104 lines
2.7 KiB
Python
104 lines
2.7 KiB
Python
|
from sympy.core.sympify import _sympify
|
||
|
from sympy.core import S, Basic
|
||
|
|
||
|
from sympy.matrices.common import NonSquareMatrixError
|
||
|
from sympy.matrices.expressions.matpow import MatPow
|
||
|
|
||
|
|
||
|
class Inverse(MatPow):
|
||
|
"""
|
||
|
The multiplicative inverse of a matrix expression
|
||
|
|
||
|
This is a symbolic object that simply stores its argument without
|
||
|
evaluating it. To actually compute the inverse, use the ``.inverse()``
|
||
|
method of matrices.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import MatrixSymbol, Inverse
|
||
|
>>> A = MatrixSymbol('A', 3, 3)
|
||
|
>>> B = MatrixSymbol('B', 3, 3)
|
||
|
>>> Inverse(A)
|
||
|
A**(-1)
|
||
|
>>> A.inverse() == Inverse(A)
|
||
|
True
|
||
|
>>> (A*B).inverse()
|
||
|
B**(-1)*A**(-1)
|
||
|
>>> Inverse(A*B)
|
||
|
(A*B)**(-1)
|
||
|
|
||
|
"""
|
||
|
is_Inverse = True
|
||
|
exp = S.NegativeOne
|
||
|
|
||
|
def __new__(cls, mat, exp=S.NegativeOne):
|
||
|
# exp is there to make it consistent with
|
||
|
# inverse.func(*inverse.args) == inverse
|
||
|
mat = _sympify(mat)
|
||
|
exp = _sympify(exp)
|
||
|
if not mat.is_Matrix:
|
||
|
raise TypeError("mat should be a matrix")
|
||
|
if mat.is_square is False:
|
||
|
raise NonSquareMatrixError("Inverse of non-square matrix %s" % mat)
|
||
|
return Basic.__new__(cls, mat, exp)
|
||
|
|
||
|
@property
|
||
|
def arg(self):
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def shape(self):
|
||
|
return self.arg.shape
|
||
|
|
||
|
def _eval_inverse(self):
|
||
|
return self.arg
|
||
|
|
||
|
def _eval_determinant(self):
|
||
|
from sympy.matrices.expressions.determinant import det
|
||
|
return 1/det(self.arg)
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
if 'inv_expand' in hints and hints['inv_expand'] == False:
|
||
|
return self
|
||
|
|
||
|
arg = self.arg
|
||
|
if hints.get('deep', True):
|
||
|
arg = arg.doit(**hints)
|
||
|
|
||
|
return arg.inverse()
|
||
|
|
||
|
def _eval_derivative_matrix_lines(self, x):
|
||
|
arg = self.args[0]
|
||
|
lines = arg._eval_derivative_matrix_lines(x)
|
||
|
for line in lines:
|
||
|
line.first_pointer *= -self.T
|
||
|
line.second_pointer *= self
|
||
|
return lines
|
||
|
|
||
|
|
||
|
from sympy.assumptions.ask import ask, Q
|
||
|
from sympy.assumptions.refine import handlers_dict
|
||
|
|
||
|
|
||
|
def refine_Inverse(expr, assumptions):
|
||
|
"""
|
||
|
>>> from sympy import MatrixSymbol, Q, assuming, refine
|
||
|
>>> X = MatrixSymbol('X', 2, 2)
|
||
|
>>> X.I
|
||
|
X**(-1)
|
||
|
>>> with assuming(Q.orthogonal(X)):
|
||
|
... print(refine(X.I))
|
||
|
X.T
|
||
|
"""
|
||
|
if ask(Q.orthogonal(expr), assumptions):
|
||
|
return expr.arg.T
|
||
|
elif ask(Q.unitary(expr), assumptions):
|
||
|
return expr.arg.conjugate()
|
||
|
elif ask(Q.singular(expr), assumptions):
|
||
|
raise ValueError("Inverse of singular matrix %s" % expr.arg)
|
||
|
|
||
|
return expr
|
||
|
|
||
|
handlers_dict['Inverse'] = refine_Inverse
|