230 lines
7.5 KiB
Python
230 lines
7.5 KiB
Python
|
# Author: Mathieu Blondel
|
|||
|
# License: BSD 3 clause
|
|||
|
from numbers import Real
|
|||
|
|
|||
|
from ..utils._param_validation import Interval, StrOptions
|
|||
|
from ._stochastic_gradient import BaseSGDClassifier
|
|||
|
|
|||
|
|
|||
|
class Perceptron(BaseSGDClassifier):
|
|||
|
"""Linear perceptron classifier.
|
|||
|
|
|||
|
The implementation is a wrapper around :class:`~sklearn.linear_model.SGDClassifier`
|
|||
|
by fixing the `loss` and `learning_rate` parameters as::
|
|||
|
|
|||
|
SGDClassifier(loss="perceptron", learning_rate="constant")
|
|||
|
|
|||
|
Other available parameters are described below and are forwarded to
|
|||
|
:class:`~sklearn.linear_model.SGDClassifier`.
|
|||
|
|
|||
|
Read more in the :ref:`User Guide <perceptron>`.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
|
|||
|
penalty : {'l2','l1','elasticnet'}, default=None
|
|||
|
The penalty (aka regularization term) to be used.
|
|||
|
|
|||
|
alpha : float, default=0.0001
|
|||
|
Constant that multiplies the regularization term if regularization is
|
|||
|
used.
|
|||
|
|
|||
|
l1_ratio : float, default=0.15
|
|||
|
The Elastic Net mixing parameter, with `0 <= l1_ratio <= 1`.
|
|||
|
`l1_ratio=0` corresponds to L2 penalty, `l1_ratio=1` to L1.
|
|||
|
Only used if `penalty='elasticnet'`.
|
|||
|
|
|||
|
.. versionadded:: 0.24
|
|||
|
|
|||
|
fit_intercept : bool, default=True
|
|||
|
Whether the intercept should be estimated or not. If False, the
|
|||
|
data is assumed to be already centered.
|
|||
|
|
|||
|
max_iter : int, default=1000
|
|||
|
The maximum number of passes over the training data (aka epochs).
|
|||
|
It only impacts the behavior in the ``fit`` method, and not the
|
|||
|
:meth:`partial_fit` method.
|
|||
|
|
|||
|
.. versionadded:: 0.19
|
|||
|
|
|||
|
tol : float or None, default=1e-3
|
|||
|
The stopping criterion. If it is not None, the iterations will stop
|
|||
|
when (loss > previous_loss - tol).
|
|||
|
|
|||
|
.. versionadded:: 0.19
|
|||
|
|
|||
|
shuffle : bool, default=True
|
|||
|
Whether or not the training data should be shuffled after each epoch.
|
|||
|
|
|||
|
verbose : int, default=0
|
|||
|
The verbosity level.
|
|||
|
|
|||
|
eta0 : float, default=1
|
|||
|
Constant by which the updates are multiplied.
|
|||
|
|
|||
|
n_jobs : int, default=None
|
|||
|
The number of CPUs to use to do the OVA (One Versus All, for
|
|||
|
multi-class problems) computation.
|
|||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
|||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
|||
|
for more details.
|
|||
|
|
|||
|
random_state : int, RandomState instance or None, default=0
|
|||
|
Used to shuffle the training data, when ``shuffle`` is set to
|
|||
|
``True``. Pass an int for reproducible output across multiple
|
|||
|
function calls.
|
|||
|
See :term:`Glossary <random_state>`.
|
|||
|
|
|||
|
early_stopping : bool, default=False
|
|||
|
Whether to use early stopping to terminate training when validation
|
|||
|
score is not improving. If set to True, it will automatically set aside
|
|||
|
a stratified fraction of training data as validation and terminate
|
|||
|
training when validation score is not improving by at least `tol` for
|
|||
|
`n_iter_no_change` consecutive epochs.
|
|||
|
|
|||
|
.. versionadded:: 0.20
|
|||
|
|
|||
|
validation_fraction : float, default=0.1
|
|||
|
The proportion of training data to set aside as validation set for
|
|||
|
early stopping. Must be between 0 and 1.
|
|||
|
Only used if early_stopping is True.
|
|||
|
|
|||
|
.. versionadded:: 0.20
|
|||
|
|
|||
|
n_iter_no_change : int, default=5
|
|||
|
Number of iterations with no improvement to wait before early stopping.
|
|||
|
|
|||
|
.. versionadded:: 0.20
|
|||
|
|
|||
|
class_weight : dict, {class_label: weight} or "balanced", default=None
|
|||
|
Preset for the class_weight fit parameter.
|
|||
|
|
|||
|
Weights associated with classes. If not given, all classes
|
|||
|
are supposed to have weight one.
|
|||
|
|
|||
|
The "balanced" mode uses the values of y to automatically adjust
|
|||
|
weights inversely proportional to class frequencies in the input data
|
|||
|
as ``n_samples / (n_classes * np.bincount(y))``.
|
|||
|
|
|||
|
warm_start : bool, default=False
|
|||
|
When set to True, reuse the solution of the previous call to fit as
|
|||
|
initialization, otherwise, just erase the previous solution. See
|
|||
|
:term:`the Glossary <warm_start>`.
|
|||
|
|
|||
|
Attributes
|
|||
|
----------
|
|||
|
classes_ : ndarray of shape (n_classes,)
|
|||
|
The unique classes labels.
|
|||
|
|
|||
|
coef_ : ndarray of shape (1, n_features) if n_classes == 2 else \
|
|||
|
(n_classes, n_features)
|
|||
|
Weights assigned to the features.
|
|||
|
|
|||
|
intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,)
|
|||
|
Constants in decision function.
|
|||
|
|
|||
|
loss_function_ : concrete LossFunction
|
|||
|
The function that determines the loss, or difference between the
|
|||
|
output of the algorithm and the target values.
|
|||
|
|
|||
|
n_features_in_ : int
|
|||
|
Number of features seen during :term:`fit`.
|
|||
|
|
|||
|
.. versionadded:: 0.24
|
|||
|
|
|||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
|||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
|||
|
has feature names that are all strings.
|
|||
|
|
|||
|
.. versionadded:: 1.0
|
|||
|
|
|||
|
n_iter_ : int
|
|||
|
The actual number of iterations to reach the stopping criterion.
|
|||
|
For multiclass fits, it is the maximum over every binary fit.
|
|||
|
|
|||
|
t_ : int
|
|||
|
Number of weight updates performed during training.
|
|||
|
Same as ``(n_iter_ * n_samples + 1)``.
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
sklearn.linear_model.SGDClassifier : Linear classifiers
|
|||
|
(SVM, logistic regression, etc.) with SGD training.
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
``Perceptron`` is a classification algorithm which shares the same
|
|||
|
underlying implementation with ``SGDClassifier``. In fact,
|
|||
|
``Perceptron()`` is equivalent to `SGDClassifier(loss="perceptron",
|
|||
|
eta0=1, learning_rate="constant", penalty=None)`.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
https://en.wikipedia.org/wiki/Perceptron and references therein.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> from sklearn.datasets import load_digits
|
|||
|
>>> from sklearn.linear_model import Perceptron
|
|||
|
>>> X, y = load_digits(return_X_y=True)
|
|||
|
>>> clf = Perceptron(tol=1e-3, random_state=0)
|
|||
|
>>> clf.fit(X, y)
|
|||
|
Perceptron()
|
|||
|
>>> clf.score(X, y)
|
|||
|
0.939...
|
|||
|
"""
|
|||
|
|
|||
|
_parameter_constraints: dict = {**BaseSGDClassifier._parameter_constraints}
|
|||
|
_parameter_constraints.pop("loss")
|
|||
|
_parameter_constraints.pop("average")
|
|||
|
_parameter_constraints.update(
|
|||
|
{
|
|||
|
"penalty": [StrOptions({"l2", "l1", "elasticnet"}), None],
|
|||
|
"alpha": [Interval(Real, 0, None, closed="left")],
|
|||
|
"l1_ratio": [Interval(Real, 0, 1, closed="both")],
|
|||
|
"eta0": [Interval(Real, 0, None, closed="left")],
|
|||
|
}
|
|||
|
)
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
*,
|
|||
|
penalty=None,
|
|||
|
alpha=0.0001,
|
|||
|
l1_ratio=0.15,
|
|||
|
fit_intercept=True,
|
|||
|
max_iter=1000,
|
|||
|
tol=1e-3,
|
|||
|
shuffle=True,
|
|||
|
verbose=0,
|
|||
|
eta0=1.0,
|
|||
|
n_jobs=None,
|
|||
|
random_state=0,
|
|||
|
early_stopping=False,
|
|||
|
validation_fraction=0.1,
|
|||
|
n_iter_no_change=5,
|
|||
|
class_weight=None,
|
|||
|
warm_start=False,
|
|||
|
):
|
|||
|
super().__init__(
|
|||
|
loss="perceptron",
|
|||
|
penalty=penalty,
|
|||
|
alpha=alpha,
|
|||
|
l1_ratio=l1_ratio,
|
|||
|
fit_intercept=fit_intercept,
|
|||
|
max_iter=max_iter,
|
|||
|
tol=tol,
|
|||
|
shuffle=shuffle,
|
|||
|
verbose=verbose,
|
|||
|
random_state=random_state,
|
|||
|
learning_rate="constant",
|
|||
|
eta0=eta0,
|
|||
|
early_stopping=early_stopping,
|
|||
|
validation_fraction=validation_fraction,
|
|||
|
n_iter_no_change=n_iter_no_change,
|
|||
|
power_t=0.5,
|
|||
|
warm_start=warm_start,
|
|||
|
class_weight=class_weight,
|
|||
|
n_jobs=n_jobs,
|
|||
|
)
|