602 lines
19 KiB
Python
602 lines
19 KiB
Python
|
from sympy.core.backend import sympify, Add, ImmutableMatrix as Matrix
|
||
|
from sympy.core.evalf import EvalfMixin
|
||
|
from sympy.printing.defaults import Printable
|
||
|
|
||
|
from mpmath.libmp.libmpf import prec_to_dps
|
||
|
|
||
|
|
||
|
__all__ = ['Dyadic']
|
||
|
|
||
|
|
||
|
class Dyadic(Printable, EvalfMixin):
|
||
|
"""A Dyadic object.
|
||
|
|
||
|
See:
|
||
|
https://en.wikipedia.org/wiki/Dyadic_tensor
|
||
|
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
|
||
|
|
||
|
A more powerful way to represent a rigid body's inertia. While it is more
|
||
|
complex, by choosing Dyadic components to be in body fixed basis vectors,
|
||
|
the resulting matrix is equivalent to the inertia tensor.
|
||
|
|
||
|
"""
|
||
|
|
||
|
is_number = False
|
||
|
|
||
|
def __init__(self, inlist):
|
||
|
"""
|
||
|
Just like Vector's init, you should not call this unless creating a
|
||
|
zero dyadic.
|
||
|
|
||
|
zd = Dyadic(0)
|
||
|
|
||
|
Stores a Dyadic as a list of lists; the inner list has the measure
|
||
|
number and the two unit vectors; the outerlist holds each unique
|
||
|
unit vector pair.
|
||
|
|
||
|
"""
|
||
|
|
||
|
self.args = []
|
||
|
if inlist == 0:
|
||
|
inlist = []
|
||
|
while len(inlist) != 0:
|
||
|
added = 0
|
||
|
for i, v in enumerate(self.args):
|
||
|
if ((str(inlist[0][1]) == str(self.args[i][1])) and
|
||
|
(str(inlist[0][2]) == str(self.args[i][2]))):
|
||
|
self.args[i] = (self.args[i][0] + inlist[0][0],
|
||
|
inlist[0][1], inlist[0][2])
|
||
|
inlist.remove(inlist[0])
|
||
|
added = 1
|
||
|
break
|
||
|
if added != 1:
|
||
|
self.args.append(inlist[0])
|
||
|
inlist.remove(inlist[0])
|
||
|
i = 0
|
||
|
# This code is to remove empty parts from the list
|
||
|
while i < len(self.args):
|
||
|
if ((self.args[i][0] == 0) | (self.args[i][1] == 0) |
|
||
|
(self.args[i][2] == 0)):
|
||
|
self.args.remove(self.args[i])
|
||
|
i -= 1
|
||
|
i += 1
|
||
|
|
||
|
@property
|
||
|
def func(self):
|
||
|
"""Returns the class Dyadic. """
|
||
|
return Dyadic
|
||
|
|
||
|
def __add__(self, other):
|
||
|
"""The add operator for Dyadic. """
|
||
|
other = _check_dyadic(other)
|
||
|
return Dyadic(self.args + other.args)
|
||
|
|
||
|
def __and__(self, other):
|
||
|
"""The inner product operator for a Dyadic and a Dyadic or Vector.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : Dyadic or Vector
|
||
|
The other Dyadic or Vector to take the inner product with
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> D1 = outer(N.x, N.y)
|
||
|
>>> D2 = outer(N.y, N.y)
|
||
|
>>> D1.dot(D2)
|
||
|
(N.x|N.y)
|
||
|
>>> D1.dot(N.y)
|
||
|
N.x
|
||
|
|
||
|
"""
|
||
|
from sympy.physics.vector.vector import Vector, _check_vector
|
||
|
if isinstance(other, Dyadic):
|
||
|
other = _check_dyadic(other)
|
||
|
ol = Dyadic(0)
|
||
|
for i, v in enumerate(self.args):
|
||
|
for i2, v2 in enumerate(other.args):
|
||
|
ol += v[0] * v2[0] * (v[2] & v2[1]) * (v[1] | v2[2])
|
||
|
else:
|
||
|
other = _check_vector(other)
|
||
|
ol = Vector(0)
|
||
|
for i, v in enumerate(self.args):
|
||
|
ol += v[0] * v[1] * (v[2] & other)
|
||
|
return ol
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
"""Divides the Dyadic by a sympifyable expression. """
|
||
|
return self.__mul__(1 / other)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
"""Tests for equality.
|
||
|
|
||
|
Is currently weak; needs stronger comparison testing
|
||
|
|
||
|
"""
|
||
|
|
||
|
if other == 0:
|
||
|
other = Dyadic(0)
|
||
|
other = _check_dyadic(other)
|
||
|
if (self.args == []) and (other.args == []):
|
||
|
return True
|
||
|
elif (self.args == []) or (other.args == []):
|
||
|
return False
|
||
|
return set(self.args) == set(other.args)
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
"""Multiplies the Dyadic by a sympifyable expression.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : Sympafiable
|
||
|
The scalar to multiply this Dyadic with
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> d = outer(N.x, N.x)
|
||
|
>>> 5 * d
|
||
|
5*(N.x|N.x)
|
||
|
|
||
|
"""
|
||
|
|
||
|
newlist = list(self.args)
|
||
|
other = sympify(other)
|
||
|
for i, v in enumerate(newlist):
|
||
|
newlist[i] = (other * newlist[i][0], newlist[i][1],
|
||
|
newlist[i][2])
|
||
|
return Dyadic(newlist)
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self == other
|
||
|
|
||
|
def __neg__(self):
|
||
|
return self * -1
|
||
|
|
||
|
def _latex(self, printer):
|
||
|
ar = self.args # just to shorten things
|
||
|
if len(ar) == 0:
|
||
|
return str(0)
|
||
|
ol = [] # output list, to be concatenated to a string
|
||
|
for i, v in enumerate(ar):
|
||
|
# if the coef of the dyadic is 1, we skip the 1
|
||
|
if ar[i][0] == 1:
|
||
|
ol.append(' + ' + printer._print(ar[i][1]) + r"\otimes " +
|
||
|
printer._print(ar[i][2]))
|
||
|
# if the coef of the dyadic is -1, we skip the 1
|
||
|
elif ar[i][0] == -1:
|
||
|
ol.append(' - ' +
|
||
|
printer._print(ar[i][1]) +
|
||
|
r"\otimes " +
|
||
|
printer._print(ar[i][2]))
|
||
|
# If the coefficient of the dyadic is not 1 or -1,
|
||
|
# we might wrap it in parentheses, for readability.
|
||
|
elif ar[i][0] != 0:
|
||
|
arg_str = printer._print(ar[i][0])
|
||
|
if isinstance(ar[i][0], Add):
|
||
|
arg_str = '(%s)' % arg_str
|
||
|
if arg_str.startswith('-'):
|
||
|
arg_str = arg_str[1:]
|
||
|
str_start = ' - '
|
||
|
else:
|
||
|
str_start = ' + '
|
||
|
ol.append(str_start + arg_str + printer._print(ar[i][1]) +
|
||
|
r"\otimes " + printer._print(ar[i][2]))
|
||
|
outstr = ''.join(ol)
|
||
|
if outstr.startswith(' + '):
|
||
|
outstr = outstr[3:]
|
||
|
elif outstr.startswith(' '):
|
||
|
outstr = outstr[1:]
|
||
|
return outstr
|
||
|
|
||
|
def _pretty(self, printer):
|
||
|
e = self
|
||
|
|
||
|
class Fake:
|
||
|
baseline = 0
|
||
|
|
||
|
def render(self, *args, **kwargs):
|
||
|
ar = e.args # just to shorten things
|
||
|
mpp = printer
|
||
|
if len(ar) == 0:
|
||
|
return str(0)
|
||
|
bar = "\N{CIRCLED TIMES}" if printer._use_unicode else "|"
|
||
|
ol = [] # output list, to be concatenated to a string
|
||
|
for i, v in enumerate(ar):
|
||
|
# if the coef of the dyadic is 1, we skip the 1
|
||
|
if ar[i][0] == 1:
|
||
|
ol.extend([" + ",
|
||
|
mpp.doprint(ar[i][1]),
|
||
|
bar,
|
||
|
mpp.doprint(ar[i][2])])
|
||
|
|
||
|
# if the coef of the dyadic is -1, we skip the 1
|
||
|
elif ar[i][0] == -1:
|
||
|
ol.extend([" - ",
|
||
|
mpp.doprint(ar[i][1]),
|
||
|
bar,
|
||
|
mpp.doprint(ar[i][2])])
|
||
|
|
||
|
# If the coefficient of the dyadic is not 1 or -1,
|
||
|
# we might wrap it in parentheses, for readability.
|
||
|
elif ar[i][0] != 0:
|
||
|
if isinstance(ar[i][0], Add):
|
||
|
arg_str = mpp._print(
|
||
|
ar[i][0]).parens()[0]
|
||
|
else:
|
||
|
arg_str = mpp.doprint(ar[i][0])
|
||
|
if arg_str.startswith("-"):
|
||
|
arg_str = arg_str[1:]
|
||
|
str_start = " - "
|
||
|
else:
|
||
|
str_start = " + "
|
||
|
ol.extend([str_start, arg_str, " ",
|
||
|
mpp.doprint(ar[i][1]),
|
||
|
bar,
|
||
|
mpp.doprint(ar[i][2])])
|
||
|
|
||
|
outstr = "".join(ol)
|
||
|
if outstr.startswith(" + "):
|
||
|
outstr = outstr[3:]
|
||
|
elif outstr.startswith(" "):
|
||
|
outstr = outstr[1:]
|
||
|
return outstr
|
||
|
return Fake()
|
||
|
|
||
|
def __rand__(self, other):
|
||
|
"""The inner product operator for a Vector or Dyadic, and a Dyadic
|
||
|
|
||
|
This is for: Vector dot Dyadic
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : Vector
|
||
|
The vector we are dotting with
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, dot, outer
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> d = outer(N.x, N.x)
|
||
|
>>> dot(N.x, d)
|
||
|
N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
from sympy.physics.vector.vector import Vector, _check_vector
|
||
|
other = _check_vector(other)
|
||
|
ol = Vector(0)
|
||
|
for i, v in enumerate(self.args):
|
||
|
ol += v[0] * v[2] * (v[1] & other)
|
||
|
return ol
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
return (-1 * self) + other
|
||
|
|
||
|
def __rxor__(self, other):
|
||
|
"""For a cross product in the form: Vector x Dyadic
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : Vector
|
||
|
The Vector that we are crossing this Dyadic with
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer, cross
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> d = outer(N.x, N.x)
|
||
|
>>> cross(N.y, d)
|
||
|
- (N.z|N.x)
|
||
|
|
||
|
"""
|
||
|
|
||
|
from sympy.physics.vector.vector import _check_vector
|
||
|
other = _check_vector(other)
|
||
|
ol = Dyadic(0)
|
||
|
for i, v in enumerate(self.args):
|
||
|
ol += v[0] * ((other ^ v[1]) | v[2])
|
||
|
return ol
|
||
|
|
||
|
def _sympystr(self, printer):
|
||
|
"""Printing method. """
|
||
|
ar = self.args # just to shorten things
|
||
|
if len(ar) == 0:
|
||
|
return printer._print(0)
|
||
|
ol = [] # output list, to be concatenated to a string
|
||
|
for i, v in enumerate(ar):
|
||
|
# if the coef of the dyadic is 1, we skip the 1
|
||
|
if ar[i][0] == 1:
|
||
|
ol.append(' + (' + printer._print(ar[i][1]) + '|' +
|
||
|
printer._print(ar[i][2]) + ')')
|
||
|
# if the coef of the dyadic is -1, we skip the 1
|
||
|
elif ar[i][0] == -1:
|
||
|
ol.append(' - (' + printer._print(ar[i][1]) + '|' +
|
||
|
printer._print(ar[i][2]) + ')')
|
||
|
# If the coefficient of the dyadic is not 1 or -1,
|
||
|
# we might wrap it in parentheses, for readability.
|
||
|
elif ar[i][0] != 0:
|
||
|
arg_str = printer._print(ar[i][0])
|
||
|
if isinstance(ar[i][0], Add):
|
||
|
arg_str = "(%s)" % arg_str
|
||
|
if arg_str[0] == '-':
|
||
|
arg_str = arg_str[1:]
|
||
|
str_start = ' - '
|
||
|
else:
|
||
|
str_start = ' + '
|
||
|
ol.append(str_start + arg_str + '*(' +
|
||
|
printer._print(ar[i][1]) +
|
||
|
'|' + printer._print(ar[i][2]) + ')')
|
||
|
outstr = ''.join(ol)
|
||
|
if outstr.startswith(' + '):
|
||
|
outstr = outstr[3:]
|
||
|
elif outstr.startswith(' '):
|
||
|
outstr = outstr[1:]
|
||
|
return outstr
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
"""The subtraction operator. """
|
||
|
return self.__add__(other * -1)
|
||
|
|
||
|
def __xor__(self, other):
|
||
|
"""For a cross product in the form: Dyadic x Vector.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : Vector
|
||
|
The Vector that we are crossing this Dyadic with
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer, cross
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> d = outer(N.x, N.x)
|
||
|
>>> cross(d, N.y)
|
||
|
(N.x|N.z)
|
||
|
|
||
|
"""
|
||
|
|
||
|
from sympy.physics.vector.vector import _check_vector
|
||
|
other = _check_vector(other)
|
||
|
ol = Dyadic(0)
|
||
|
for i, v in enumerate(self.args):
|
||
|
ol += v[0] * (v[1] | (v[2] ^ other))
|
||
|
return ol
|
||
|
|
||
|
__radd__ = __add__
|
||
|
__rmul__ = __mul__
|
||
|
|
||
|
def express(self, frame1, frame2=None):
|
||
|
"""Expresses this Dyadic in alternate frame(s)
|
||
|
|
||
|
The first frame is the list side expression, the second frame is the
|
||
|
right side; if Dyadic is in form A.x|B.y, you can express it in two
|
||
|
different frames. If no second frame is given, the Dyadic is
|
||
|
expressed in only one frame.
|
||
|
|
||
|
Calls the global express function
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame1 : ReferenceFrame
|
||
|
The frame to express the left side of the Dyadic in
|
||
|
frame2 : ReferenceFrame
|
||
|
If provided, the frame to express the right side of the Dyadic in
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> B = N.orientnew('B', 'Axis', [q, N.z])
|
||
|
>>> d = outer(N.x, N.x)
|
||
|
>>> d.express(B, N)
|
||
|
cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
|
||
|
|
||
|
"""
|
||
|
from sympy.physics.vector.functions import express
|
||
|
return express(self, frame1, frame2)
|
||
|
|
||
|
def to_matrix(self, reference_frame, second_reference_frame=None):
|
||
|
"""Returns the matrix form of the dyadic with respect to one or two
|
||
|
reference frames.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
reference_frame : ReferenceFrame
|
||
|
The reference frame that the rows and columns of the matrix
|
||
|
correspond to. If a second reference frame is provided, this
|
||
|
only corresponds to the rows of the matrix.
|
||
|
second_reference_frame : ReferenceFrame, optional, default=None
|
||
|
The reference frame that the columns of the matrix correspond
|
||
|
to.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matrix : ImmutableMatrix, shape(3,3)
|
||
|
The matrix that gives the 2D tensor form.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, Vector
|
||
|
>>> Vector.simp = True
|
||
|
>>> from sympy.physics.mechanics import inertia
|
||
|
>>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz')
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz)
|
||
|
>>> inertia_dyadic.to_matrix(N)
|
||
|
Matrix([
|
||
|
[Ixx, Ixy, Ixz],
|
||
|
[Ixy, Iyy, Iyz],
|
||
|
[Ixz, Iyz, Izz]])
|
||
|
>>> beta = symbols('beta')
|
||
|
>>> A = N.orientnew('A', 'Axis', (beta, N.x))
|
||
|
>>> inertia_dyadic.to_matrix(A)
|
||
|
Matrix([
|
||
|
[ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)],
|
||
|
[ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2],
|
||
|
[-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]])
|
||
|
|
||
|
"""
|
||
|
|
||
|
if second_reference_frame is None:
|
||
|
second_reference_frame = reference_frame
|
||
|
|
||
|
return Matrix([i.dot(self).dot(j) for i in reference_frame for j in
|
||
|
second_reference_frame]).reshape(3, 3)
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
"""Calls .doit() on each term in the Dyadic"""
|
||
|
return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])])
|
||
|
for v in self.args], Dyadic(0))
|
||
|
|
||
|
def dt(self, frame):
|
||
|
"""Take the time derivative of this Dyadic in a frame.
|
||
|
|
||
|
This function calls the global time_derivative method
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame to take the time derivative in
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> B = N.orientnew('B', 'Axis', [q, N.z])
|
||
|
>>> d = outer(N.x, N.x)
|
||
|
>>> d.dt(B)
|
||
|
- q'*(N.y|N.x) - q'*(N.x|N.y)
|
||
|
|
||
|
"""
|
||
|
from sympy.physics.vector.functions import time_derivative
|
||
|
return time_derivative(self, frame)
|
||
|
|
||
|
def simplify(self):
|
||
|
"""Returns a simplified Dyadic."""
|
||
|
out = Dyadic(0)
|
||
|
for v in self.args:
|
||
|
out += Dyadic([(v[0].simplify(), v[1], v[2])])
|
||
|
return out
|
||
|
|
||
|
def subs(self, *args, **kwargs):
|
||
|
"""Substitution on the Dyadic.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame
|
||
|
>>> from sympy import Symbol
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> s = Symbol('s')
|
||
|
>>> a = s*(N.x|N.x)
|
||
|
>>> a.subs({s: 2})
|
||
|
2*(N.x|N.x)
|
||
|
|
||
|
"""
|
||
|
|
||
|
return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])])
|
||
|
for v in self.args], Dyadic(0))
|
||
|
|
||
|
def applyfunc(self, f):
|
||
|
"""Apply a function to each component of a Dyadic."""
|
||
|
if not callable(f):
|
||
|
raise TypeError("`f` must be callable.")
|
||
|
|
||
|
out = Dyadic(0)
|
||
|
for a, b, c in self.args:
|
||
|
out += f(a) * (b | c)
|
||
|
return out
|
||
|
|
||
|
dot = __and__
|
||
|
cross = __xor__
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
if not self.args:
|
||
|
return self
|
||
|
new_args = []
|
||
|
dps = prec_to_dps(prec)
|
||
|
for inlist in self.args:
|
||
|
new_inlist = list(inlist)
|
||
|
new_inlist[0] = inlist[0].evalf(n=dps)
|
||
|
new_args.append(tuple(new_inlist))
|
||
|
return Dyadic(new_args)
|
||
|
|
||
|
def xreplace(self, rule):
|
||
|
"""
|
||
|
Replace occurrences of objects within the measure numbers of the
|
||
|
Dyadic.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
rule : dict-like
|
||
|
Expresses a replacement rule.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Dyadic
|
||
|
Result of the replacement.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, pi
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, outer
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> D = outer(N.x, N.x)
|
||
|
>>> x, y, z = symbols('x y z')
|
||
|
>>> ((1 + x*y) * D).xreplace({x: pi})
|
||
|
(pi*y + 1)*(N.x|N.x)
|
||
|
>>> ((1 + x*y) * D).xreplace({x: pi, y: 2})
|
||
|
(1 + 2*pi)*(N.x|N.x)
|
||
|
|
||
|
Replacements occur only if an entire node in the expression tree is
|
||
|
matched:
|
||
|
|
||
|
>>> ((x*y + z) * D).xreplace({x*y: pi})
|
||
|
(z + pi)*(N.x|N.x)
|
||
|
>>> ((x*y*z) * D).xreplace({x*y: pi})
|
||
|
x*y*z*(N.x|N.x)
|
||
|
|
||
|
"""
|
||
|
|
||
|
new_args = []
|
||
|
for inlist in self.args:
|
||
|
new_inlist = list(inlist)
|
||
|
new_inlist[0] = new_inlist[0].xreplace(rule)
|
||
|
new_args.append(tuple(new_inlist))
|
||
|
return Dyadic(new_args)
|
||
|
|
||
|
|
||
|
def _check_dyadic(other):
|
||
|
if not isinstance(other, Dyadic):
|
||
|
raise TypeError('A Dyadic must be supplied')
|
||
|
return other
|