"bw%2Fme",
|
||
|
"bl",
|
||
|
"m",
|
||
|
"chrom",
|
||
|
"phos",
|
||
|
"cbond",
|
||
|
"marvi",
|
||
|
"exptl",
|
||
|
"ferro",
|
||
|
"corr",
|
||
|
"blue%2Fbright%2Fvarn%2Fclean",
|
||
|
"lustre",
|
||
|
"jurofm",
|
||
|
"s",
|
||
|
"p",
|
||
|
"shape",
|
||
|
"thick",
|
||
|
"width",
|
||
|
"len",
|
||
|
"oil",
|
||
|
"bore",
|
||
|
"packing",
|
||
|
"class",
|
||
|
],
|
||
|
561: ["vendor", "MYCT", "MMIN", "MMAX", "CACH", "CHMIN", "CHMAX", "class"],
|
||
|
40589: [
|
||
|
"Mean_Acc1298_Mean_Mem40_Centroid",
|
||
|
"Mean_Acc1298_Mean_Mem40_Rolloff",
|
||
|
"Mean_Acc1298_Mean_Mem40_Flux",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_0",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_1",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_2",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_3",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_4",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_5",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_6",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_7",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_8",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_9",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_10",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_11",
|
||
|
"Mean_Acc1298_Mean_Mem40_MFCC_12",
|
||
|
"Mean_Acc1298_Std_Mem40_Centroid",
|
||
|
"Mean_Acc1298_Std_Mem40_Rolloff",
|
||
|
"Mean_Acc1298_Std_Mem40_Flux",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_0",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_1",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_2",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_3",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_4",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_5",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_6",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_7",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_8",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_9",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_10",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_11",
|
||
|
"Mean_Acc1298_Std_Mem40_MFCC_12",
|
||
|
"Std_Acc1298_Mean_Mem40_Centroid",
|
||
|
"Std_Acc1298_Mean_Mem40_Rolloff",
|
||
|
"Std_Acc1298_Mean_Mem40_Flux",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_0",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_1",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_2",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_3",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_4",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_5",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_6",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_7",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_8",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_9",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_10",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_11",
|
||
|
"Std_Acc1298_Mean_Mem40_MFCC_12",
|
||
|
"Std_Acc1298_Std_Mem40_Centroid",
|
||
|
"Std_Acc1298_Std_Mem40_Rolloff",
|
||
|
"Std_Acc1298_Std_Mem40_Flux",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_0",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_1",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_2",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_3",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_4",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_5",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_6",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_7",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_8",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_9",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_10",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_11",
|
||
|
"Std_Acc1298_Std_Mem40_MFCC_12",
|
||
|
"BH_LowPeakAmp",
|
||
|
"BH_LowPeakBPM",
|
||
|
"BH_HighPeakAmp",
|
||
|
"BH_HighPeakBPM",
|
||
|
"BH_HighLowRatio",
|
||
|
"BHSUM1",
|
||
|
"BHSUM2",
|
||
|
"BHSUM3",
|
||
|
"amazed.suprised",
|
||
|
"happy.pleased",
|
||
|
"relaxing.calm",
|
||
|
"quiet.still",
|
||
|
"sad.lonely",
|
||
|
"angry.aggresive",
|
||
|
],
|
||
|
1119: [
|
||
|
"age",
|
||
|
"workclass",
|
||
|
"fnlwgt:",
|
||
|
"education:",
|
||
|
"education-num:",
|
||
|
"marital-status:",
|
||
|
"occupation:",
|
||
|
"relationship:",
|
||
|
"race:",
|
||
|
"sex:",
|
||
|
"capital-gain:",
|
||
|
"capital-loss:",
|
||
|
"hours-per-week:",
|
||
|
"native-country:",
|
||
|
"class",
|
||
|
],
|
||
|
40966: [
|
||
|
"DYRK1A_N",
|
||
|
"ITSN1_N",
|
||
|
"BDNF_N",
|
||
|
"NR1_N",
|
||
|
"NR2A_N",
|
||
|
"pAKT_N",
|
||
|
"pBRAF_N",
|
||
|
"pCAMKII_N",
|
||
|
"pCREB_N",
|
||
|
"pELK_N",
|
||
|
"pERK_N",
|
||
|
"pJNK_N",
|
||
|
"PKCA_N",
|
||
|
"pMEK_N",
|
||
|
"pNR1_N",
|
||
|
"pNR2A_N",
|
||
|
"pNR2B_N",
|
||
|
"pPKCAB_N",
|
||
|
"pRSK_N",
|
||
|
"AKT_N",
|
||
|
"BRAF_N",
|
||
|
"CAMKII_N",
|
||
|
"CREB_N",
|
||
|
"ELK_N",
|
||
|
"ERK_N",
|
||
|
"GSK3B_N",
|
||
|
"JNK_N",
|
||
|
"MEK_N",
|
||
|
"TRKA_N",
|
||
|
"RSK_N",
|
||
|
"APP_N",
|
||
|
"Bcatenin_N",
|
||
|
"SOD1_N",
|
||
|
"MTOR_N",
|
||
|
"P38_N",
|
||
|
"pMTOR_N",
|
||
|
"DSCR1_N",
|
||
|
"AMPKA_N",
|
||
|
"NR2B_N",
|
||
|
"pNUMB_N",
|
||
|
"RAPTOR_N",
|
||
|
"TIAM1_N",
|
||
|
"pP70S6_N",
|
||
|
"NUMB_N",
|
||
|
"P70S6_N",
|
||
|
"pGSK3B_N",
|
||
|
"pPKCG_N",
|
||
|
"CDK5_N",
|
||
|
"S6_N",
|
||
|
"ADARB1_N",
|
||
|
"AcetylH3K9_N",
|
||
|
"RRP1_N",
|
||
|
"BAX_N",
|
||
|
"ARC_N",
|
||
|
"ERBB4_N",
|
||
|
"nNOS_N",
|
||
|
"Tau_N",
|
||
|
"GFAP_N",
|
||
|
"GluR3_N",
|
||
|
"GluR4_N",
|
||
|
"IL1B_N",
|
||
|
"P3525_N",
|
||
|
"pCASP9_N",
|
||
|
"PSD95_N",
|
||
|
"SNCA_N",
|
||
|
"Ubiquitin_N",
|
||
|
"pGSK3B_Tyr216_N",
|
||
|
"SHH_N",
|
||
|
"BAD_N",
|
||
|
"BCL2_N",
|
||
|
"pS6_N",
|
||
|
"pCFOS_N",
|
||
|
"SYP_N",
|
||
|
"H3AcK18_N",
|
||
|
"EGR1_N",
|
||
|
"H3MeK4_N",
|
||
|
"CaNA_N",
|
||
|
"class",
|
||
|
],
|
||
|
40945: [
|
||
|
"pclass",
|
||
|
"survived",
|
||
|
"name",
|
||
|
"sex",
|
||
|
"age",
|
||
|
"sibsp",
|
||
|
"parch",
|
||
|
"ticket",
|
||
|
"fare",
|
||
|
"cabin",
|
||
|
"embarked",
|
||
|
"boat",
|
||
|
"body",
|
||
|
"home.dest",
|
||
|
],
|
||
|
}
|
||
|
|
||
|
|
||
|
@pytest.fixture(scope="module")
|
||
|
def datasets_missing_values():
|
||
|
return {
|
||
|
61: {},
|
||
|
2: {
|
||
|
"family": 11,
|
||
|
"temper_rolling": 9,
|
||
|
"condition": 2,
|
||
|
"formability": 4,
|
||
|
"non-ageing": 10,
|
||
|
"surface-finish": 11,
|
||
|
"enamelability": 11,
|
||
|
"bc": 11,
|
||
|
"bf": 10,
|
||
|
"bt": 11,
|
||
|
"bw%2Fme": 8,
|
||
|
"bl": 9,
|
||
|
"m": 11,
|
||
|
"chrom": 11,
|
||
|
"phos": 11,
|
||
|
"cbond": 10,
|
||
|
"marvi": 11,
|
||
|
"exptl": 11,
|
||
|
"ferro": 11,
|
||
|
"corr": 11,
|
||
|
"blue%2Fbright%2Fvarn%2Fclean": 11,
|
||
|
"lustre": 8,
|
||
|
"jurofm": 11,
|
||
|
"s": 11,
|
||
|
"p": 11,
|
||
|
"oil": 10,
|
||
|
"packing": 11,
|
||
|
},
|
||
|
561: {},
|
||
|
40589: {},
|
||
|
1119: {},
|
||
|
40966: {"BCL2_N": 7},
|
||
|
40945: {
|
||
|
"age": 263,
|
||
|
"fare": 1,
|
||
|
"cabin": 1014,
|
||
|
"embarked": 2,
|
||
|
"boat": 823,
|
||
|
"body": 1188,
|
||
|
"home.dest": 564,
|
||
|
},
|
||
|
}
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize(
|
||
|
"data_id, parser, expected_n_categories, expected_n_floats, expected_n_ints",
|
||
|
[
|
||
|
# iris dataset
|
||
|
(61, "liac-arff", 1, 4, 0),
|
||
|
(61, "pandas", 1, 4, 0),
|
||
|
# anneal dataset
|
||
|
(2, "liac-arff", 33, 6, 0),
|
||
|
(2, "pandas", 33, 2, 4),
|
||
|
# cpu dataset
|
||
|
(561, "liac-arff", 1, 7, 0),
|
||
|
(561, "pandas", 1, 0, 7),
|
||
|
# emotions dataset
|
||
|
(40589, "liac-arff", 6, 72, 0),
|
||
|
(40589, "pandas", 6, 69, 3),
|
||
|
# adult-census dataset
|
||
|
(1119, "liac-arff", 9, 6, 0),
|
||
|
(1119, "pandas", 9, 0, 6),
|
||
|
# miceprotein
|
||
|
(40966, "liac-arff", 1, 77, 0),
|
||
|
(40966, "pandas", 1, 77, 0),
|
||
|
# titanic
|
||
|
(40945, "liac-arff", 3, 6, 0),
|
||
|
(40945, "pandas", 3, 3, 3),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_fetch_openml_types_inference(
|
||
|
monkeypatch,
|
||
|
data_id,
|
||
|
parser,
|
||
|
expected_n_categories,
|
||
|
expected_n_floats,
|
||
|
expected_n_ints,
|
||
|
gzip_response,
|
||
|
datasets_column_names,
|
||
|
datasets_missing_values,
|
||
|
):
|
||
|
"""Check that `fetch_openml` infer the right number of categories, integers, and
|
||
|
floats."""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
CategoricalDtype = pd.api.types.CategoricalDtype
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=gzip_response)
|
||
|
|
||
|
bunch = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser=parser,
|
||
|
)
|
||
|
frame = bunch.frame
|
||
|
|
||
|
n_categories = len(
|
||
|
[dtype for dtype in frame.dtypes if isinstance(dtype, CategoricalDtype)]
|
||
|
)
|
||
|
n_floats = len([dtype for dtype in frame.dtypes if dtype.kind == "f"])
|
||
|
n_ints = len([dtype for dtype in frame.dtypes if dtype.kind == "i"])
|
||
|
|
||
|
assert n_categories == expected_n_categories
|
||
|
assert n_floats == expected_n_floats
|
||
|
assert n_ints == expected_n_ints
|
||
|
|
||
|
assert frame.columns.tolist() == datasets_column_names[data_id]
|
||
|
|
||
|
frame_feature_to_n_nan = frame.isna().sum().to_dict()
|
||
|
for name, n_missing in frame_feature_to_n_nan.items():
|
||
|
expected_missing = datasets_missing_values[data_id].get(name, 0)
|
||
|
assert n_missing == expected_missing
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Test some more specific behaviour
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"params, err_msg",
|
||
|
[
|
||
|
(
|
||
|
{"parser": "unknown"},
|
||
|
"The 'parser' parameter of fetch_openml must be a str among",
|
||
|
),
|
||
|
(
|
||
|
{"as_frame": "unknown"},
|
||
|
"The 'as_frame' parameter of fetch_openml must be an instance",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_validation_parameter(monkeypatch, params, err_msg):
|
||
|
data_id = 1119
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
fetch_openml(data_id=data_id, **params)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"params",
|
||
|
[
|
||
|
{"as_frame": True, "parser": "auto"},
|
||
|
{"as_frame": "auto", "parser": "auto"},
|
||
|
{"as_frame": False, "parser": "pandas"},
|
||
|
{"as_frame": False, "parser": "auto"},
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_requires_pandas_error(monkeypatch, params):
|
||
|
"""Check that we raise the proper errors when we require pandas."""
|
||
|
data_id = 1119
|
||
|
try:
|
||
|
check_pandas_support("test_fetch_openml_requires_pandas")
|
||
|
except ImportError:
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
err_msg = "requires pandas to be installed. Alternatively, explicitly"
|
||
|
with pytest.raises(ImportError, match=err_msg):
|
||
|
fetch_openml(data_id=data_id, **params)
|
||
|
else:
|
||
|
raise SkipTest("This test requires pandas to not be installed.")
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore:Version 1 of dataset Australian is inactive")
|
||
|
@pytest.mark.parametrize(
|
||
|
"params, err_msg",
|
||
|
[
|
||
|
(
|
||
|
{"parser": "pandas"},
|
||
|
"Sparse ARFF datasets cannot be loaded with parser='pandas'",
|
||
|
),
|
||
|
(
|
||
|
{"as_frame": True},
|
||
|
"Sparse ARFF datasets cannot be loaded with as_frame=True.",
|
||
|
),
|
||
|
(
|
||
|
{"parser": "pandas", "as_frame": True},
|
||
|
"Sparse ARFF datasets cannot be loaded with as_frame=True.",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_sparse_arff_error(monkeypatch, params, err_msg):
|
||
|
"""Check that we raise the expected error for sparse ARFF datasets and
|
||
|
a wrong set of incompatible parameters.
|
||
|
"""
|
||
|
pytest.importorskip("pandas")
|
||
|
data_id = 292
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
fetch_openml(
|
||
|
data_id=data_id,
|
||
|
cache=False,
|
||
|
**params,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.filterwarnings("ignore:Version 1 of dataset Australian is inactive")
|
||
|
@pytest.mark.parametrize(
|
||
|
"data_id, data_type",
|
||
|
[
|
||
|
(61, "dataframe"), # iris dataset version 1
|
||
|
(292, "sparse"), # Australian dataset version 1
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_auto_mode(monkeypatch, data_id, data_type):
|
||
|
"""Check the auto mode of `fetch_openml`."""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
data = fetch_openml(data_id=data_id, as_frame="auto", cache=False)
|
||
|
klass = pd.DataFrame if data_type == "dataframe" else scipy.sparse.csr_matrix
|
||
|
assert isinstance(data.data, klass)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
def test_convert_arff_data_dataframe_warning_low_memory_pandas(monkeypatch):
|
||
|
"""Check that we raise a warning regarding the working memory when using
|
||
|
LIAC-ARFF parser."""
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
data_id = 1119
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
|
||
|
msg = "Could not adhere to working_memory config."
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
with config_context(working_memory=1e-6):
|
||
|
fetch_openml(
|
||
|
data_id=data_id,
|
||
|
as_frame=True,
|
||
|
cache=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_fetch_openml_iris_warn_multiple_version(monkeypatch, gzip_response):
|
||
|
"""Check that a warning is raised when multiple versions exist and no version is
|
||
|
requested."""
|
||
|
data_id = 61
|
||
|
data_name = "iris"
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
|
||
|
msg = re.escape(
|
||
|
"Multiple active versions of the dataset matching the name"
|
||
|
" iris exist. Versions may be fundamentally different, "
|
||
|
"returning version 1. Available versions:\n"
|
||
|
"- version 1, status: active\n"
|
||
|
" url: https://www.openml.org/search?type=data&id=61\n"
|
||
|
"- version 3, status: active\n"
|
||
|
" url: https://www.openml.org/search?type=data&id=969\n"
|
||
|
)
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(
|
||
|
name=data_name,
|
||
|
as_frame=False,
|
||
|
cache=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_fetch_openml_no_target(monkeypatch, gzip_response):
|
||
|
"""Check that we can get a dataset without target."""
|
||
|
data_id = 61
|
||
|
target_column = None
|
||
|
expected_observations = 150
|
||
|
expected_features = 5
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
data = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
target_column=target_column,
|
||
|
cache=False,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
assert data.data.shape == (expected_observations, expected_features)
|
||
|
assert data.target is None
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_missing_values_pandas(monkeypatch, gzip_response, parser):
|
||
|
"""check that missing values in categories are compatible with pandas
|
||
|
categorical"""
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
data_id = 42585
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response=gzip_response)
|
||
|
penguins = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
cache=False,
|
||
|
as_frame=True,
|
||
|
parser=parser,
|
||
|
)
|
||
|
|
||
|
cat_dtype = penguins.data.dtypes["sex"]
|
||
|
# there are nans in the categorical
|
||
|
assert penguins.data["sex"].isna().any()
|
||
|
assert_array_equal(cat_dtype.categories, ["FEMALE", "MALE", "_"])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
@pytest.mark.parametrize(
|
||
|
"dataset_params",
|
||
|
[
|
||
|
{"data_id": 40675},
|
||
|
{"data_id": None, "name": "glass2", "version": 1},
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_inactive(monkeypatch, gzip_response, dataset_params):
|
||
|
"""Check that we raise a warning when the dataset is inactive."""
|
||
|
data_id = 40675
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
msg = "Version 1 of dataset glass2 is inactive,"
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
glass2 = fetch_openml(
|
||
|
cache=False, as_frame=False, parser="liac-arff", **dataset_params
|
||
|
)
|
||
|
assert glass2.data.shape == (163, 9)
|
||
|
assert glass2.details["id"] == "40675"
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
@pytest.mark.parametrize(
|
||
|
"data_id, params, err_type, err_msg",
|
||
|
[
|
||
|
(40675, {"name": "glass2"}, ValueError, "No active dataset glass2 found"),
|
||
|
(
|
||
|
61,
|
||
|
{"data_id": 61, "target_column": ["sepalwidth", "class"]},
|
||
|
ValueError,
|
||
|
"Can only handle homogeneous multi-target datasets",
|
||
|
),
|
||
|
(
|
||
|
40945,
|
||
|
{"data_id": 40945, "as_frame": False},
|
||
|
ValueError,
|
||
|
(
|
||
|
"STRING attributes are not supported for array representation. Try"
|
||
|
" as_frame=True"
|
||
|
),
|
||
|
),
|
||
|
(
|
||
|
2,
|
||
|
{"data_id": 2, "target_column": "family", "as_frame": True},
|
||
|
ValueError,
|
||
|
"Target column 'family'",
|
||
|
),
|
||
|
(
|
||
|
2,
|
||
|
{"data_id": 2, "target_column": "family", "as_frame": False},
|
||
|
ValueError,
|
||
|
"Target column 'family'",
|
||
|
),
|
||
|
(
|
||
|
61,
|
||
|
{"data_id": 61, "target_column": "undefined"},
|
||
|
KeyError,
|
||
|
"Could not find target_column='undefined'",
|
||
|
),
|
||
|
(
|
||
|
61,
|
||
|
{"data_id": 61, "target_column": ["undefined", "class"]},
|
||
|
KeyError,
|
||
|
"Could not find target_column='undefined'",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("parser", ["liac-arff", "pandas"])
|
||
|
def test_fetch_openml_error(
|
||
|
monkeypatch, gzip_response, data_id, params, err_type, err_msg, parser
|
||
|
):
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
if params.get("as_frame", True) or parser == "pandas":
|
||
|
pytest.importorskip("pandas")
|
||
|
with pytest.raises(err_type, match=err_msg):
|
||
|
fetch_openml(cache=False, parser=parser, **params)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"params, err_type, err_msg",
|
||
|
[
|
||
|
(
|
||
|
{"data_id": -1, "name": None, "version": "version"},
|
||
|
ValueError,
|
||
|
"The 'version' parameter of fetch_openml must be an int in the range",
|
||
|
),
|
||
|
(
|
||
|
{"data_id": -1, "name": "nAmE"},
|
||
|
ValueError,
|
||
|
"The 'data_id' parameter of fetch_openml must be an int in the range",
|
||
|
),
|
||
|
(
|
||
|
{"data_id": -1, "name": "nAmE", "version": "version"},
|
||
|
ValueError,
|
||
|
"The 'version' parameter of fetch_openml must be an int",
|
||
|
),
|
||
|
(
|
||
|
{},
|
||
|
ValueError,
|
||
|
"Neither name nor data_id are provided. Please provide name or data_id.",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_raises_illegal_argument(params, err_type, err_msg):
|
||
|
with pytest.raises(err_type, match=err_msg):
|
||
|
fetch_openml(**params)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_warn_ignore_attribute(monkeypatch, gzip_response):
|
||
|
data_id = 40966
|
||
|
expected_row_id_msg = "target_column='{}' has flag is_row_identifier."
|
||
|
expected_ignore_msg = "target_column='{}' has flag is_ignore."
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
# single column test
|
||
|
target_col = "MouseID"
|
||
|
msg = expected_row_id_msg.format(target_col)
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(
|
||
|
data_id=data_id,
|
||
|
target_column=target_col,
|
||
|
cache=False,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
target_col = "Genotype"
|
||
|
msg = expected_ignore_msg.format(target_col)
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(
|
||
|
data_id=data_id,
|
||
|
target_column=target_col,
|
||
|
cache=False,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
# multi column test
|
||
|
target_col = "MouseID"
|
||
|
msg = expected_row_id_msg.format(target_col)
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(
|
||
|
data_id=data_id,
|
||
|
target_column=[target_col, "class"],
|
||
|
cache=False,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
target_col = "Genotype"
|
||
|
msg = expected_ignore_msg.format(target_col)
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(
|
||
|
data_id=data_id,
|
||
|
target_column=[target_col, "class"],
|
||
|
cache=False,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_dataset_with_openml_error(monkeypatch, gzip_response):
|
||
|
data_id = 1
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
msg = "OpenML registered a problem with the dataset. It might be unusable. Error:"
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(data_id=data_id, cache=False, as_frame=False, parser="liac-arff")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_dataset_with_openml_warning(monkeypatch, gzip_response):
|
||
|
data_id = 3
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
msg = "OpenML raised a warning on the dataset. It might be unusable. Warning:"
|
||
|
with pytest.warns(UserWarning, match=msg):
|
||
|
fetch_openml(data_id=data_id, cache=False, as_frame=False, parser="liac-arff")
|
||
|
|
||
|
|
||
|
def test_fetch_openml_overwrite_default_params_read_csv(monkeypatch):
|
||
|
"""Check that we can overwrite the default parameters of `read_csv`."""
|
||
|
pytest.importorskip("pandas")
|
||
|
data_id = 1590
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id=data_id, gzip_response=False)
|
||
|
|
||
|
common_params = {
|
||
|
"data_id": data_id,
|
||
|
"as_frame": True,
|
||
|
"cache": False,
|
||
|
"parser": "pandas",
|
||
|
}
|
||
|
|
||
|
# By default, the initial spaces are skipped. We checked that setting the parameter
|
||
|
# `skipinitialspace` to False will have an effect.
|
||
|
adult_without_spaces = fetch_openml(**common_params)
|
||
|
adult_with_spaces = fetch_openml(
|
||
|
**common_params, read_csv_kwargs={"skipinitialspace": False}
|
||
|
)
|
||
|
assert all(
|
||
|
cat.startswith(" ") for cat in adult_with_spaces.frame["class"].cat.categories
|
||
|
)
|
||
|
assert not any(
|
||
|
cat.startswith(" ")
|
||
|
for cat in adult_without_spaces.frame["class"].cat.categories
|
||
|
)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Test cache, retry mechanisms, checksum, etc.
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_open_openml_url_cache(monkeypatch, gzip_response, tmpdir):
|
||
|
data_id = 61
|
||
|
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
|
||
|
cache_directory = str(tmpdir.mkdir("scikit_learn_data"))
|
||
|
# first fill the cache
|
||
|
response1 = _open_openml_url(openml_path, cache_directory)
|
||
|
# assert file exists
|
||
|
location = _get_local_path(openml_path, cache_directory)
|
||
|
assert os.path.isfile(location)
|
||
|
# redownload, to utilize cache
|
||
|
response2 = _open_openml_url(openml_path, cache_directory)
|
||
|
assert response1.read() == response2.read()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("write_to_disk", [True, False])
|
||
|
def test_open_openml_url_unlinks_local_path(monkeypatch, tmpdir, write_to_disk):
|
||
|
data_id = 61
|
||
|
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
|
||
|
cache_directory = str(tmpdir.mkdir("scikit_learn_data"))
|
||
|
location = _get_local_path(openml_path, cache_directory)
|
||
|
|
||
|
def _mock_urlopen(request, *args, **kwargs):
|
||
|
if write_to_disk:
|
||
|
with open(location, "w") as f:
|
||
|
f.write("")
|
||
|
raise ValueError("Invalid request")
|
||
|
|
||
|
monkeypatch.setattr(sklearn.datasets._openml, "urlopen", _mock_urlopen)
|
||
|
|
||
|
with pytest.raises(ValueError, match="Invalid request"):
|
||
|
_open_openml_url(openml_path, cache_directory)
|
||
|
|
||
|
assert not os.path.exists(location)
|
||
|
|
||
|
|
||
|
def test_retry_with_clean_cache(tmpdir):
|
||
|
data_id = 61
|
||
|
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
|
||
|
cache_directory = str(tmpdir.mkdir("scikit_learn_data"))
|
||
|
location = _get_local_path(openml_path, cache_directory)
|
||
|
os.makedirs(os.path.dirname(location))
|
||
|
|
||
|
with open(location, "w") as f:
|
||
|
f.write("")
|
||
|
|
||
|
@_retry_with_clean_cache(openml_path, cache_directory)
|
||
|
def _load_data():
|
||
|
# The first call will raise an error since location exists
|
||
|
if os.path.exists(location):
|
||
|
raise Exception("File exist!")
|
||
|
return 1
|
||
|
|
||
|
warn_msg = "Invalid cache, redownloading file"
|
||
|
with pytest.warns(RuntimeWarning, match=warn_msg):
|
||
|
result = _load_data()
|
||
|
assert result == 1
|
||
|
|
||
|
|
||
|
def test_retry_with_clean_cache_http_error(tmpdir):
|
||
|
data_id = 61
|
||
|
openml_path = sklearn.datasets._openml._DATA_FILE.format(data_id)
|
||
|
cache_directory = str(tmpdir.mkdir("scikit_learn_data"))
|
||
|
|
||
|
@_retry_with_clean_cache(openml_path, cache_directory)
|
||
|
def _load_data():
|
||
|
raise HTTPError(
|
||
|
url=None, code=412, msg="Simulated mock error", hdrs=None, fp=BytesIO()
|
||
|
)
|
||
|
|
||
|
error_msg = "Simulated mock error"
|
||
|
with pytest.raises(HTTPError, match=error_msg):
|
||
|
_load_data()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
def test_fetch_openml_cache(monkeypatch, gzip_response, tmpdir):
|
||
|
def _mock_urlopen_raise(request, *args, **kwargs):
|
||
|
raise ValueError(
|
||
|
"This mechanism intends to test correct cache"
|
||
|
"handling. As such, urlopen should never be "
|
||
|
"accessed. URL: %s" % request.get_full_url()
|
||
|
)
|
||
|
|
||
|
data_id = 61
|
||
|
cache_directory = str(tmpdir.mkdir("scikit_learn_data"))
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
X_fetched, y_fetched = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
cache=True,
|
||
|
data_home=cache_directory,
|
||
|
return_X_y=True,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
|
||
|
monkeypatch.setattr(sklearn.datasets._openml, "urlopen", _mock_urlopen_raise)
|
||
|
|
||
|
X_cached, y_cached = fetch_openml(
|
||
|
data_id=data_id,
|
||
|
cache=True,
|
||
|
data_home=cache_directory,
|
||
|
return_X_y=True,
|
||
|
as_frame=False,
|
||
|
parser="liac-arff",
|
||
|
)
|
||
|
np.testing.assert_array_equal(X_fetched, X_cached)
|
||
|
np.testing.assert_array_equal(y_fetched, y_cached)
|
||
|
|
||
|
|
||
|
# Known failure of PyPy for OpenML. See the following issue:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/18906
|
||
|
@fails_if_pypy
|
||
|
@pytest.mark.parametrize(
|
||
|
"as_frame, parser",
|
||
|
[
|
||
|
(True, "liac-arff"),
|
||
|
(False, "liac-arff"),
|
||
|
(True, "pandas"),
|
||
|
(False, "pandas"),
|
||
|
],
|
||
|
)
|
||
|
def test_fetch_openml_verify_checksum(monkeypatch, as_frame, cache, tmpdir, parser):
|
||
|
"""Check that the checksum is working as expected."""
|
||
|
if as_frame or parser == "pandas":
|
||
|
pytest.importorskip("pandas")
|
||
|
|
||
|
data_id = 2
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, True)
|
||
|
|
||
|
# create a temporary modified arff file
|
||
|
original_data_module = OPENML_TEST_DATA_MODULE + "." + f"id_{data_id}"
|
||
|
original_data_file_name = "data-v1-dl-1666876.arff.gz"
|
||
|
original_data_path = resources.files(original_data_module) / original_data_file_name
|
||
|
corrupt_copy_path = tmpdir / "test_invalid_checksum.arff"
|
||
|
with original_data_path.open("rb") as orig_file:
|
||
|
orig_gzip = gzip.open(orig_file, "rb")
|
||
|
data = bytearray(orig_gzip.read())
|
||
|
data[len(data) - 1] = 37
|
||
|
|
||
|
with gzip.GzipFile(corrupt_copy_path, "wb") as modified_gzip:
|
||
|
modified_gzip.write(data)
|
||
|
|
||
|
# Requests are already mocked by monkey_patch_webbased_functions.
|
||
|
# We want to reuse that mock for all requests except file download,
|
||
|
# hence creating a thin mock over the original mock
|
||
|
mocked_openml_url = sklearn.datasets._openml.urlopen
|
||
|
|
||
|
def swap_file_mock(request, *args, **kwargs):
|
||
|
url = request.get_full_url()
|
||
|
if url.endswith("data/v1/download/1666876"):
|
||
|
with open(corrupt_copy_path, "rb") as f:
|
||
|
corrupted_data = f.read()
|
||
|
return _MockHTTPResponse(BytesIO(corrupted_data), is_gzip=True)
|
||
|
else:
|
||
|
return mocked_openml_url(request)
|
||
|
|
||
|
monkeypatch.setattr(sklearn.datasets._openml, "urlopen", swap_file_mock)
|
||
|
|
||
|
# validate failed checksum
|
||
|
with pytest.raises(ValueError) as exc:
|
||
|
sklearn.datasets.fetch_openml(
|
||
|
data_id=data_id, cache=False, as_frame=as_frame, parser=parser
|
||
|
)
|
||
|
# exception message should have file-path
|
||
|
assert exc.match("1666876")
|
||
|
|
||
|
|
||
|
def test_open_openml_url_retry_on_network_error(monkeypatch):
|
||
|
def _mock_urlopen_network_error(request, *args, **kwargs):
|
||
|
raise HTTPError(
|
||
|
url=None, code=404, msg="Simulated network error", hdrs=None, fp=BytesIO()
|
||
|
)
|
||
|
|
||
|
monkeypatch.setattr(
|
||
|
sklearn.datasets._openml, "urlopen", _mock_urlopen_network_error
|
||
|
)
|
||
|
|
||
|
invalid_openml_url = "invalid-url"
|
||
|
|
||
|
with pytest.warns(
|
||
|
UserWarning,
|
||
|
match=re.escape(
|
||
|
"A network error occurred while downloading"
|
||
|
f" {_OPENML_PREFIX + invalid_openml_url}. Retrying..."
|
||
|
),
|
||
|
) as record:
|
||
|
with pytest.raises(HTTPError, match="Simulated network error"):
|
||
|
_open_openml_url(invalid_openml_url, None, delay=0)
|
||
|
assert len(record) == 3
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Non-regressiont tests
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("gzip_response", [True, False])
|
||
|
@pytest.mark.parametrize("parser", ("liac-arff", "pandas"))
|
||
|
def test_fetch_openml_with_ignored_feature(monkeypatch, gzip_response, parser):
|
||
|
"""Check that we can load the "zoo" dataset.
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/14340
|
||
|
"""
|
||
|
if parser == "pandas":
|
||
|
pytest.importorskip("pandas")
|
||
|
data_id = 62
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id, gzip_response)
|
||
|
|
||
|
dataset = sklearn.datasets.fetch_openml(
|
||
|
data_id=data_id, cache=False, as_frame=False, parser=parser
|
||
|
)
|
||
|
assert dataset is not None
|
||
|
# The dataset has 17 features, including 1 ignored (animal),
|
||
|
# so we assert that we don't have the ignored feature in the final Bunch
|
||
|
assert dataset["data"].shape == (101, 16)
|
||
|
assert "animal" not in dataset["feature_names"]
|
||
|
|
||
|
|
||
|
def test_fetch_openml_strip_quotes(monkeypatch):
|
||
|
"""Check that we strip the single quotes when used as a string delimiter.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/23381
|
||
|
"""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
data_id = 40966
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id=data_id, gzip_response=False)
|
||
|
|
||
|
common_params = {"as_frame": True, "cache": False, "data_id": data_id}
|
||
|
mice_pandas = fetch_openml(parser="pandas", **common_params)
|
||
|
mice_liac_arff = fetch_openml(parser="liac-arff", **common_params)
|
||
|
pd.testing.assert_series_equal(mice_pandas.target, mice_liac_arff.target)
|
||
|
assert not mice_pandas.target.str.startswith("'").any()
|
||
|
assert not mice_pandas.target.str.endswith("'").any()
|
||
|
|
||
|
# similar behaviour should be observed when the column is not the target
|
||
|
mice_pandas = fetch_openml(parser="pandas", target_column="NUMB_N", **common_params)
|
||
|
mice_liac_arff = fetch_openml(
|
||
|
parser="liac-arff", target_column="NUMB_N", **common_params
|
||
|
)
|
||
|
pd.testing.assert_series_equal(
|
||
|
mice_pandas.frame["class"], mice_liac_arff.frame["class"]
|
||
|
)
|
||
|
assert not mice_pandas.frame["class"].str.startswith("'").any()
|
||
|
assert not mice_pandas.frame["class"].str.endswith("'").any()
|
||
|
|
||
|
|
||
|
def test_fetch_openml_leading_whitespace(monkeypatch):
|
||
|
"""Check that we can strip leading whitespace in pandas parser.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/25311
|
||
|
"""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
data_id = 1590
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id=data_id, gzip_response=False)
|
||
|
|
||
|
common_params = {"as_frame": True, "cache": False, "data_id": data_id}
|
||
|
adult_pandas = fetch_openml(parser="pandas", **common_params)
|
||
|
adult_liac_arff = fetch_openml(parser="liac-arff", **common_params)
|
||
|
pd.testing.assert_series_equal(
|
||
|
adult_pandas.frame["class"], adult_liac_arff.frame["class"]
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_fetch_openml_quotechar_escapechar(monkeypatch):
|
||
|
"""Check that we can handle escapechar and single/double quotechar.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/25478
|
||
|
"""
|
||
|
pd = pytest.importorskip("pandas")
|
||
|
data_id = 42074
|
||
|
_monkey_patch_webbased_functions(monkeypatch, data_id=data_id, gzip_response=False)
|
||
|
|
||
|
common_params = {"as_frame": True, "cache": False, "data_id": data_id}
|
||
|
adult_pandas = fetch_openml(parser="pandas", **common_params)
|
||
|
adult_liac_arff = fetch_openml(parser="liac-arff", **common_params)
|
||
|
pd.testing.assert_frame_equal(adult_pandas.frame, adult_liac_arff.frame)
|