270 lines
6.5 KiB
Python
270 lines
6.5 KiB
Python
|
""" This module contains the Mathieu functions.
|
||
|
"""
|
||
|
|
||
|
from sympy.core.function import Function, ArgumentIndexError
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.trigonometric import sin, cos
|
||
|
|
||
|
|
||
|
class MathieuBase(Function):
|
||
|
"""
|
||
|
Abstract base class for Mathieu functions.
|
||
|
|
||
|
This class is meant to reduce code duplication.
|
||
|
|
||
|
"""
|
||
|
|
||
|
unbranched = True
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
a, q, z = self.args
|
||
|
return self.func(a.conjugate(), q.conjugate(), z.conjugate())
|
||
|
|
||
|
|
||
|
class mathieus(MathieuBase):
|
||
|
r"""
|
||
|
The Mathieu Sine function $S(a,q,z)$.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is one solution of the Mathieu differential equation:
|
||
|
|
||
|
.. math ::
|
||
|
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
|
||
|
|
||
|
The other solution is the Mathieu Cosine function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import diff, mathieus
|
||
|
>>> from sympy.abc import a, q, z
|
||
|
|
||
|
>>> mathieus(a, q, z)
|
||
|
mathieus(a, q, z)
|
||
|
|
||
|
>>> mathieus(a, 0, z)
|
||
|
sin(sqrt(a)*z)
|
||
|
|
||
|
>>> diff(mathieus(a, q, z), z)
|
||
|
mathieusprime(a, q, z)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
mathieuc: Mathieu cosine function.
|
||
|
mathieusprime: Derivative of Mathieu sine function.
|
||
|
mathieucprime: Derivative of Mathieu cosine function.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
|
||
|
.. [2] https://dlmf.nist.gov/28
|
||
|
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
|
||
|
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/
|
||
|
|
||
|
"""
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 3:
|
||
|
a, q, z = self.args
|
||
|
return mathieusprime(a, q, z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, a, q, z):
|
||
|
if q.is_Number and q.is_zero:
|
||
|
return sin(sqrt(a)*z)
|
||
|
# Try to pull out factors of -1
|
||
|
if z.could_extract_minus_sign():
|
||
|
return -cls(a, q, -z)
|
||
|
|
||
|
|
||
|
class mathieuc(MathieuBase):
|
||
|
r"""
|
||
|
The Mathieu Cosine function $C(a,q,z)$.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is one solution of the Mathieu differential equation:
|
||
|
|
||
|
.. math ::
|
||
|
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
|
||
|
|
||
|
The other solution is the Mathieu Sine function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import diff, mathieuc
|
||
|
>>> from sympy.abc import a, q, z
|
||
|
|
||
|
>>> mathieuc(a, q, z)
|
||
|
mathieuc(a, q, z)
|
||
|
|
||
|
>>> mathieuc(a, 0, z)
|
||
|
cos(sqrt(a)*z)
|
||
|
|
||
|
>>> diff(mathieuc(a, q, z), z)
|
||
|
mathieucprime(a, q, z)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
mathieus: Mathieu sine function
|
||
|
mathieusprime: Derivative of Mathieu sine function
|
||
|
mathieucprime: Derivative of Mathieu cosine function
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
|
||
|
.. [2] https://dlmf.nist.gov/28
|
||
|
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
|
||
|
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/
|
||
|
|
||
|
"""
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 3:
|
||
|
a, q, z = self.args
|
||
|
return mathieucprime(a, q, z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, a, q, z):
|
||
|
if q.is_Number and q.is_zero:
|
||
|
return cos(sqrt(a)*z)
|
||
|
# Try to pull out factors of -1
|
||
|
if z.could_extract_minus_sign():
|
||
|
return cls(a, q, -z)
|
||
|
|
||
|
|
||
|
class mathieusprime(MathieuBase):
|
||
|
r"""
|
||
|
The derivative $S^{\prime}(a,q,z)$ of the Mathieu Sine function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is one solution of the Mathieu differential equation:
|
||
|
|
||
|
.. math ::
|
||
|
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
|
||
|
|
||
|
The other solution is the Mathieu Cosine function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import diff, mathieusprime
|
||
|
>>> from sympy.abc import a, q, z
|
||
|
|
||
|
>>> mathieusprime(a, q, z)
|
||
|
mathieusprime(a, q, z)
|
||
|
|
||
|
>>> mathieusprime(a, 0, z)
|
||
|
sqrt(a)*cos(sqrt(a)*z)
|
||
|
|
||
|
>>> diff(mathieusprime(a, q, z), z)
|
||
|
(-a + 2*q*cos(2*z))*mathieus(a, q, z)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
mathieus: Mathieu sine function
|
||
|
mathieuc: Mathieu cosine function
|
||
|
mathieucprime: Derivative of Mathieu cosine function
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
|
||
|
.. [2] https://dlmf.nist.gov/28
|
||
|
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
|
||
|
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/
|
||
|
|
||
|
"""
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 3:
|
||
|
a, q, z = self.args
|
||
|
return (2*q*cos(2*z) - a)*mathieus(a, q, z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, a, q, z):
|
||
|
if q.is_Number and q.is_zero:
|
||
|
return sqrt(a)*cos(sqrt(a)*z)
|
||
|
# Try to pull out factors of -1
|
||
|
if z.could_extract_minus_sign():
|
||
|
return cls(a, q, -z)
|
||
|
|
||
|
|
||
|
class mathieucprime(MathieuBase):
|
||
|
r"""
|
||
|
The derivative $C^{\prime}(a,q,z)$ of the Mathieu Cosine function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function is one solution of the Mathieu differential equation:
|
||
|
|
||
|
.. math ::
|
||
|
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
|
||
|
|
||
|
The other solution is the Mathieu Sine function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import diff, mathieucprime
|
||
|
>>> from sympy.abc import a, q, z
|
||
|
|
||
|
>>> mathieucprime(a, q, z)
|
||
|
mathieucprime(a, q, z)
|
||
|
|
||
|
>>> mathieucprime(a, 0, z)
|
||
|
-sqrt(a)*sin(sqrt(a)*z)
|
||
|
|
||
|
>>> diff(mathieucprime(a, q, z), z)
|
||
|
(-a + 2*q*cos(2*z))*mathieuc(a, q, z)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
mathieus: Mathieu sine function
|
||
|
mathieuc: Mathieu cosine function
|
||
|
mathieusprime: Derivative of Mathieu sine function
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
|
||
|
.. [2] https://dlmf.nist.gov/28
|
||
|
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
|
||
|
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/
|
||
|
|
||
|
"""
|
||
|
|
||
|
def fdiff(self, argindex=1):
|
||
|
if argindex == 3:
|
||
|
a, q, z = self.args
|
||
|
return (2*q*cos(2*z) - a)*mathieuc(a, q, z)
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, a, q, z):
|
||
|
if q.is_Number and q.is_zero:
|
||
|
return -sqrt(a)*sin(sqrt(a)*z)
|
||
|
# Try to pull out factors of -1
|
||
|
if z.could_extract_minus_sign():
|
||
|
return -cls(a, q, -z)
|