Traktor/myenv/Lib/site-packages/sympy/polys/domains/old_fractionfield.py

186 lines
6.0 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""Implementation of :class:`FractionField` class. """
from sympy.polys.domains.field import Field
from sympy.polys.domains.compositedomain import CompositeDomain
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.polyclasses import DMF
from sympy.polys.polyerrors import GeneratorsNeeded
from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder
from sympy.utilities import public
@public
class FractionField(Field, CharacteristicZero, CompositeDomain):
"""A class for representing rational function fields. """
dtype = DMF
is_FractionField = is_Frac = True
has_assoc_Ring = True
has_assoc_Field = True
def __init__(self, dom, *gens):
if not gens:
raise GeneratorsNeeded("generators not specified")
lev = len(gens) - 1
self.ngens = len(gens)
self.zero = self.dtype.zero(lev, dom, ring=self)
self.one = self.dtype.one(lev, dom, ring=self)
self.domain = self.dom = dom
self.symbols = self.gens = gens
def new(self, element):
return self.dtype(element, self.dom, len(self.gens) - 1, ring=self)
def __str__(self):
return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')'
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.dom, self.gens))
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
return isinstance(other, FractionField) and \
self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) /
basic_from_dict(a.denom().to_sympy_dict(), *self.gens))
def from_sympy(self, a):
"""Convert SymPy's expression to ``dtype``. """
p, q = a.as_numer_denom()
num, _ = dict_from_basic(p, gens=self.gens)
den, _ = dict_from_basic(q, gens=self.gens)
for k, v in num.items():
num[k] = self.dom.from_sympy(v)
for k, v in den.items():
den[k] = self.dom.from_sympy(v)
return self((num, den)).cancel()
def from_ZZ(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_RealField(K1, a, K0):
"""Convert a mpmath ``mpf`` object to ``dtype``. """
return K1(K1.dom.convert(a, K0))
def from_GlobalPolynomialRing(K1, a, K0):
"""Convert a ``DMF`` object to ``dtype``. """
if K1.gens == K0.gens:
if K1.dom == K0.dom:
return K1(a.rep)
else:
return K1(a.convert(K1.dom).rep)
else:
monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens)
if K1.dom != K0.dom:
coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ]
return K1(dict(zip(monoms, coeffs)))
def from_FractionField(K1, a, K0):
"""
Convert a fraction field element to another fraction field.
Examples
========
>>> from sympy.polys.polyclasses import DMF
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy.abc import x
>>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ)
>>> QQx = QQ.old_frac_field(x)
>>> ZZx = ZZ.old_frac_field(x)
>>> QQx.from_FractionField(f, ZZx)
(x + 2)/(x + 1)
"""
if K1.gens == K0.gens:
if K1.dom == K0.dom:
return a
else:
return K1((a.numer().convert(K1.dom).rep,
a.denom().convert(K1.dom).rep))
elif set(K0.gens).issubset(K1.gens):
nmonoms, ncoeffs = _dict_reorder(
a.numer().to_dict(), K0.gens, K1.gens)
dmonoms, dcoeffs = _dict_reorder(
a.denom().to_dict(), K0.gens, K1.gens)
if K1.dom != K0.dom:
ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ]
dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ]
return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs))))
def get_ring(self):
"""Returns a ring associated with ``self``. """
from sympy.polys.domains import PolynomialRing
return PolynomialRing(self.dom, *self.gens)
def poly_ring(self, *gens):
"""Returns a polynomial ring, i.e. `K[X]`. """
raise NotImplementedError('nested domains not allowed')
def frac_field(self, *gens):
"""Returns a fraction field, i.e. `K(X)`. """
raise NotImplementedError('nested domains not allowed')
def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return self.dom.is_positive(a.numer().LC())
def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return self.dom.is_negative(a.numer().LC())
def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return self.dom.is_nonpositive(a.numer().LC())
def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return self.dom.is_nonnegative(a.numer().LC())
def numer(self, a):
"""Returns numerator of ``a``. """
return a.numer()
def denom(self, a):
"""Returns denominator of ``a``. """
return a.denom()
def factorial(self, a):
"""Returns factorial of ``a``. """
return self.dtype(self.dom.factorial(a))