533 lines
12 KiB
Python
533 lines
12 KiB
Python
|
"""
|
||
|
This module contains SymPy functions mathcin corresponding to special math functions in the
|
||
|
C standard library (since C99, also available in C++11).
|
||
|
|
||
|
The functions defined in this module allows the user to express functions such as ``expm1``
|
||
|
as a SymPy function for symbolic manipulation.
|
||
|
|
||
|
"""
|
||
|
from sympy.core.function import ArgumentIndexError, Function
|
||
|
from sympy.core.numbers import Rational
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
|
||
|
|
||
|
def _expm1(x):
|
||
|
return exp(x) - S.One
|
||
|
|
||
|
|
||
|
class expm1(Function):
|
||
|
"""
|
||
|
Represents the exponential function minus one.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The benefit of using ``expm1(x)`` over ``exp(x) - 1``
|
||
|
is that the latter is prone to cancellation under finite precision
|
||
|
arithmetic when x is close to zero.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import expm1
|
||
|
>>> '%.0e' % expm1(1e-99).evalf()
|
||
|
'1e-99'
|
||
|
>>> from math import exp
|
||
|
>>> exp(1e-99) - 1
|
||
|
0.0
|
||
|
>>> expm1(x).diff(x)
|
||
|
exp(x)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
log1p
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return exp(*self.args)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _expm1(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
||
|
return exp(arg) - S.One
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_exp
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
exp_arg = exp.eval(arg)
|
||
|
if exp_arg is not None:
|
||
|
return exp_arg - S.One
|
||
|
|
||
|
def _eval_is_real(self):
|
||
|
return self.args[0].is_real
|
||
|
|
||
|
def _eval_is_finite(self):
|
||
|
return self.args[0].is_finite
|
||
|
|
||
|
|
||
|
def _log1p(x):
|
||
|
return log(x + S.One)
|
||
|
|
||
|
|
||
|
class log1p(Function):
|
||
|
"""
|
||
|
Represents the natural logarithm of a number plus one.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The benefit of using ``log1p(x)`` over ``log(x + 1)``
|
||
|
is that the latter is prone to cancellation under finite precision
|
||
|
arithmetic when x is close to zero.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import log1p
|
||
|
>>> from sympy import expand_log
|
||
|
>>> '%.0e' % expand_log(log1p(1e-99)).evalf()
|
||
|
'1e-99'
|
||
|
>>> from math import log
|
||
|
>>> log(1 + 1e-99)
|
||
|
0.0
|
||
|
>>> log1p(x).diff(x)
|
||
|
1/(x + 1)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
expm1
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return S.One/(self.args[0] + S.One)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _log1p(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_log(self, arg, **kwargs):
|
||
|
return _log1p(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_Rational:
|
||
|
return log(arg + S.One)
|
||
|
elif not arg.is_Float: # not safe to add 1 to Float
|
||
|
return log.eval(arg + S.One)
|
||
|
elif arg.is_number:
|
||
|
return log(Rational(arg) + S.One)
|
||
|
|
||
|
def _eval_is_real(self):
|
||
|
return (self.args[0] + S.One).is_nonnegative
|
||
|
|
||
|
def _eval_is_finite(self):
|
||
|
if (self.args[0] + S.One).is_zero:
|
||
|
return False
|
||
|
return self.args[0].is_finite
|
||
|
|
||
|
def _eval_is_positive(self):
|
||
|
return self.args[0].is_positive
|
||
|
|
||
|
def _eval_is_zero(self):
|
||
|
return self.args[0].is_zero
|
||
|
|
||
|
def _eval_is_nonnegative(self):
|
||
|
return self.args[0].is_nonnegative
|
||
|
|
||
|
_Two = S(2)
|
||
|
|
||
|
def _exp2(x):
|
||
|
return Pow(_Two, x)
|
||
|
|
||
|
class exp2(Function):
|
||
|
"""
|
||
|
Represents the exponential function with base two.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The benefit of using ``exp2(x)`` over ``2**x``
|
||
|
is that the latter is not as efficient under finite precision
|
||
|
arithmetic.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import exp2
|
||
|
>>> exp2(2).evalf() == 4.0
|
||
|
True
|
||
|
>>> exp2(x).diff(x)
|
||
|
log(2)*exp2(x)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
log2
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return self*log(_Two)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_rewrite_as_Pow(self, arg, **kwargs):
|
||
|
return _exp2(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _exp2(*self.args)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_number:
|
||
|
return _exp2(arg)
|
||
|
|
||
|
|
||
|
def _log2(x):
|
||
|
return log(x)/log(_Two)
|
||
|
|
||
|
|
||
|
class log2(Function):
|
||
|
"""
|
||
|
Represents the logarithm function with base two.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The benefit of using ``log2(x)`` over ``log(x)/log(2)``
|
||
|
is that the latter is not as efficient under finite precision
|
||
|
arithmetic.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import log2
|
||
|
>>> log2(4).evalf() == 2.0
|
||
|
True
|
||
|
>>> log2(x).diff(x)
|
||
|
1/(x*log(2))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
exp2
|
||
|
log10
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return S.One/(log(_Two)*self.args[0])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_number:
|
||
|
result = log.eval(arg, base=_Two)
|
||
|
if result.is_Atom:
|
||
|
return result
|
||
|
elif arg.is_Pow and arg.base == _Two:
|
||
|
return arg.exp
|
||
|
|
||
|
def _eval_evalf(self, *args, **kwargs):
|
||
|
return self.rewrite(log).evalf(*args, **kwargs)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _log2(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_log(self, arg, **kwargs):
|
||
|
return _log2(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
||
|
|
||
|
|
||
|
def _fma(x, y, z):
|
||
|
return x*y + z
|
||
|
|
||
|
|
||
|
class fma(Function):
|
||
|
"""
|
||
|
Represents "fused multiply add".
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The benefit of using ``fma(x, y, z)`` over ``x*y + z``
|
||
|
is that, under finite precision arithmetic, the former is
|
||
|
supported by special instructions on some CPUs.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> from sympy.codegen.cfunctions import fma
|
||
|
>>> fma(x, y, z).diff(x)
|
||
|
y
|
||
|
|
||
|
"""
|
||
|
nargs = 3
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex in (1, 2):
|
||
|
return self.args[2 - argindex]
|
||
|
elif argindex == 3:
|
||
|
return S.One
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _fma(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
||
|
return _fma(arg)
|
||
|
|
||
|
|
||
|
_Ten = S(10)
|
||
|
|
||
|
|
||
|
def _log10(x):
|
||
|
return log(x)/log(_Ten)
|
||
|
|
||
|
|
||
|
class log10(Function):
|
||
|
"""
|
||
|
Represents the logarithm function with base ten.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import log10
|
||
|
>>> log10(100).evalf() == 2.0
|
||
|
True
|
||
|
>>> log10(x).diff(x)
|
||
|
1/(x*log(10))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
log2
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return S.One/(log(_Ten)*self.args[0])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, arg):
|
||
|
if arg.is_number:
|
||
|
result = log.eval(arg, base=_Ten)
|
||
|
if result.is_Atom:
|
||
|
return result
|
||
|
elif arg.is_Pow and arg.base == _Ten:
|
||
|
return arg.exp
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _log10(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_log(self, arg, **kwargs):
|
||
|
return _log10(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
||
|
|
||
|
|
||
|
def _Sqrt(x):
|
||
|
return Pow(x, S.Half)
|
||
|
|
||
|
|
||
|
class Sqrt(Function): # 'sqrt' already defined in sympy.functions.elementary.miscellaneous
|
||
|
"""
|
||
|
Represents the square root function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The reason why one would use ``Sqrt(x)`` over ``sqrt(x)``
|
||
|
is that the latter is internally represented as ``Pow(x, S.Half)`` which
|
||
|
may not be what one wants when doing code-generation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import Sqrt
|
||
|
>>> Sqrt(x)
|
||
|
Sqrt(x)
|
||
|
>>> Sqrt(x).diff(x)
|
||
|
1/(2*sqrt(x))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Cbrt
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return Pow(self.args[0], Rational(-1, 2))/_Two
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _Sqrt(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_Pow(self, arg, **kwargs):
|
||
|
return _Sqrt(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
|
||
|
|
||
|
|
||
|
def _Cbrt(x):
|
||
|
return Pow(x, Rational(1, 3))
|
||
|
|
||
|
|
||
|
class Cbrt(Function): # 'cbrt' already defined in sympy.functions.elementary.miscellaneous
|
||
|
"""
|
||
|
Represents the cube root function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The reason why one would use ``Cbrt(x)`` over ``cbrt(x)``
|
||
|
is that the latter is internally represented as ``Pow(x, Rational(1, 3))`` which
|
||
|
may not be what one wants when doing code-generation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.codegen.cfunctions import Cbrt
|
||
|
>>> Cbrt(x)
|
||
|
Cbrt(x)
|
||
|
>>> Cbrt(x).diff(x)
|
||
|
1/(3*x**(2/3))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
Sqrt
|
||
|
"""
|
||
|
nargs = 1
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex == 1:
|
||
|
return Pow(self.args[0], Rational(-_Two/3))/3
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _Cbrt(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_Pow(self, arg, **kwargs):
|
||
|
return _Cbrt(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
|
||
|
|
||
|
|
||
|
def _hypot(x, y):
|
||
|
return sqrt(Pow(x, 2) + Pow(y, 2))
|
||
|
|
||
|
|
||
|
class hypot(Function):
|
||
|
"""
|
||
|
Represents the hypotenuse function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The hypotenuse function is provided by e.g. the math library
|
||
|
in the C99 standard, hence one may want to represent the function
|
||
|
symbolically when doing code-generation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> from sympy.codegen.cfunctions import hypot
|
||
|
>>> hypot(3, 4).evalf() == 5.0
|
||
|
True
|
||
|
>>> hypot(x, y)
|
||
|
hypot(x, y)
|
||
|
>>> hypot(x, y).diff(x)
|
||
|
x/hypot(x, y)
|
||
|
|
||
|
"""
|
||
|
nargs = 2
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
"""
|
||
|
Returns the first derivative of this function.
|
||
|
"""
|
||
|
if argindex in (1, 2):
|
||
|
return 2*self.args[argindex-1]/(_Two*self.func(*self.args))
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
return _hypot(*self.args)
|
||
|
|
||
|
def _eval_rewrite_as_Pow(self, arg, **kwargs):
|
||
|
return _hypot(arg)
|
||
|
|
||
|
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
|