977 lines
31 KiB
Python
977 lines
31 KiB
Python
|
"""
|
||
|
Testing for the bagging ensemble module (sklearn.ensemble.bagging).
|
||
|
"""
|
||
|
|
||
|
# Author: Gilles Louppe
|
||
|
# License: BSD 3 clause
|
||
|
from itertools import cycle, product
|
||
|
|
||
|
import joblib
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import sklearn
|
||
|
from sklearn.base import BaseEstimator
|
||
|
from sklearn.datasets import load_diabetes, load_iris, make_hastie_10_2
|
||
|
from sklearn.dummy import DummyClassifier, DummyRegressor
|
||
|
from sklearn.ensemble import (
|
||
|
AdaBoostClassifier,
|
||
|
AdaBoostRegressor,
|
||
|
BaggingClassifier,
|
||
|
BaggingRegressor,
|
||
|
HistGradientBoostingClassifier,
|
||
|
HistGradientBoostingRegressor,
|
||
|
RandomForestClassifier,
|
||
|
RandomForestRegressor,
|
||
|
)
|
||
|
from sklearn.feature_selection import SelectKBest
|
||
|
from sklearn.linear_model import LogisticRegression, Perceptron
|
||
|
from sklearn.model_selection import GridSearchCV, ParameterGrid, train_test_split
|
||
|
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
|
||
|
from sklearn.pipeline import make_pipeline
|
||
|
from sklearn.preprocessing import FunctionTransformer, scale
|
||
|
from sklearn.random_projection import SparseRandomProjection
|
||
|
from sklearn.svm import SVC, SVR
|
||
|
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
||
|
from sklearn.utils import check_random_state
|
||
|
from sklearn.utils._testing import assert_array_almost_equal, assert_array_equal
|
||
|
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
|
||
|
|
||
|
rng = check_random_state(0)
|
||
|
|
||
|
# also load the iris dataset
|
||
|
# and randomly permute it
|
||
|
iris = load_iris()
|
||
|
perm = rng.permutation(iris.target.size)
|
||
|
iris.data = iris.data[perm]
|
||
|
iris.target = iris.target[perm]
|
||
|
|
||
|
# also load the diabetes dataset
|
||
|
# and randomly permute it
|
||
|
diabetes = load_diabetes()
|
||
|
perm = rng.permutation(diabetes.target.size)
|
||
|
diabetes.data = diabetes.data[perm]
|
||
|
diabetes.target = diabetes.target[perm]
|
||
|
|
||
|
|
||
|
def test_classification():
|
||
|
# Check classification for various parameter settings.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
iris.data, iris.target, random_state=rng
|
||
|
)
|
||
|
grid = ParameterGrid(
|
||
|
{
|
||
|
"max_samples": [0.5, 1.0],
|
||
|
"max_features": [1, 4],
|
||
|
"bootstrap": [True, False],
|
||
|
"bootstrap_features": [True, False],
|
||
|
}
|
||
|
)
|
||
|
estimators = [
|
||
|
None,
|
||
|
DummyClassifier(),
|
||
|
Perceptron(max_iter=20),
|
||
|
DecisionTreeClassifier(max_depth=2),
|
||
|
KNeighborsClassifier(),
|
||
|
SVC(),
|
||
|
]
|
||
|
# Try different parameter settings with different base classifiers without
|
||
|
# doing the full cartesian product to keep the test durations low.
|
||
|
for params, estimator in zip(grid, cycle(estimators)):
|
||
|
BaggingClassifier(
|
||
|
estimator=estimator,
|
||
|
random_state=rng,
|
||
|
n_estimators=2,
|
||
|
**params,
|
||
|
).fit(X_train, y_train).predict(X_test)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"sparse_container, params, method",
|
||
|
product(
|
||
|
CSR_CONTAINERS + CSC_CONTAINERS,
|
||
|
[
|
||
|
{
|
||
|
"max_samples": 0.5,
|
||
|
"max_features": 2,
|
||
|
"bootstrap": True,
|
||
|
"bootstrap_features": True,
|
||
|
},
|
||
|
{
|
||
|
"max_samples": 1.0,
|
||
|
"max_features": 4,
|
||
|
"bootstrap": True,
|
||
|
"bootstrap_features": True,
|
||
|
},
|
||
|
{"max_features": 2, "bootstrap": False, "bootstrap_features": True},
|
||
|
{"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False},
|
||
|
],
|
||
|
["predict", "predict_proba", "predict_log_proba", "decision_function"],
|
||
|
),
|
||
|
)
|
||
|
def test_sparse_classification(sparse_container, params, method):
|
||
|
# Check classification for various parameter settings on sparse input.
|
||
|
|
||
|
class CustomSVC(SVC):
|
||
|
"""SVC variant that records the nature of the training set"""
|
||
|
|
||
|
def fit(self, X, y):
|
||
|
super().fit(X, y)
|
||
|
self.data_type_ = type(X)
|
||
|
return self
|
||
|
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
scale(iris.data), iris.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
X_train_sparse = sparse_container(X_train)
|
||
|
X_test_sparse = sparse_container(X_test)
|
||
|
# Trained on sparse format
|
||
|
sparse_classifier = BaggingClassifier(
|
||
|
estimator=CustomSVC(kernel="linear", decision_function_shape="ovr"),
|
||
|
random_state=1,
|
||
|
**params,
|
||
|
).fit(X_train_sparse, y_train)
|
||
|
sparse_results = getattr(sparse_classifier, method)(X_test_sparse)
|
||
|
|
||
|
# Trained on dense format
|
||
|
dense_classifier = BaggingClassifier(
|
||
|
estimator=CustomSVC(kernel="linear", decision_function_shape="ovr"),
|
||
|
random_state=1,
|
||
|
**params,
|
||
|
).fit(X_train, y_train)
|
||
|
dense_results = getattr(dense_classifier, method)(X_test)
|
||
|
assert_array_almost_equal(sparse_results, dense_results)
|
||
|
|
||
|
sparse_type = type(X_train_sparse)
|
||
|
types = [i.data_type_ for i in sparse_classifier.estimators_]
|
||
|
|
||
|
assert all([t == sparse_type for t in types])
|
||
|
|
||
|
|
||
|
def test_regression():
|
||
|
# Check regression for various parameter settings.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data[:50], diabetes.target[:50], random_state=rng
|
||
|
)
|
||
|
grid = ParameterGrid(
|
||
|
{
|
||
|
"max_samples": [0.5, 1.0],
|
||
|
"max_features": [0.5, 1.0],
|
||
|
"bootstrap": [True, False],
|
||
|
"bootstrap_features": [True, False],
|
||
|
}
|
||
|
)
|
||
|
|
||
|
for estimator in [
|
||
|
None,
|
||
|
DummyRegressor(),
|
||
|
DecisionTreeRegressor(),
|
||
|
KNeighborsRegressor(),
|
||
|
SVR(),
|
||
|
]:
|
||
|
for params in grid:
|
||
|
BaggingRegressor(estimator=estimator, random_state=rng, **params).fit(
|
||
|
X_train, y_train
|
||
|
).predict(X_test)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
||
|
def test_sparse_regression(sparse_container):
|
||
|
# Check regression for various parameter settings on sparse input.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data[:50], diabetes.target[:50], random_state=rng
|
||
|
)
|
||
|
|
||
|
class CustomSVR(SVR):
|
||
|
"""SVC variant that records the nature of the training set"""
|
||
|
|
||
|
def fit(self, X, y):
|
||
|
super().fit(X, y)
|
||
|
self.data_type_ = type(X)
|
||
|
return self
|
||
|
|
||
|
parameter_sets = [
|
||
|
{
|
||
|
"max_samples": 0.5,
|
||
|
"max_features": 2,
|
||
|
"bootstrap": True,
|
||
|
"bootstrap_features": True,
|
||
|
},
|
||
|
{
|
||
|
"max_samples": 1.0,
|
||
|
"max_features": 4,
|
||
|
"bootstrap": True,
|
||
|
"bootstrap_features": True,
|
||
|
},
|
||
|
{"max_features": 2, "bootstrap": False, "bootstrap_features": True},
|
||
|
{"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False},
|
||
|
]
|
||
|
|
||
|
X_train_sparse = sparse_container(X_train)
|
||
|
X_test_sparse = sparse_container(X_test)
|
||
|
for params in parameter_sets:
|
||
|
# Trained on sparse format
|
||
|
sparse_classifier = BaggingRegressor(
|
||
|
estimator=CustomSVR(), random_state=1, **params
|
||
|
).fit(X_train_sparse, y_train)
|
||
|
sparse_results = sparse_classifier.predict(X_test_sparse)
|
||
|
|
||
|
# Trained on dense format
|
||
|
dense_results = (
|
||
|
BaggingRegressor(estimator=CustomSVR(), random_state=1, **params)
|
||
|
.fit(X_train, y_train)
|
||
|
.predict(X_test)
|
||
|
)
|
||
|
|
||
|
sparse_type = type(X_train_sparse)
|
||
|
types = [i.data_type_ for i in sparse_classifier.estimators_]
|
||
|
|
||
|
assert_array_almost_equal(sparse_results, dense_results)
|
||
|
assert all([t == sparse_type for t in types])
|
||
|
assert_array_almost_equal(sparse_results, dense_results)
|
||
|
|
||
|
|
||
|
class DummySizeEstimator(BaseEstimator):
|
||
|
def fit(self, X, y):
|
||
|
self.training_size_ = X.shape[0]
|
||
|
self.training_hash_ = joblib.hash(X)
|
||
|
|
||
|
def predict(self, X):
|
||
|
return np.ones(X.shape[0])
|
||
|
|
||
|
|
||
|
def test_bootstrap_samples():
|
||
|
# Test that bootstrapping samples generate non-perfect base estimators.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data, diabetes.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
estimator = DecisionTreeRegressor().fit(X_train, y_train)
|
||
|
|
||
|
# without bootstrap, all trees are perfect on the training set
|
||
|
ensemble = BaggingRegressor(
|
||
|
estimator=DecisionTreeRegressor(),
|
||
|
max_samples=1.0,
|
||
|
bootstrap=False,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
assert estimator.score(X_train, y_train) == ensemble.score(X_train, y_train)
|
||
|
|
||
|
# with bootstrap, trees are no longer perfect on the training set
|
||
|
ensemble = BaggingRegressor(
|
||
|
estimator=DecisionTreeRegressor(),
|
||
|
max_samples=1.0,
|
||
|
bootstrap=True,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
assert estimator.score(X_train, y_train) > ensemble.score(X_train, y_train)
|
||
|
|
||
|
# check that each sampling correspond to a complete bootstrap resample.
|
||
|
# the size of each bootstrap should be the same as the input data but
|
||
|
# the data should be different (checked using the hash of the data).
|
||
|
ensemble = BaggingRegressor(estimator=DummySizeEstimator(), bootstrap=True).fit(
|
||
|
X_train, y_train
|
||
|
)
|
||
|
training_hash = []
|
||
|
for estimator in ensemble.estimators_:
|
||
|
assert estimator.training_size_ == X_train.shape[0]
|
||
|
training_hash.append(estimator.training_hash_)
|
||
|
assert len(set(training_hash)) == len(training_hash)
|
||
|
|
||
|
|
||
|
def test_bootstrap_features():
|
||
|
# Test that bootstrapping features may generate duplicate features.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data, diabetes.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
ensemble = BaggingRegressor(
|
||
|
estimator=DecisionTreeRegressor(),
|
||
|
max_features=1.0,
|
||
|
bootstrap_features=False,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
for features in ensemble.estimators_features_:
|
||
|
assert diabetes.data.shape[1] == np.unique(features).shape[0]
|
||
|
|
||
|
ensemble = BaggingRegressor(
|
||
|
estimator=DecisionTreeRegressor(),
|
||
|
max_features=1.0,
|
||
|
bootstrap_features=True,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
for features in ensemble.estimators_features_:
|
||
|
assert diabetes.data.shape[1] > np.unique(features).shape[0]
|
||
|
|
||
|
|
||
|
def test_probability():
|
||
|
# Predict probabilities.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
iris.data, iris.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
with np.errstate(divide="ignore", invalid="ignore"):
|
||
|
# Normal case
|
||
|
ensemble = BaggingClassifier(
|
||
|
estimator=DecisionTreeClassifier(), random_state=rng
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
assert_array_almost_equal(
|
||
|
np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))
|
||
|
)
|
||
|
|
||
|
assert_array_almost_equal(
|
||
|
ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))
|
||
|
)
|
||
|
|
||
|
# Degenerate case, where some classes are missing
|
||
|
ensemble = BaggingClassifier(
|
||
|
estimator=LogisticRegression(), random_state=rng, max_samples=5
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
assert_array_almost_equal(
|
||
|
np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))
|
||
|
)
|
||
|
|
||
|
assert_array_almost_equal(
|
||
|
ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_oob_score_classification():
|
||
|
# Check that oob prediction is a good estimation of the generalization
|
||
|
# error.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
iris.data, iris.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
for estimator in [DecisionTreeClassifier(), SVC()]:
|
||
|
clf = BaggingClassifier(
|
||
|
estimator=estimator,
|
||
|
n_estimators=100,
|
||
|
bootstrap=True,
|
||
|
oob_score=True,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
test_score = clf.score(X_test, y_test)
|
||
|
|
||
|
assert abs(test_score - clf.oob_score_) < 0.1
|
||
|
|
||
|
# Test with few estimators
|
||
|
warn_msg = (
|
||
|
"Some inputs do not have OOB scores. This probably means too few "
|
||
|
"estimators were used to compute any reliable oob estimates."
|
||
|
)
|
||
|
with pytest.warns(UserWarning, match=warn_msg):
|
||
|
clf = BaggingClassifier(
|
||
|
estimator=estimator,
|
||
|
n_estimators=1,
|
||
|
bootstrap=True,
|
||
|
oob_score=True,
|
||
|
random_state=rng,
|
||
|
)
|
||
|
clf.fit(X_train, y_train)
|
||
|
|
||
|
|
||
|
def test_oob_score_regression():
|
||
|
# Check that oob prediction is a good estimation of the generalization
|
||
|
# error.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data, diabetes.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
clf = BaggingRegressor(
|
||
|
estimator=DecisionTreeRegressor(),
|
||
|
n_estimators=50,
|
||
|
bootstrap=True,
|
||
|
oob_score=True,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
test_score = clf.score(X_test, y_test)
|
||
|
|
||
|
assert abs(test_score - clf.oob_score_) < 0.1
|
||
|
|
||
|
# Test with few estimators
|
||
|
warn_msg = (
|
||
|
"Some inputs do not have OOB scores. This probably means too few "
|
||
|
"estimators were used to compute any reliable oob estimates."
|
||
|
)
|
||
|
with pytest.warns(UserWarning, match=warn_msg):
|
||
|
regr = BaggingRegressor(
|
||
|
estimator=DecisionTreeRegressor(),
|
||
|
n_estimators=1,
|
||
|
bootstrap=True,
|
||
|
oob_score=True,
|
||
|
random_state=rng,
|
||
|
)
|
||
|
regr.fit(X_train, y_train)
|
||
|
|
||
|
|
||
|
def test_single_estimator():
|
||
|
# Check singleton ensembles.
|
||
|
rng = check_random_state(0)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data, diabetes.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
clf1 = BaggingRegressor(
|
||
|
estimator=KNeighborsRegressor(),
|
||
|
n_estimators=1,
|
||
|
bootstrap=False,
|
||
|
bootstrap_features=False,
|
||
|
random_state=rng,
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
clf2 = KNeighborsRegressor().fit(X_train, y_train)
|
||
|
|
||
|
assert_array_almost_equal(clf1.predict(X_test), clf2.predict(X_test))
|
||
|
|
||
|
|
||
|
def test_error():
|
||
|
# Test support of decision_function
|
||
|
X, y = iris.data, iris.target
|
||
|
base = DecisionTreeClassifier()
|
||
|
assert not hasattr(BaggingClassifier(base).fit(X, y), "decision_function")
|
||
|
|
||
|
|
||
|
def test_parallel_classification():
|
||
|
# Check parallel classification.
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
iris.data, iris.target, random_state=0
|
||
|
)
|
||
|
|
||
|
ensemble = BaggingClassifier(
|
||
|
DecisionTreeClassifier(), n_jobs=3, random_state=0
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
# predict_proba
|
||
|
y1 = ensemble.predict_proba(X_test)
|
||
|
ensemble.set_params(n_jobs=1)
|
||
|
y2 = ensemble.predict_proba(X_test)
|
||
|
assert_array_almost_equal(y1, y2)
|
||
|
|
||
|
ensemble = BaggingClassifier(
|
||
|
DecisionTreeClassifier(), n_jobs=1, random_state=0
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
y3 = ensemble.predict_proba(X_test)
|
||
|
assert_array_almost_equal(y1, y3)
|
||
|
|
||
|
# decision_function
|
||
|
ensemble = BaggingClassifier(
|
||
|
SVC(decision_function_shape="ovr"), n_jobs=3, random_state=0
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
decisions1 = ensemble.decision_function(X_test)
|
||
|
ensemble.set_params(n_jobs=1)
|
||
|
decisions2 = ensemble.decision_function(X_test)
|
||
|
assert_array_almost_equal(decisions1, decisions2)
|
||
|
|
||
|
ensemble = BaggingClassifier(
|
||
|
SVC(decision_function_shape="ovr"), n_jobs=1, random_state=0
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
decisions3 = ensemble.decision_function(X_test)
|
||
|
assert_array_almost_equal(decisions1, decisions3)
|
||
|
|
||
|
|
||
|
def test_parallel_regression():
|
||
|
# Check parallel regression.
|
||
|
rng = check_random_state(0)
|
||
|
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data, diabetes.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(
|
||
|
X_train, y_train
|
||
|
)
|
||
|
|
||
|
ensemble.set_params(n_jobs=1)
|
||
|
y1 = ensemble.predict(X_test)
|
||
|
ensemble.set_params(n_jobs=2)
|
||
|
y2 = ensemble.predict(X_test)
|
||
|
assert_array_almost_equal(y1, y2)
|
||
|
|
||
|
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit(
|
||
|
X_train, y_train
|
||
|
)
|
||
|
|
||
|
y3 = ensemble.predict(X_test)
|
||
|
assert_array_almost_equal(y1, y3)
|
||
|
|
||
|
|
||
|
def test_gridsearch():
|
||
|
# Check that bagging ensembles can be grid-searched.
|
||
|
# Transform iris into a binary classification task
|
||
|
X, y = iris.data, iris.target
|
||
|
y[y == 2] = 1
|
||
|
|
||
|
# Grid search with scoring based on decision_function
|
||
|
parameters = {"n_estimators": (1, 2), "estimator__C": (1, 2)}
|
||
|
|
||
|
GridSearchCV(BaggingClassifier(SVC()), parameters, scoring="roc_auc").fit(X, y)
|
||
|
|
||
|
|
||
|
def test_estimator():
|
||
|
# Check estimator and its default values.
|
||
|
rng = check_random_state(0)
|
||
|
|
||
|
# Classification
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
iris.data, iris.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
ensemble = BaggingClassifier(None, n_jobs=3, random_state=0).fit(X_train, y_train)
|
||
|
|
||
|
assert isinstance(ensemble.estimator_, DecisionTreeClassifier)
|
||
|
|
||
|
ensemble = BaggingClassifier(
|
||
|
DecisionTreeClassifier(), n_jobs=3, random_state=0
|
||
|
).fit(X_train, y_train)
|
||
|
|
||
|
assert isinstance(ensemble.estimator_, DecisionTreeClassifier)
|
||
|
|
||
|
ensemble = BaggingClassifier(Perceptron(), n_jobs=3, random_state=0).fit(
|
||
|
X_train, y_train
|
||
|
)
|
||
|
|
||
|
assert isinstance(ensemble.estimator_, Perceptron)
|
||
|
|
||
|
# Regression
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
diabetes.data, diabetes.target, random_state=rng
|
||
|
)
|
||
|
|
||
|
ensemble = BaggingRegressor(None, n_jobs=3, random_state=0).fit(X_train, y_train)
|
||
|
|
||
|
assert isinstance(ensemble.estimator_, DecisionTreeRegressor)
|
||
|
|
||
|
ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(
|
||
|
X_train, y_train
|
||
|
)
|
||
|
|
||
|
assert isinstance(ensemble.estimator_, DecisionTreeRegressor)
|
||
|
|
||
|
ensemble = BaggingRegressor(SVR(), n_jobs=3, random_state=0).fit(X_train, y_train)
|
||
|
assert isinstance(ensemble.estimator_, SVR)
|
||
|
|
||
|
|
||
|
def test_bagging_with_pipeline():
|
||
|
estimator = BaggingClassifier(
|
||
|
make_pipeline(SelectKBest(k=1), DecisionTreeClassifier()), max_features=2
|
||
|
)
|
||
|
estimator.fit(iris.data, iris.target)
|
||
|
assert isinstance(estimator[0].steps[-1][1].random_state, int)
|
||
|
|
||
|
|
||
|
class DummyZeroEstimator(BaseEstimator):
|
||
|
def fit(self, X, y):
|
||
|
self.classes_ = np.unique(y)
|
||
|
return self
|
||
|
|
||
|
def predict(self, X):
|
||
|
return self.classes_[np.zeros(X.shape[0], dtype=int)]
|
||
|
|
||
|
|
||
|
def test_bagging_sample_weight_unsupported_but_passed():
|
||
|
estimator = BaggingClassifier(DummyZeroEstimator())
|
||
|
rng = check_random_state(0)
|
||
|
|
||
|
estimator.fit(iris.data, iris.target).predict(iris.data)
|
||
|
with pytest.raises(ValueError):
|
||
|
estimator.fit(
|
||
|
iris.data,
|
||
|
iris.target,
|
||
|
sample_weight=rng.randint(10, size=(iris.data.shape[0])),
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_warm_start(random_state=42):
|
||
|
# Test if fitting incrementally with warm start gives a forest of the
|
||
|
# right size and the same results as a normal fit.
|
||
|
X, y = make_hastie_10_2(n_samples=20, random_state=1)
|
||
|
|
||
|
clf_ws = None
|
||
|
for n_estimators in [5, 10]:
|
||
|
if clf_ws is None:
|
||
|
clf_ws = BaggingClassifier(
|
||
|
n_estimators=n_estimators, random_state=random_state, warm_start=True
|
||
|
)
|
||
|
else:
|
||
|
clf_ws.set_params(n_estimators=n_estimators)
|
||
|
clf_ws.fit(X, y)
|
||
|
assert len(clf_ws) == n_estimators
|
||
|
|
||
|
clf_no_ws = BaggingClassifier(
|
||
|
n_estimators=10, random_state=random_state, warm_start=False
|
||
|
)
|
||
|
clf_no_ws.fit(X, y)
|
||
|
|
||
|
assert set([tree.random_state for tree in clf_ws]) == set(
|
||
|
[tree.random_state for tree in clf_no_ws]
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_warm_start_smaller_n_estimators():
|
||
|
# Test if warm start'ed second fit with smaller n_estimators raises error.
|
||
|
X, y = make_hastie_10_2(n_samples=20, random_state=1)
|
||
|
clf = BaggingClassifier(n_estimators=5, warm_start=True)
|
||
|
clf.fit(X, y)
|
||
|
clf.set_params(n_estimators=4)
|
||
|
with pytest.raises(ValueError):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_warm_start_equal_n_estimators():
|
||
|
# Test that nothing happens when fitting without increasing n_estimators
|
||
|
X, y = make_hastie_10_2(n_samples=20, random_state=1)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)
|
||
|
|
||
|
clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83)
|
||
|
clf.fit(X_train, y_train)
|
||
|
|
||
|
y_pred = clf.predict(X_test)
|
||
|
# modify X to nonsense values, this should not change anything
|
||
|
X_train += 1.0
|
||
|
|
||
|
warn_msg = "Warm-start fitting without increasing n_estimators does not"
|
||
|
with pytest.warns(UserWarning, match=warn_msg):
|
||
|
clf.fit(X_train, y_train)
|
||
|
assert_array_equal(y_pred, clf.predict(X_test))
|
||
|
|
||
|
|
||
|
def test_warm_start_equivalence():
|
||
|
# warm started classifier with 5+5 estimators should be equivalent to
|
||
|
# one classifier with 10 estimators
|
||
|
X, y = make_hastie_10_2(n_samples=20, random_state=1)
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)
|
||
|
|
||
|
clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141)
|
||
|
clf_ws.fit(X_train, y_train)
|
||
|
clf_ws.set_params(n_estimators=10)
|
||
|
clf_ws.fit(X_train, y_train)
|
||
|
y1 = clf_ws.predict(X_test)
|
||
|
|
||
|
clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141)
|
||
|
clf.fit(X_train, y_train)
|
||
|
y2 = clf.predict(X_test)
|
||
|
|
||
|
assert_array_almost_equal(y1, y2)
|
||
|
|
||
|
|
||
|
def test_warm_start_with_oob_score_fails():
|
||
|
# Check using oob_score and warm_start simultaneously fails
|
||
|
X, y = make_hastie_10_2(n_samples=20, random_state=1)
|
||
|
clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True)
|
||
|
with pytest.raises(ValueError):
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_oob_score_removed_on_warm_start():
|
||
|
X, y = make_hastie_10_2(n_samples=100, random_state=1)
|
||
|
|
||
|
clf = BaggingClassifier(n_estimators=5, oob_score=True)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
clf.set_params(warm_start=True, oob_score=False, n_estimators=10)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
with pytest.raises(AttributeError):
|
||
|
getattr(clf, "oob_score_")
|
||
|
|
||
|
|
||
|
def test_oob_score_consistency():
|
||
|
# Make sure OOB scores are identical when random_state, estimator, and
|
||
|
# training data are fixed and fitting is done twice
|
||
|
X, y = make_hastie_10_2(n_samples=200, random_state=1)
|
||
|
bagging = BaggingClassifier(
|
||
|
KNeighborsClassifier(),
|
||
|
max_samples=0.5,
|
||
|
max_features=0.5,
|
||
|
oob_score=True,
|
||
|
random_state=1,
|
||
|
)
|
||
|
assert bagging.fit(X, y).oob_score_ == bagging.fit(X, y).oob_score_
|
||
|
|
||
|
|
||
|
def test_estimators_samples():
|
||
|
# Check that format of estimators_samples_ is correct and that results
|
||
|
# generated at fit time can be identically reproduced at a later time
|
||
|
# using data saved in object attributes.
|
||
|
X, y = make_hastie_10_2(n_samples=200, random_state=1)
|
||
|
bagging = BaggingClassifier(
|
||
|
LogisticRegression(),
|
||
|
max_samples=0.5,
|
||
|
max_features=0.5,
|
||
|
random_state=1,
|
||
|
bootstrap=False,
|
||
|
)
|
||
|
bagging.fit(X, y)
|
||
|
|
||
|
# Get relevant attributes
|
||
|
estimators_samples = bagging.estimators_samples_
|
||
|
estimators_features = bagging.estimators_features_
|
||
|
estimators = bagging.estimators_
|
||
|
|
||
|
# Test for correct formatting
|
||
|
assert len(estimators_samples) == len(estimators)
|
||
|
assert len(estimators_samples[0]) == len(X) // 2
|
||
|
assert estimators_samples[0].dtype.kind == "i"
|
||
|
|
||
|
# Re-fit single estimator to test for consistent sampling
|
||
|
estimator_index = 0
|
||
|
estimator_samples = estimators_samples[estimator_index]
|
||
|
estimator_features = estimators_features[estimator_index]
|
||
|
estimator = estimators[estimator_index]
|
||
|
|
||
|
X_train = (X[estimator_samples])[:, estimator_features]
|
||
|
y_train = y[estimator_samples]
|
||
|
|
||
|
orig_coefs = estimator.coef_
|
||
|
estimator.fit(X_train, y_train)
|
||
|
new_coefs = estimator.coef_
|
||
|
|
||
|
assert_array_almost_equal(orig_coefs, new_coefs)
|
||
|
|
||
|
|
||
|
def test_estimators_samples_deterministic():
|
||
|
# This test is a regression test to check that with a random step
|
||
|
# (e.g. SparseRandomProjection) and a given random state, the results
|
||
|
# generated at fit time can be identically reproduced at a later time using
|
||
|
# data saved in object attributes. Check issue #9524 for full discussion.
|
||
|
|
||
|
iris = load_iris()
|
||
|
X, y = iris.data, iris.target
|
||
|
|
||
|
base_pipeline = make_pipeline(
|
||
|
SparseRandomProjection(n_components=2), LogisticRegression()
|
||
|
)
|
||
|
clf = BaggingClassifier(estimator=base_pipeline, max_samples=0.5, random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
pipeline_estimator_coef = clf.estimators_[0].steps[-1][1].coef_.copy()
|
||
|
|
||
|
estimator = clf.estimators_[0]
|
||
|
estimator_sample = clf.estimators_samples_[0]
|
||
|
estimator_feature = clf.estimators_features_[0]
|
||
|
|
||
|
X_train = (X[estimator_sample])[:, estimator_feature]
|
||
|
y_train = y[estimator_sample]
|
||
|
|
||
|
estimator.fit(X_train, y_train)
|
||
|
assert_array_equal(estimator.steps[-1][1].coef_, pipeline_estimator_coef)
|
||
|
|
||
|
|
||
|
def test_max_samples_consistency():
|
||
|
# Make sure validated max_samples and original max_samples are identical
|
||
|
# when valid integer max_samples supplied by user
|
||
|
max_samples = 100
|
||
|
X, y = make_hastie_10_2(n_samples=2 * max_samples, random_state=1)
|
||
|
bagging = BaggingClassifier(
|
||
|
KNeighborsClassifier(),
|
||
|
max_samples=max_samples,
|
||
|
max_features=0.5,
|
||
|
random_state=1,
|
||
|
)
|
||
|
bagging.fit(X, y)
|
||
|
assert bagging._max_samples == max_samples
|
||
|
|
||
|
|
||
|
def test_set_oob_score_label_encoding():
|
||
|
# Make sure the oob_score doesn't change when the labels change
|
||
|
# See: https://github.com/scikit-learn/scikit-learn/issues/8933
|
||
|
random_state = 5
|
||
|
X = [[-1], [0], [1]] * 5
|
||
|
Y1 = ["A", "B", "C"] * 5
|
||
|
Y2 = [-1, 0, 1] * 5
|
||
|
Y3 = [0, 1, 2] * 5
|
||
|
x1 = (
|
||
|
BaggingClassifier(oob_score=True, random_state=random_state)
|
||
|
.fit(X, Y1)
|
||
|
.oob_score_
|
||
|
)
|
||
|
x2 = (
|
||
|
BaggingClassifier(oob_score=True, random_state=random_state)
|
||
|
.fit(X, Y2)
|
||
|
.oob_score_
|
||
|
)
|
||
|
x3 = (
|
||
|
BaggingClassifier(oob_score=True, random_state=random_state)
|
||
|
.fit(X, Y3)
|
||
|
.oob_score_
|
||
|
)
|
||
|
assert [x1, x2] == [x3, x3]
|
||
|
|
||
|
|
||
|
def replace(X):
|
||
|
X = X.astype("float", copy=True)
|
||
|
X[~np.isfinite(X)] = 0
|
||
|
return X
|
||
|
|
||
|
|
||
|
def test_bagging_regressor_with_missing_inputs():
|
||
|
# Check that BaggingRegressor can accept X with missing/infinite data
|
||
|
X = np.array(
|
||
|
[
|
||
|
[1, 3, 5],
|
||
|
[2, None, 6],
|
||
|
[2, np.nan, 6],
|
||
|
[2, np.inf, 6],
|
||
|
[2, -np.inf, 6],
|
||
|
]
|
||
|
)
|
||
|
y_values = [
|
||
|
np.array([2, 3, 3, 3, 3]),
|
||
|
np.array(
|
||
|
[
|
||
|
[2, 1, 9],
|
||
|
[3, 6, 8],
|
||
|
[3, 6, 8],
|
||
|
[3, 6, 8],
|
||
|
[3, 6, 8],
|
||
|
]
|
||
|
),
|
||
|
]
|
||
|
for y in y_values:
|
||
|
regressor = DecisionTreeRegressor()
|
||
|
pipeline = make_pipeline(FunctionTransformer(replace), regressor)
|
||
|
pipeline.fit(X, y).predict(X)
|
||
|
bagging_regressor = BaggingRegressor(pipeline)
|
||
|
y_hat = bagging_regressor.fit(X, y).predict(X)
|
||
|
assert y.shape == y_hat.shape
|
||
|
|
||
|
# Verify that exceptions can be raised by wrapper regressor
|
||
|
regressor = DecisionTreeRegressor()
|
||
|
pipeline = make_pipeline(regressor)
|
||
|
with pytest.raises(ValueError):
|
||
|
pipeline.fit(X, y)
|
||
|
bagging_regressor = BaggingRegressor(pipeline)
|
||
|
with pytest.raises(ValueError):
|
||
|
bagging_regressor.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_bagging_classifier_with_missing_inputs():
|
||
|
# Check that BaggingClassifier can accept X with missing/infinite data
|
||
|
X = np.array(
|
||
|
[
|
||
|
[1, 3, 5],
|
||
|
[2, None, 6],
|
||
|
[2, np.nan, 6],
|
||
|
[2, np.inf, 6],
|
||
|
[2, -np.inf, 6],
|
||
|
]
|
||
|
)
|
||
|
y = np.array([3, 6, 6, 6, 6])
|
||
|
classifier = DecisionTreeClassifier()
|
||
|
pipeline = make_pipeline(FunctionTransformer(replace), classifier)
|
||
|
pipeline.fit(X, y).predict(X)
|
||
|
bagging_classifier = BaggingClassifier(pipeline)
|
||
|
bagging_classifier.fit(X, y)
|
||
|
y_hat = bagging_classifier.predict(X)
|
||
|
assert y.shape == y_hat.shape
|
||
|
bagging_classifier.predict_log_proba(X)
|
||
|
bagging_classifier.predict_proba(X)
|
||
|
|
||
|
# Verify that exceptions can be raised by wrapper classifier
|
||
|
classifier = DecisionTreeClassifier()
|
||
|
pipeline = make_pipeline(classifier)
|
||
|
with pytest.raises(ValueError):
|
||
|
pipeline.fit(X, y)
|
||
|
bagging_classifier = BaggingClassifier(pipeline)
|
||
|
with pytest.raises(ValueError):
|
||
|
bagging_classifier.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_bagging_small_max_features():
|
||
|
# Check that Bagging estimator can accept low fractional max_features
|
||
|
|
||
|
X = np.array([[1, 2], [3, 4]])
|
||
|
y = np.array([1, 0])
|
||
|
|
||
|
bagging = BaggingClassifier(LogisticRegression(), max_features=0.3, random_state=1)
|
||
|
bagging.fit(X, y)
|
||
|
|
||
|
|
||
|
def test_bagging_get_estimators_indices():
|
||
|
# Check that Bagging estimator can generate sample indices properly
|
||
|
# Non-regression test for:
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/16436
|
||
|
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(13, 4)
|
||
|
y = np.arange(13)
|
||
|
|
||
|
class MyEstimator(DecisionTreeRegressor):
|
||
|
"""An estimator which stores y indices information at fit."""
|
||
|
|
||
|
def fit(self, X, y):
|
||
|
self._sample_indices = y
|
||
|
|
||
|
clf = BaggingRegressor(estimator=MyEstimator(), n_estimators=1, random_state=0)
|
||
|
clf.fit(X, y)
|
||
|
|
||
|
assert_array_equal(clf.estimators_[0]._sample_indices, clf.estimators_samples_[0])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"bagging, expected_allow_nan",
|
||
|
[
|
||
|
(BaggingClassifier(HistGradientBoostingClassifier(max_iter=1)), True),
|
||
|
(BaggingRegressor(HistGradientBoostingRegressor(max_iter=1)), True),
|
||
|
(BaggingClassifier(LogisticRegression()), False),
|
||
|
(BaggingRegressor(SVR()), False),
|
||
|
],
|
||
|
)
|
||
|
def test_bagging_allow_nan_tag(bagging, expected_allow_nan):
|
||
|
"""Check that bagging inherits allow_nan tag."""
|
||
|
assert bagging._get_tags()["allow_nan"] == expected_allow_nan
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"model",
|
||
|
[
|
||
|
BaggingClassifier(
|
||
|
estimator=RandomForestClassifier(n_estimators=1), n_estimators=1
|
||
|
),
|
||
|
BaggingRegressor(
|
||
|
estimator=RandomForestRegressor(n_estimators=1), n_estimators=1
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_bagging_with_metadata_routing(model):
|
||
|
"""Make sure that metadata routing works with non-default estimator."""
|
||
|
with sklearn.config_context(enable_metadata_routing=True):
|
||
|
model.fit(iris.data, iris.target)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"model",
|
||
|
[
|
||
|
BaggingClassifier(
|
||
|
estimator=AdaBoostClassifier(n_estimators=1, algorithm="SAMME"),
|
||
|
n_estimators=1,
|
||
|
),
|
||
|
BaggingRegressor(estimator=AdaBoostRegressor(n_estimators=1), n_estimators=1),
|
||
|
],
|
||
|
)
|
||
|
def test_bagging_without_support_metadata_routing(model):
|
||
|
"""Make sure that we still can use an estimator that does not implement the
|
||
|
metadata routing."""
|
||
|
model.fit(iris.data, iris.target)
|