Traktor/myenv/Lib/site-packages/sympy/holonomic/holonomic.py

2900 lines
93 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""
This module implements Holonomic Functions and
various operations on them.
"""
from sympy.core import Add, Mul, Pow
from sympy.core.numbers import (NaN, Infinity, NegativeInfinity, Float, I, pi,
equal_valued)
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial, rf
from sympy.functions.elementary.exponential import exp_polar, exp, log
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper, meijerg
from sympy.integrals import meijerint
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.polys.matrices import DomainMatrix
from sympy.printing import sstr
from sympy.series.limits import limit
from sympy.series.order import Order
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.simplify import nsimplify
from sympy.solvers.solvers import solve
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
def _find_nonzero_solution(r, homosys):
ones = lambda shape: DomainMatrix.ones(shape, r.domain)
particular, nullspace = r._solve(homosys)
nullity = nullspace.shape[0]
nullpart = ones((1, nullity)) * nullspace
sol = (particular + nullpart).transpose()
return sol
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Explanation
===========
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra:
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, str):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator:
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Explanation
===========
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = [self.parent.base.zero]*n
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction:
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Explanation
===========
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S.Zero)
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(K.zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
# solving the linear system using gauss jordan solver
r = DomainMatrix(r, (len(row), dim+1), K).transpose()
homosys = DomainMatrix.zeros((dim+1, 1), K)
sol = _find_nonzero_solution(r, homosys)
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero_matrix:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(K.zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
# solving the linear system using gauss jordan solver
r = DomainMatrix(r, (len(row), dim+1), K).transpose()
homosys = DomainMatrix.zeros((dim+1, 1), K)
sol = _find_nonzero_solution(r, homosys)
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol.flat()[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the initial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if i not in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j, cj in enumerate(c):
if cj == 0:
c2.append(S.Zero)
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(cj / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S.Zero]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
integrate
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S.Zero
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S.Zero
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = K.one
# making the ansatz
lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose()
homo_sys = DomainMatrix.zeros((a*b, 1), K)
sol = _find_nonzero_solution(lin_sys, homo_sys)
# until a non trivial solution is found
while sol.is_zero_matrix:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b].is_zero:
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = K.zero
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = K.zero
lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)])
lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose()
sol = _find_nonzero_solution(lin_sys, homo_sys)
sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S.Zero
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S.Zero, [S.One])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method cannot compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S.One
system = [coeffs]
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
while True:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
if sol.is_zero_matrix is not True:
break
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
Explanation
===========
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] https://www3.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if equal_valued(j, i):
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
Explanation
===========
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = list(recurrence.u0)
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S.Zero
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S.Zero
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
Explanation
===========
The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`.
Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Explanation
===========
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S.Zero
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate through the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to ``b`` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics is None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S.Zero
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
xDx = x*Dx
r1 = 1
for ai in a: # XXX gives sympify error if Mul is used with list of all factors
r1 *= xDx + ai
xDx_1 = xDx - 1
# r2 = Mul(*([Dx] + [xDx_1 + bi for bi in b])) # XXX gives sympify error
r2 = Dx
for bi in b:
r2 *= xDx_1 + bi
sol = r1 - r2
simp = hyperexpand(func)
if simp in (Infinity, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simplified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
xDx = x*Dx
xDx1 = xDx + 1
r1 = x*(-1)**(m + n - p)
for ai in a: # XXX gives sympify error if args given in list
r1 *= xDx1 - ai
# r2 = Mul(*[xDx - bi for bi in b]) # gives sympify error
r2 = 1
for bi in b:
r2 *= xDx - bi
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if simp in (Infinity, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
is not able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in ``x`` appearing as coefficients
in the annihilator.
initcond:
Set it false if you do not want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain is None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S.One)
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S.Zero, )
bmq = (1 - i for i in bq)
k = S.One
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = list(y0)
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
if not getattr(r, 'is_finite', True):
return y0
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S.Zero
sol_q = S.Zero
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular and \
(lenics is None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] == x else S.Zero
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] == x else S.Zero
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=()):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0