1379 lines
36 KiB
Python
1379 lines
36 KiB
Python
|
"""Geometrical Points.
|
||
|
|
||
|
Contains
|
||
|
========
|
||
|
Point
|
||
|
Point2D
|
||
|
Point3D
|
||
|
|
||
|
When methods of Point require 1 or more points as arguments, they
|
||
|
can be passed as a sequence of coordinates or Points:
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
|
||
|
False
|
||
|
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
|
||
|
import warnings
|
||
|
|
||
|
from sympy.core import S, sympify, Expr
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.containers import Tuple
|
||
|
from sympy.core.numbers import Float
|
||
|
from sympy.core.parameters import global_parameters
|
||
|
from sympy.simplify import nsimplify, simplify
|
||
|
from sympy.geometry.exceptions import GeometryError
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.complexes import im
|
||
|
from sympy.functions.elementary.trigonometric import cos, sin
|
||
|
from sympy.matrices import Matrix
|
||
|
from sympy.matrices.expressions import Transpose
|
||
|
from sympy.utilities.iterables import uniq, is_sequence
|
||
|
from sympy.utilities.misc import filldedent, func_name, Undecidable
|
||
|
|
||
|
from .entity import GeometryEntity
|
||
|
|
||
|
from mpmath.libmp.libmpf import prec_to_dps
|
||
|
|
||
|
|
||
|
class Point(GeometryEntity):
|
||
|
"""A point in a n-dimensional Euclidean space.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
coords : sequence of n-coordinate values. In the special
|
||
|
case where n=2 or 3, a Point2D or Point3D will be created
|
||
|
as appropriate.
|
||
|
evaluate : if `True` (default), all floats are turn into
|
||
|
exact types.
|
||
|
dim : number of coordinates the point should have. If coordinates
|
||
|
are unspecified, they are padded with zeros.
|
||
|
on_morph : indicates what should happen when the number of
|
||
|
coordinates of a point need to be changed by adding or
|
||
|
removing zeros. Possible values are `'warn'`, `'error'`, or
|
||
|
`ignore` (default). No warning or error is given when `*args`
|
||
|
is empty and `dim` is given. An error is always raised when
|
||
|
trying to remove nonzero coordinates.
|
||
|
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
length
|
||
|
origin: A `Point` representing the origin of the
|
||
|
appropriately-dimensioned space.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
TypeError : When instantiating with anything but a Point or sequence
|
||
|
ValueError : when instantiating with a sequence with length < 2 or
|
||
|
when trying to reduce dimensions if keyword `on_morph='error'` is
|
||
|
set.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.Segment : Connects two Points
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> from sympy.abc import x
|
||
|
>>> Point(1, 2, 3)
|
||
|
Point3D(1, 2, 3)
|
||
|
>>> Point([1, 2])
|
||
|
Point2D(1, 2)
|
||
|
>>> Point(0, x)
|
||
|
Point2D(0, x)
|
||
|
>>> Point(dim=4)
|
||
|
Point(0, 0, 0, 0)
|
||
|
|
||
|
Floats are automatically converted to Rational unless the
|
||
|
evaluate flag is False:
|
||
|
|
||
|
>>> Point(0.5, 0.25)
|
||
|
Point2D(1/2, 1/4)
|
||
|
>>> Point(0.5, 0.25, evaluate=False)
|
||
|
Point2D(0.5, 0.25)
|
||
|
|
||
|
"""
|
||
|
|
||
|
is_Point = True
|
||
|
|
||
|
def __new__(cls, *args, **kwargs):
|
||
|
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
||
|
on_morph = kwargs.get('on_morph', 'ignore')
|
||
|
|
||
|
# unpack into coords
|
||
|
coords = args[0] if len(args) == 1 else args
|
||
|
|
||
|
# check args and handle quickly handle Point instances
|
||
|
if isinstance(coords, Point):
|
||
|
# even if we're mutating the dimension of a point, we
|
||
|
# don't reevaluate its coordinates
|
||
|
evaluate = False
|
||
|
if len(coords) == kwargs.get('dim', len(coords)):
|
||
|
return coords
|
||
|
|
||
|
if not is_sequence(coords):
|
||
|
raise TypeError(filldedent('''
|
||
|
Expecting sequence of coordinates, not `{}`'''
|
||
|
.format(func_name(coords))))
|
||
|
# A point where only `dim` is specified is initialized
|
||
|
# to zeros.
|
||
|
if len(coords) == 0 and kwargs.get('dim', None):
|
||
|
coords = (S.Zero,)*kwargs.get('dim')
|
||
|
|
||
|
coords = Tuple(*coords)
|
||
|
dim = kwargs.get('dim', len(coords))
|
||
|
|
||
|
if len(coords) < 2:
|
||
|
raise ValueError(filldedent('''
|
||
|
Point requires 2 or more coordinates or
|
||
|
keyword `dim` > 1.'''))
|
||
|
if len(coords) != dim:
|
||
|
message = ("Dimension of {} needs to be changed "
|
||
|
"from {} to {}.").format(coords, len(coords), dim)
|
||
|
if on_morph == 'ignore':
|
||
|
pass
|
||
|
elif on_morph == "error":
|
||
|
raise ValueError(message)
|
||
|
elif on_morph == 'warn':
|
||
|
warnings.warn(message, stacklevel=2)
|
||
|
else:
|
||
|
raise ValueError(filldedent('''
|
||
|
on_morph value should be 'error',
|
||
|
'warn' or 'ignore'.'''))
|
||
|
if any(coords[dim:]):
|
||
|
raise ValueError('Nonzero coordinates cannot be removed.')
|
||
|
if any(a.is_number and im(a).is_zero is False for a in coords):
|
||
|
raise ValueError('Imaginary coordinates are not permitted.')
|
||
|
if not all(isinstance(a, Expr) for a in coords):
|
||
|
raise TypeError('Coordinates must be valid SymPy expressions.')
|
||
|
|
||
|
# pad with zeros appropriately
|
||
|
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
|
||
|
|
||
|
# Turn any Floats into rationals and simplify
|
||
|
# any expressions before we instantiate
|
||
|
if evaluate:
|
||
|
coords = coords.xreplace({
|
||
|
f: simplify(nsimplify(f, rational=True))
|
||
|
for f in coords.atoms(Float)})
|
||
|
|
||
|
# return 2D or 3D instances
|
||
|
if len(coords) == 2:
|
||
|
kwargs['_nocheck'] = True
|
||
|
return Point2D(*coords, **kwargs)
|
||
|
elif len(coords) == 3:
|
||
|
kwargs['_nocheck'] = True
|
||
|
return Point3D(*coords, **kwargs)
|
||
|
|
||
|
# the general Point
|
||
|
return GeometryEntity.__new__(cls, *coords)
|
||
|
|
||
|
def __abs__(self):
|
||
|
"""Returns the distance between this point and the origin."""
|
||
|
origin = Point([0]*len(self))
|
||
|
return Point.distance(origin, self)
|
||
|
|
||
|
def __add__(self, other):
|
||
|
"""Add other to self by incrementing self's coordinates by
|
||
|
those of other.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
|
||
|
When sequences of coordinates are passed to Point methods, they
|
||
|
are converted to a Point internally. This __add__ method does
|
||
|
not do that so if floating point values are used, a floating
|
||
|
point result (in terms of SymPy Floats) will be returned.
|
||
|
|
||
|
>>> Point(1, 2) + (.1, .2)
|
||
|
Point2D(1.1, 2.2)
|
||
|
|
||
|
If this is not desired, the `translate` method can be used or
|
||
|
another Point can be added:
|
||
|
|
||
|
>>> Point(1, 2).translate(.1, .2)
|
||
|
Point2D(11/10, 11/5)
|
||
|
>>> Point(1, 2) + Point(.1, .2)
|
||
|
Point2D(11/10, 11/5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.point.Point.translate
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
|
||
|
except TypeError:
|
||
|
raise GeometryError("Don't know how to add {} and a Point object".format(other))
|
||
|
|
||
|
coords = [simplify(a + b) for a, b in zip(s, o)]
|
||
|
return Point(coords, evaluate=False)
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
return item in self.args
|
||
|
|
||
|
def __truediv__(self, divisor):
|
||
|
"""Divide point's coordinates by a factor."""
|
||
|
divisor = sympify(divisor)
|
||
|
coords = [simplify(x/divisor) for x in self.args]
|
||
|
return Point(coords, evaluate=False)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, Point) or len(self.args) != len(other.args):
|
||
|
return False
|
||
|
return self.args == other.args
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return self.args[key]
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash(self.args)
|
||
|
|
||
|
def __iter__(self):
|
||
|
return self.args.__iter__()
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.args)
|
||
|
|
||
|
def __mul__(self, factor):
|
||
|
"""Multiply point's coordinates by a factor.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
|
||
|
When multiplying a Point by a floating point number,
|
||
|
the coordinates of the Point will be changed to Floats:
|
||
|
|
||
|
>>> Point(1, 2)*0.1
|
||
|
Point2D(0.1, 0.2)
|
||
|
|
||
|
If this is not desired, the `scale` method can be used or
|
||
|
else only multiply or divide by integers:
|
||
|
|
||
|
>>> Point(1, 2).scale(1.1, 1.1)
|
||
|
Point2D(11/10, 11/5)
|
||
|
>>> Point(1, 2)*11/10
|
||
|
Point2D(11/10, 11/5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.point.Point.scale
|
||
|
"""
|
||
|
factor = sympify(factor)
|
||
|
coords = [simplify(x*factor) for x in self.args]
|
||
|
return Point(coords, evaluate=False)
|
||
|
|
||
|
def __rmul__(self, factor):
|
||
|
"""Multiply a factor by point's coordinates."""
|
||
|
return self.__mul__(factor)
|
||
|
|
||
|
def __neg__(self):
|
||
|
"""Negate the point."""
|
||
|
coords = [-x for x in self.args]
|
||
|
return Point(coords, evaluate=False)
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
"""Subtract two points, or subtract a factor from this point's
|
||
|
coordinates."""
|
||
|
return self + [-x for x in other]
|
||
|
|
||
|
@classmethod
|
||
|
def _normalize_dimension(cls, *points, **kwargs):
|
||
|
"""Ensure that points have the same dimension.
|
||
|
By default `on_morph='warn'` is passed to the
|
||
|
`Point` constructor."""
|
||
|
# if we have a built-in ambient dimension, use it
|
||
|
dim = getattr(cls, '_ambient_dimension', None)
|
||
|
# override if we specified it
|
||
|
dim = kwargs.get('dim', dim)
|
||
|
# if no dim was given, use the highest dimensional point
|
||
|
if dim is None:
|
||
|
dim = max(i.ambient_dimension for i in points)
|
||
|
if all(i.ambient_dimension == dim for i in points):
|
||
|
return list(points)
|
||
|
kwargs['dim'] = dim
|
||
|
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
|
||
|
return [Point(i, **kwargs) for i in points]
|
||
|
|
||
|
@staticmethod
|
||
|
def affine_rank(*args):
|
||
|
"""The affine rank of a set of points is the dimension
|
||
|
of the smallest affine space containing all the points.
|
||
|
For example, if the points lie on a line (and are not all
|
||
|
the same) their affine rank is 1. If the points lie on a plane
|
||
|
but not a line, their affine rank is 2. By convention, the empty
|
||
|
set has affine rank -1."""
|
||
|
|
||
|
if len(args) == 0:
|
||
|
return -1
|
||
|
# make sure we're genuinely points
|
||
|
# and translate every point to the origin
|
||
|
points = Point._normalize_dimension(*[Point(i) for i in args])
|
||
|
origin = points[0]
|
||
|
points = [i - origin for i in points[1:]]
|
||
|
|
||
|
m = Matrix([i.args for i in points])
|
||
|
# XXX fragile -- what is a better way?
|
||
|
return m.rank(iszerofunc = lambda x:
|
||
|
abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
|
||
|
|
||
|
@property
|
||
|
def ambient_dimension(self):
|
||
|
"""Number of components this point has."""
|
||
|
return getattr(self, '_ambient_dimension', len(self))
|
||
|
|
||
|
@classmethod
|
||
|
def are_coplanar(cls, *points):
|
||
|
"""Return True if there exists a plane in which all the points
|
||
|
lie. A trivial True value is returned if `len(points) < 3` or
|
||
|
all Points are 2-dimensional.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
A set of points
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
ValueError : if less than 3 unique points are given
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
boolean
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p1 = Point3D(1, 2, 2)
|
||
|
>>> p2 = Point3D(2, 7, 2)
|
||
|
>>> p3 = Point3D(0, 0, 2)
|
||
|
>>> p4 = Point3D(1, 1, 2)
|
||
|
>>> Point3D.are_coplanar(p1, p2, p3, p4)
|
||
|
True
|
||
|
>>> p5 = Point3D(0, 1, 3)
|
||
|
>>> Point3D.are_coplanar(p1, p2, p3, p5)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if len(points) <= 1:
|
||
|
return True
|
||
|
|
||
|
points = cls._normalize_dimension(*[Point(i) for i in points])
|
||
|
# quick exit if we are in 2D
|
||
|
if points[0].ambient_dimension == 2:
|
||
|
return True
|
||
|
points = list(uniq(points))
|
||
|
return Point.affine_rank(*points) <= 2
|
||
|
|
||
|
def distance(self, other):
|
||
|
"""The Euclidean distance between self and another GeometricEntity.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
distance : number or symbolic expression.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
TypeError : if other is not recognized as a GeometricEntity or is a
|
||
|
GeometricEntity for which distance is not defined.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.Segment.length
|
||
|
sympy.geometry.point.Point.taxicab_distance
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point, Line
|
||
|
>>> p1, p2 = Point(1, 1), Point(4, 5)
|
||
|
>>> l = Line((3, 1), (2, 2))
|
||
|
>>> p1.distance(p2)
|
||
|
5
|
||
|
>>> p1.distance(l)
|
||
|
sqrt(2)
|
||
|
|
||
|
The computed distance may be symbolic, too:
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> p3 = Point(x, y)
|
||
|
>>> p3.distance((0, 0))
|
||
|
sqrt(x**2 + y**2)
|
||
|
|
||
|
"""
|
||
|
if not isinstance(other, GeometryEntity):
|
||
|
try:
|
||
|
other = Point(other, dim=self.ambient_dimension)
|
||
|
except TypeError:
|
||
|
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
|
||
|
if isinstance(other, Point):
|
||
|
s, p = Point._normalize_dimension(self, Point(other))
|
||
|
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
|
||
|
distance = getattr(other, 'distance', None)
|
||
|
if distance is None:
|
||
|
raise TypeError("distance between Point and %s is not defined" % type(other))
|
||
|
return distance(self)
|
||
|
|
||
|
def dot(self, p):
|
||
|
"""Return dot product of self with another Point."""
|
||
|
if not is_sequence(p):
|
||
|
p = Point(p) # raise the error via Point
|
||
|
return Add(*(a*b for a, b in zip(self, p)))
|
||
|
|
||
|
def equals(self, other):
|
||
|
"""Returns whether the coordinates of self and other agree."""
|
||
|
# a point is equal to another point if all its components are equal
|
||
|
if not isinstance(other, Point) or len(self) != len(other):
|
||
|
return False
|
||
|
return all(a.equals(b) for a, b in zip(self, other))
|
||
|
|
||
|
def _eval_evalf(self, prec=15, **options):
|
||
|
"""Evaluate the coordinates of the point.
|
||
|
|
||
|
This method will, where possible, create and return a new Point
|
||
|
where the coordinates are evaluated as floating point numbers to
|
||
|
the precision indicated (default=15).
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
prec : int
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
point : Point
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point, Rational
|
||
|
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
|
||
|
>>> p1
|
||
|
Point2D(1/2, 3/2)
|
||
|
>>> p1.evalf()
|
||
|
Point2D(0.5, 1.5)
|
||
|
|
||
|
"""
|
||
|
dps = prec_to_dps(prec)
|
||
|
coords = [x.evalf(n=dps, **options) for x in self.args]
|
||
|
return Point(*coords, evaluate=False)
|
||
|
|
||
|
def intersection(self, other):
|
||
|
"""The intersection between this point and another GeometryEntity.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : GeometryEntity or sequence of coordinates
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
intersection : list of Points
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The return value will either be an empty list if there is no
|
||
|
intersection, otherwise it will contain this point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
|
||
|
>>> p1.intersection(p2)
|
||
|
[]
|
||
|
>>> p1.intersection(p3)
|
||
|
[Point2D(0, 0)]
|
||
|
|
||
|
"""
|
||
|
if not isinstance(other, GeometryEntity):
|
||
|
other = Point(other)
|
||
|
if isinstance(other, Point):
|
||
|
if self == other:
|
||
|
return [self]
|
||
|
p1, p2 = Point._normalize_dimension(self, other)
|
||
|
if p1 == self and p1 == p2:
|
||
|
return [self]
|
||
|
return []
|
||
|
return other.intersection(self)
|
||
|
|
||
|
def is_collinear(self, *args):
|
||
|
"""Returns `True` if there exists a line
|
||
|
that contains `self` and `points`. Returns `False` otherwise.
|
||
|
A trivially True value is returned if no points are given.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
args : sequence of Points
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
is_collinear : boolean
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.Line
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> from sympy.abc import x
|
||
|
>>> p1, p2 = Point(0, 0), Point(1, 1)
|
||
|
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
|
||
|
>>> Point.is_collinear(p1, p2, p3, p4)
|
||
|
True
|
||
|
>>> Point.is_collinear(p1, p2, p3, p5)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
points = (self,) + args
|
||
|
points = Point._normalize_dimension(*[Point(i) for i in points])
|
||
|
points = list(uniq(points))
|
||
|
return Point.affine_rank(*points) <= 1
|
||
|
|
||
|
def is_concyclic(self, *args):
|
||
|
"""Do `self` and the given sequence of points lie in a circle?
|
||
|
|
||
|
Returns True if the set of points are concyclic and
|
||
|
False otherwise. A trivial value of True is returned
|
||
|
if there are fewer than 2 other points.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
args : sequence of Points
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
is_concyclic : boolean
|
||
|
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
|
||
|
Define 4 points that are on the unit circle:
|
||
|
|
||
|
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
|
||
|
|
||
|
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
|
||
|
True
|
||
|
|
||
|
Define a point not on that circle:
|
||
|
|
||
|
>>> p = Point(1, 1)
|
||
|
|
||
|
>>> p.is_concyclic(p1, p2, p3)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
points = (self,) + args
|
||
|
points = Point._normalize_dimension(*[Point(i) for i in points])
|
||
|
points = list(uniq(points))
|
||
|
if not Point.affine_rank(*points) <= 2:
|
||
|
return False
|
||
|
origin = points[0]
|
||
|
points = [p - origin for p in points]
|
||
|
# points are concyclic if they are coplanar and
|
||
|
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
|
||
|
# i and j. Rearranging this equation gives us the following
|
||
|
# condition: the matrix `mat` must not a pivot in the last
|
||
|
# column.
|
||
|
mat = Matrix([list(i) + [i.dot(i)] for i in points])
|
||
|
rref, pivots = mat.rref()
|
||
|
if len(origin) not in pivots:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
@property
|
||
|
def is_nonzero(self):
|
||
|
"""True if any coordinate is nonzero, False if every coordinate is zero,
|
||
|
and None if it cannot be determined."""
|
||
|
is_zero = self.is_zero
|
||
|
if is_zero is None:
|
||
|
return None
|
||
|
return not is_zero
|
||
|
|
||
|
def is_scalar_multiple(self, p):
|
||
|
"""Returns whether each coordinate of `self` is a scalar
|
||
|
multiple of the corresponding coordinate in point p.
|
||
|
"""
|
||
|
s, o = Point._normalize_dimension(self, Point(p))
|
||
|
# 2d points happen a lot, so optimize this function call
|
||
|
if s.ambient_dimension == 2:
|
||
|
(x1, y1), (x2, y2) = s.args, o.args
|
||
|
rv = (x1*y2 - x2*y1).equals(0)
|
||
|
if rv is None:
|
||
|
raise Undecidable(filldedent(
|
||
|
'''Cannot determine if %s is a scalar multiple of
|
||
|
%s''' % (s, o)))
|
||
|
|
||
|
# if the vectors p1 and p2 are linearly dependent, then they must
|
||
|
# be scalar multiples of each other
|
||
|
m = Matrix([s.args, o.args])
|
||
|
return m.rank() < 2
|
||
|
|
||
|
@property
|
||
|
def is_zero(self):
|
||
|
"""True if every coordinate is zero, False if any coordinate is not zero,
|
||
|
and None if it cannot be determined."""
|
||
|
nonzero = [x.is_nonzero for x in self.args]
|
||
|
if any(nonzero):
|
||
|
return False
|
||
|
if any(x is None for x in nonzero):
|
||
|
return None
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def length(self):
|
||
|
"""
|
||
|
Treating a Point as a Line, this returns 0 for the length of a Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> p = Point(0, 1)
|
||
|
>>> p.length
|
||
|
0
|
||
|
"""
|
||
|
return S.Zero
|
||
|
|
||
|
def midpoint(self, p):
|
||
|
"""The midpoint between self and point p.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : Point
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
midpoint : Point
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.Segment.midpoint
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> p1, p2 = Point(1, 1), Point(13, 5)
|
||
|
>>> p1.midpoint(p2)
|
||
|
Point2D(7, 3)
|
||
|
|
||
|
"""
|
||
|
s, p = Point._normalize_dimension(self, Point(p))
|
||
|
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
|
||
|
|
||
|
@property
|
||
|
def origin(self):
|
||
|
"""A point of all zeros of the same ambient dimension
|
||
|
as the current point"""
|
||
|
return Point([0]*len(self), evaluate=False)
|
||
|
|
||
|
@property
|
||
|
def orthogonal_direction(self):
|
||
|
"""Returns a non-zero point that is orthogonal to the
|
||
|
line containing `self` and the origin.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Line, Point
|
||
|
>>> a = Point(1, 2, 3)
|
||
|
>>> a.orthogonal_direction
|
||
|
Point3D(-2, 1, 0)
|
||
|
>>> b = _
|
||
|
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
|
||
|
True
|
||
|
"""
|
||
|
dim = self.ambient_dimension
|
||
|
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
|
||
|
if self[0].is_zero:
|
||
|
return Point([1] + (dim - 1)*[0])
|
||
|
if self[1].is_zero:
|
||
|
return Point([0,1] + (dim - 2)*[0])
|
||
|
# if the first two coordinates aren't zero, we can create a non-zero
|
||
|
# orthogonal vector by swapping them, negating one, and padding with zeros
|
||
|
return Point([-self[1], self[0]] + (dim - 2)*[0])
|
||
|
|
||
|
@staticmethod
|
||
|
def project(a, b):
|
||
|
"""Project the point `a` onto the line between the origin
|
||
|
and point `b` along the normal direction.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
a : Point
|
||
|
b : Point
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
p : Point
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.LinearEntity.projection
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Line, Point
|
||
|
>>> a = Point(1, 2)
|
||
|
>>> b = Point(2, 5)
|
||
|
>>> z = a.origin
|
||
|
>>> p = Point.project(a, b)
|
||
|
>>> Line(p, a).is_perpendicular(Line(p, b))
|
||
|
True
|
||
|
>>> Point.is_collinear(z, p, b)
|
||
|
True
|
||
|
"""
|
||
|
a, b = Point._normalize_dimension(Point(a), Point(b))
|
||
|
if b.is_zero:
|
||
|
raise ValueError("Cannot project to the zero vector.")
|
||
|
return b*(a.dot(b) / b.dot(b))
|
||
|
|
||
|
def taxicab_distance(self, p):
|
||
|
"""The Taxicab Distance from self to point p.
|
||
|
|
||
|
Returns the sum of the horizontal and vertical distances to point p.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : Point
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
taxicab_distance : The sum of the horizontal
|
||
|
and vertical distances to point p.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.point.Point.distance
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> p1, p2 = Point(1, 1), Point(4, 5)
|
||
|
>>> p1.taxicab_distance(p2)
|
||
|
7
|
||
|
|
||
|
"""
|
||
|
s, p = Point._normalize_dimension(self, Point(p))
|
||
|
return Add(*(abs(a - b) for a, b in zip(s, p)))
|
||
|
|
||
|
def canberra_distance(self, p):
|
||
|
"""The Canberra Distance from self to point p.
|
||
|
|
||
|
Returns the weighted sum of horizontal and vertical distances to
|
||
|
point p.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : Point
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
canberra_distance : The weighted sum of horizontal and vertical
|
||
|
distances to point p. The weight used is the sum of absolute values
|
||
|
of the coordinates.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point
|
||
|
>>> p1, p2 = Point(1, 1), Point(3, 3)
|
||
|
>>> p1.canberra_distance(p2)
|
||
|
1
|
||
|
>>> p1, p2 = Point(0, 0), Point(3, 3)
|
||
|
>>> p1.canberra_distance(p2)
|
||
|
2
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
ValueError when both vectors are zero.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.point.Point.distance
|
||
|
|
||
|
"""
|
||
|
|
||
|
s, p = Point._normalize_dimension(self, Point(p))
|
||
|
if self.is_zero and p.is_zero:
|
||
|
raise ValueError("Cannot project to the zero vector.")
|
||
|
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
|
||
|
|
||
|
@property
|
||
|
def unit(self):
|
||
|
"""Return the Point that is in the same direction as `self`
|
||
|
and a distance of 1 from the origin"""
|
||
|
return self / abs(self)
|
||
|
|
||
|
|
||
|
class Point2D(Point):
|
||
|
"""A point in a 2-dimensional Euclidean space.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
coords
|
||
|
A sequence of 2 coordinate values.
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
x
|
||
|
y
|
||
|
length
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
TypeError
|
||
|
When trying to add or subtract points with different dimensions.
|
||
|
When trying to create a point with more than two dimensions.
|
||
|
When `intersection` is called with object other than a Point.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.Segment : Connects two Points
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D
|
||
|
>>> from sympy.abc import x
|
||
|
>>> Point2D(1, 2)
|
||
|
Point2D(1, 2)
|
||
|
>>> Point2D([1, 2])
|
||
|
Point2D(1, 2)
|
||
|
>>> Point2D(0, x)
|
||
|
Point2D(0, x)
|
||
|
|
||
|
Floats are automatically converted to Rational unless the
|
||
|
evaluate flag is False:
|
||
|
|
||
|
>>> Point2D(0.5, 0.25)
|
||
|
Point2D(1/2, 1/4)
|
||
|
>>> Point2D(0.5, 0.25, evaluate=False)
|
||
|
Point2D(0.5, 0.25)
|
||
|
|
||
|
"""
|
||
|
|
||
|
_ambient_dimension = 2
|
||
|
|
||
|
def __new__(cls, *args, _nocheck=False, **kwargs):
|
||
|
if not _nocheck:
|
||
|
kwargs['dim'] = 2
|
||
|
args = Point(*args, **kwargs)
|
||
|
return GeometryEntity.__new__(cls, *args)
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
return item == self
|
||
|
|
||
|
@property
|
||
|
def bounds(self):
|
||
|
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
||
|
rectangle for the geometric figure.
|
||
|
|
||
|
"""
|
||
|
|
||
|
return (self.x, self.y, self.x, self.y)
|
||
|
|
||
|
def rotate(self, angle, pt=None):
|
||
|
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
translate, scale
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D, pi
|
||
|
>>> t = Point2D(1, 0)
|
||
|
>>> t.rotate(pi/2)
|
||
|
Point2D(0, 1)
|
||
|
>>> t.rotate(pi/2, (2, 0))
|
||
|
Point2D(2, -1)
|
||
|
|
||
|
"""
|
||
|
c = cos(angle)
|
||
|
s = sin(angle)
|
||
|
|
||
|
rv = self
|
||
|
if pt is not None:
|
||
|
pt = Point(pt, dim=2)
|
||
|
rv -= pt
|
||
|
x, y = rv.args
|
||
|
rv = Point(c*x - s*y, s*x + c*y)
|
||
|
if pt is not None:
|
||
|
rv += pt
|
||
|
return rv
|
||
|
|
||
|
def scale(self, x=1, y=1, pt=None):
|
||
|
"""Scale the coordinates of the Point by multiplying by
|
||
|
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
|
||
|
and then adding ``pt`` back again (i.e. ``pt`` is the point of
|
||
|
reference for the scaling).
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
rotate, translate
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D
|
||
|
>>> t = Point2D(1, 1)
|
||
|
>>> t.scale(2)
|
||
|
Point2D(2, 1)
|
||
|
>>> t.scale(2, 2)
|
||
|
Point2D(2, 2)
|
||
|
|
||
|
"""
|
||
|
if pt:
|
||
|
pt = Point(pt, dim=2)
|
||
|
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
||
|
return Point(self.x*x, self.y*y)
|
||
|
|
||
|
def transform(self, matrix):
|
||
|
"""Return the point after applying the transformation described
|
||
|
by the 3x3 Matrix, ``matrix``.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
sympy.geometry.point.Point2D.rotate
|
||
|
sympy.geometry.point.Point2D.scale
|
||
|
sympy.geometry.point.Point2D.translate
|
||
|
"""
|
||
|
if not (matrix.is_Matrix and matrix.shape == (3, 3)):
|
||
|
raise ValueError("matrix must be a 3x3 matrix")
|
||
|
x, y = self.args
|
||
|
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
|
||
|
|
||
|
def translate(self, x=0, y=0):
|
||
|
"""Shift the Point by adding x and y to the coordinates of the Point.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.point.Point2D.rotate, scale
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D
|
||
|
>>> t = Point2D(0, 1)
|
||
|
>>> t.translate(2)
|
||
|
Point2D(2, 1)
|
||
|
>>> t.translate(2, 2)
|
||
|
Point2D(2, 3)
|
||
|
>>> t + Point2D(2, 2)
|
||
|
Point2D(2, 3)
|
||
|
|
||
|
"""
|
||
|
return Point(self.x + x, self.y + y)
|
||
|
|
||
|
@property
|
||
|
def coordinates(self):
|
||
|
"""
|
||
|
Returns the two coordinates of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D
|
||
|
>>> p = Point2D(0, 1)
|
||
|
>>> p.coordinates
|
||
|
(0, 1)
|
||
|
"""
|
||
|
return self.args
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
"""
|
||
|
Returns the X coordinate of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D
|
||
|
>>> p = Point2D(0, 1)
|
||
|
>>> p.x
|
||
|
0
|
||
|
"""
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def y(self):
|
||
|
"""
|
||
|
Returns the Y coordinate of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point2D
|
||
|
>>> p = Point2D(0, 1)
|
||
|
>>> p.y
|
||
|
1
|
||
|
"""
|
||
|
return self.args[1]
|
||
|
|
||
|
class Point3D(Point):
|
||
|
"""A point in a 3-dimensional Euclidean space.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
coords
|
||
|
A sequence of 3 coordinate values.
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
x
|
||
|
y
|
||
|
z
|
||
|
length
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
TypeError
|
||
|
When trying to add or subtract points with different dimensions.
|
||
|
When `intersection` is called with object other than a Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> from sympy.abc import x
|
||
|
>>> Point3D(1, 2, 3)
|
||
|
Point3D(1, 2, 3)
|
||
|
>>> Point3D([1, 2, 3])
|
||
|
Point3D(1, 2, 3)
|
||
|
>>> Point3D(0, x, 3)
|
||
|
Point3D(0, x, 3)
|
||
|
|
||
|
Floats are automatically converted to Rational unless the
|
||
|
evaluate flag is False:
|
||
|
|
||
|
>>> Point3D(0.5, 0.25, 2)
|
||
|
Point3D(1/2, 1/4, 2)
|
||
|
>>> Point3D(0.5, 0.25, 3, evaluate=False)
|
||
|
Point3D(0.5, 0.25, 3)
|
||
|
|
||
|
"""
|
||
|
|
||
|
_ambient_dimension = 3
|
||
|
|
||
|
def __new__(cls, *args, _nocheck=False, **kwargs):
|
||
|
if not _nocheck:
|
||
|
kwargs['dim'] = 3
|
||
|
args = Point(*args, **kwargs)
|
||
|
return GeometryEntity.__new__(cls, *args)
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
return item == self
|
||
|
|
||
|
@staticmethod
|
||
|
def are_collinear(*points):
|
||
|
"""Is a sequence of points collinear?
|
||
|
|
||
|
Test whether or not a set of points are collinear. Returns True if
|
||
|
the set of points are collinear, or False otherwise.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
points : sequence of Point
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
are_collinear : boolean
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.geometry.line.Line3D
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> from sympy.abc import x
|
||
|
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
|
||
|
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
|
||
|
>>> Point3D.are_collinear(p1, p2, p3, p4)
|
||
|
True
|
||
|
>>> Point3D.are_collinear(p1, p2, p3, p5)
|
||
|
False
|
||
|
"""
|
||
|
return Point.is_collinear(*points)
|
||
|
|
||
|
def direction_cosine(self, point):
|
||
|
"""
|
||
|
Gives the direction cosine between 2 points
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : Point3D
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
list
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p1 = Point3D(1, 2, 3)
|
||
|
>>> p1.direction_cosine(Point3D(2, 3, 5))
|
||
|
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
|
||
|
"""
|
||
|
a = self.direction_ratio(point)
|
||
|
b = sqrt(Add(*(i**2 for i in a)))
|
||
|
return [(point.x - self.x) / b,(point.y - self.y) / b,
|
||
|
(point.z - self.z) / b]
|
||
|
|
||
|
def direction_ratio(self, point):
|
||
|
"""
|
||
|
Gives the direction ratio between 2 points
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : Point3D
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
list
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p1 = Point3D(1, 2, 3)
|
||
|
>>> p1.direction_ratio(Point3D(2, 3, 5))
|
||
|
[1, 1, 2]
|
||
|
"""
|
||
|
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
|
||
|
|
||
|
def intersection(self, other):
|
||
|
"""The intersection between this point and another GeometryEntity.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : GeometryEntity or sequence of coordinates
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
intersection : list of Points
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The return value will either be an empty list if there is no
|
||
|
intersection, otherwise it will contain this point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
|
||
|
>>> p1.intersection(p2)
|
||
|
[]
|
||
|
>>> p1.intersection(p3)
|
||
|
[Point3D(0, 0, 0)]
|
||
|
|
||
|
"""
|
||
|
if not isinstance(other, GeometryEntity):
|
||
|
other = Point(other, dim=3)
|
||
|
if isinstance(other, Point3D):
|
||
|
if self == other:
|
||
|
return [self]
|
||
|
return []
|
||
|
return other.intersection(self)
|
||
|
|
||
|
def scale(self, x=1, y=1, z=1, pt=None):
|
||
|
"""Scale the coordinates of the Point by multiplying by
|
||
|
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
|
||
|
and then adding ``pt`` back again (i.e. ``pt`` is the point of
|
||
|
reference for the scaling).
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
translate
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> t = Point3D(1, 1, 1)
|
||
|
>>> t.scale(2)
|
||
|
Point3D(2, 1, 1)
|
||
|
>>> t.scale(2, 2)
|
||
|
Point3D(2, 2, 1)
|
||
|
|
||
|
"""
|
||
|
if pt:
|
||
|
pt = Point3D(pt)
|
||
|
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
|
||
|
return Point3D(self.x*x, self.y*y, self.z*z)
|
||
|
|
||
|
def transform(self, matrix):
|
||
|
"""Return the point after applying the transformation described
|
||
|
by the 4x4 Matrix, ``matrix``.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
sympy.geometry.point.Point3D.scale
|
||
|
sympy.geometry.point.Point3D.translate
|
||
|
"""
|
||
|
if not (matrix.is_Matrix and matrix.shape == (4, 4)):
|
||
|
raise ValueError("matrix must be a 4x4 matrix")
|
||
|
x, y, z = self.args
|
||
|
m = Transpose(matrix)
|
||
|
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
|
||
|
|
||
|
def translate(self, x=0, y=0, z=0):
|
||
|
"""Shift the Point by adding x and y to the coordinates of the Point.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
scale
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> t = Point3D(0, 1, 1)
|
||
|
>>> t.translate(2)
|
||
|
Point3D(2, 1, 1)
|
||
|
>>> t.translate(2, 2)
|
||
|
Point3D(2, 3, 1)
|
||
|
>>> t + Point3D(2, 2, 2)
|
||
|
Point3D(2, 3, 3)
|
||
|
|
||
|
"""
|
||
|
return Point3D(self.x + x, self.y + y, self.z + z)
|
||
|
|
||
|
@property
|
||
|
def coordinates(self):
|
||
|
"""
|
||
|
Returns the three coordinates of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p = Point3D(0, 1, 2)
|
||
|
>>> p.coordinates
|
||
|
(0, 1, 2)
|
||
|
"""
|
||
|
return self.args
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
"""
|
||
|
Returns the X coordinate of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p = Point3D(0, 1, 3)
|
||
|
>>> p.x
|
||
|
0
|
||
|
"""
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def y(self):
|
||
|
"""
|
||
|
Returns the Y coordinate of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p = Point3D(0, 1, 2)
|
||
|
>>> p.y
|
||
|
1
|
||
|
"""
|
||
|
return self.args[1]
|
||
|
|
||
|
@property
|
||
|
def z(self):
|
||
|
"""
|
||
|
Returns the Z coordinate of the Point.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Point3D
|
||
|
>>> p = Point3D(0, 1, 1)
|
||
|
>>> p.z
|
||
|
1
|
||
|
"""
|
||
|
return self.args[2]
|