247 lines
8.1 KiB
Python
247 lines
8.1 KiB
Python
|
"""Computing integral bases for number fields. """
|
||
|
|
||
|
from sympy.polys.polytools import Poly
|
||
|
from sympy.polys.domains.algebraicfield import AlgebraicField
|
||
|
from sympy.polys.domains.integerring import ZZ
|
||
|
from sympy.polys.domains.rationalfield import QQ
|
||
|
from sympy.utilities.decorator import public
|
||
|
from .modules import ModuleEndomorphism, ModuleHomomorphism, PowerBasis
|
||
|
from .utilities import extract_fundamental_discriminant
|
||
|
|
||
|
|
||
|
def _apply_Dedekind_criterion(T, p):
|
||
|
r"""
|
||
|
Apply the "Dedekind criterion" to test whether the order needs to be
|
||
|
enlarged relative to a given prime *p*.
|
||
|
"""
|
||
|
x = T.gen
|
||
|
T_bar = Poly(T, modulus=p)
|
||
|
lc, fl = T_bar.factor_list()
|
||
|
assert lc == 1
|
||
|
g_bar = Poly(1, x, modulus=p)
|
||
|
for ti_bar, _ in fl:
|
||
|
g_bar *= ti_bar
|
||
|
h_bar = T_bar // g_bar
|
||
|
g = Poly(g_bar, domain=ZZ)
|
||
|
h = Poly(h_bar, domain=ZZ)
|
||
|
f = (g * h - T) // p
|
||
|
f_bar = Poly(f, modulus=p)
|
||
|
Z_bar = f_bar
|
||
|
for b in [g_bar, h_bar]:
|
||
|
Z_bar = Z_bar.gcd(b)
|
||
|
U_bar = T_bar // Z_bar
|
||
|
m = Z_bar.degree()
|
||
|
return U_bar, m
|
||
|
|
||
|
|
||
|
def nilradical_mod_p(H, p, q=None):
|
||
|
r"""
|
||
|
Compute the nilradical mod *p* for a given order *H*, and prime *p*.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is the ideal $I$ in $H/pH$ consisting of all elements some positive
|
||
|
power of which is zero in this quotient ring, i.e. is a multiple of *p*.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
H : :py:class:`~.Submodule`
|
||
|
The given order.
|
||
|
p : int
|
||
|
The rational prime.
|
||
|
q : int, optional
|
||
|
If known, the smallest power of *p* that is $>=$ the dimension of *H*.
|
||
|
If not provided, we compute it here.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
:py:class:`~.Module` representing the nilradical mod *p* in *H*.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
|
||
|
(See Lemma 6.1.6.)
|
||
|
|
||
|
"""
|
||
|
n = H.n
|
||
|
if q is None:
|
||
|
q = p
|
||
|
while q < n:
|
||
|
q *= p
|
||
|
phi = ModuleEndomorphism(H, lambda x: x**q)
|
||
|
return phi.kernel(modulus=p)
|
||
|
|
||
|
|
||
|
def _second_enlargement(H, p, q):
|
||
|
r"""
|
||
|
Perform the second enlargement in the Round Two algorithm.
|
||
|
"""
|
||
|
Ip = nilradical_mod_p(H, p, q=q)
|
||
|
B = H.parent.submodule_from_matrix(H.matrix * Ip.matrix, denom=H.denom)
|
||
|
C = B + p*H
|
||
|
E = C.endomorphism_ring()
|
||
|
phi = ModuleHomomorphism(H, E, lambda x: E.inner_endomorphism(x))
|
||
|
gamma = phi.kernel(modulus=p)
|
||
|
G = H.parent.submodule_from_matrix(H.matrix * gamma.matrix, denom=H.denom * p)
|
||
|
H1 = G + H
|
||
|
return H1, Ip
|
||
|
|
||
|
|
||
|
@public
|
||
|
def round_two(T, radicals=None):
|
||
|
r"""
|
||
|
Zassenhaus's "Round 2" algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Carry out Zassenhaus's "Round 2" algorithm on an irreducible polynomial
|
||
|
*T* over :ref:`ZZ` or :ref:`QQ`. This computes an integral basis and the
|
||
|
discriminant for the field $K = \mathbb{Q}[x]/(T(x))$.
|
||
|
|
||
|
Alternatively, you may pass an :py:class:`~.AlgebraicField` instance, in
|
||
|
place of the polynomial *T*, in which case the algorithm is applied to the
|
||
|
minimal polynomial for the field's primitive element.
|
||
|
|
||
|
Ordinarily this function need not be called directly, as one can instead
|
||
|
access the :py:meth:`~.AlgebraicField.maximal_order`,
|
||
|
:py:meth:`~.AlgebraicField.integral_basis`, and
|
||
|
:py:meth:`~.AlgebraicField.discriminant` methods of an
|
||
|
:py:class:`~.AlgebraicField`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Working through an AlgebraicField:
|
||
|
|
||
|
>>> from sympy import Poly, QQ
|
||
|
>>> from sympy.abc import x
|
||
|
>>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
|
||
|
>>> K = QQ.alg_field_from_poly(T, "theta")
|
||
|
>>> print(K.maximal_order())
|
||
|
Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2
|
||
|
>>> print(K.discriminant())
|
||
|
-503
|
||
|
>>> print(K.integral_basis(fmt='sympy'))
|
||
|
[1, theta, theta/2 + theta**2/2]
|
||
|
|
||
|
Calling directly:
|
||
|
|
||
|
>>> from sympy import Poly
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.polys.numberfields.basis import round_two
|
||
|
>>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
|
||
|
>>> print(round_two(T))
|
||
|
(Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2, -503)
|
||
|
|
||
|
The nilradicals mod $p$ that are sometimes computed during the Round Two
|
||
|
algorithm may be useful in further calculations. Pass a dictionary under
|
||
|
`radicals` to receive these:
|
||
|
|
||
|
>>> T = Poly(x**3 + 3*x**2 + 5)
|
||
|
>>> rad = {}
|
||
|
>>> ZK, dK = round_two(T, radicals=rad)
|
||
|
>>> print(rad)
|
||
|
{3: Submodule[[-1, 1, 0], [-1, 0, 1]]}
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
T : :py:class:`~.Poly`, :py:class:`~.AlgebraicField`
|
||
|
Either (1) the irreducible polynomial over :ref:`ZZ` or :ref:`QQ`
|
||
|
defining the number field, or (2) an :py:class:`~.AlgebraicField`
|
||
|
representing the number field itself.
|
||
|
|
||
|
radicals : dict, optional
|
||
|
This is a way for any $p$-radicals (if computed) to be returned by
|
||
|
reference. If desired, pass an empty dictionary. If the algorithm
|
||
|
reaches the point where it computes the nilradical mod $p$ of the ring
|
||
|
of integers $Z_K$, then an $\mathbb{F}_p$-basis for this ideal will be
|
||
|
stored in this dictionary under the key ``p``. This can be useful for
|
||
|
other algorithms, such as prime decomposition.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Pair ``(ZK, dK)``, where:
|
||
|
|
||
|
``ZK`` is a :py:class:`~sympy.polys.numberfields.modules.Submodule`
|
||
|
representing the maximal order.
|
||
|
|
||
|
``dK`` is the discriminant of the field $K = \mathbb{Q}[x]/(T(x))$.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
.AlgebraicField.maximal_order
|
||
|
.AlgebraicField.integral_basis
|
||
|
.AlgebraicField.discriminant
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
|
||
|
|
||
|
"""
|
||
|
K = None
|
||
|
if isinstance(T, AlgebraicField):
|
||
|
K, T = T, T.ext.minpoly_of_element()
|
||
|
if ( not T.is_univariate
|
||
|
or not T.is_irreducible
|
||
|
or T.domain not in [ZZ, QQ]):
|
||
|
raise ValueError('Round 2 requires an irreducible univariate polynomial over ZZ or QQ.')
|
||
|
T, _ = T.make_monic_over_integers_by_scaling_roots()
|
||
|
n = T.degree()
|
||
|
D = T.discriminant()
|
||
|
D_modulus = ZZ.from_sympy(abs(D))
|
||
|
# D must be 0 or 1 mod 4 (see Cohen Sec 4.4), which ensures we can write
|
||
|
# it in the form D = D_0 * F**2, where D_0 is 1 or a fundamental discriminant.
|
||
|
_, F = extract_fundamental_discriminant(D)
|
||
|
Ztheta = PowerBasis(K or T)
|
||
|
H = Ztheta.whole_submodule()
|
||
|
nilrad = None
|
||
|
while F:
|
||
|
# Next prime:
|
||
|
p, e = F.popitem()
|
||
|
U_bar, m = _apply_Dedekind_criterion(T, p)
|
||
|
if m == 0:
|
||
|
continue
|
||
|
# For a given prime p, the first enlargement of the order spanned by
|
||
|
# the current basis can be done in a simple way:
|
||
|
U = Ztheta.element_from_poly(Poly(U_bar, domain=ZZ))
|
||
|
# TODO:
|
||
|
# Theory says only first m columns of the U//p*H term below are needed.
|
||
|
# Could be slightly more efficient to use only those. Maybe `Submodule`
|
||
|
# class should support a slice operator?
|
||
|
H = H.add(U // p * H, hnf_modulus=D_modulus)
|
||
|
if e <= m:
|
||
|
continue
|
||
|
# A second, and possibly more, enlargements for p will be needed.
|
||
|
# These enlargements require a more involved procedure.
|
||
|
q = p
|
||
|
while q < n:
|
||
|
q *= p
|
||
|
H1, nilrad = _second_enlargement(H, p, q)
|
||
|
while H1 != H:
|
||
|
H = H1
|
||
|
H1, nilrad = _second_enlargement(H, p, q)
|
||
|
# Note: We do not store all nilradicals mod p, only the very last. This is
|
||
|
# because, unless computed against the entire integral basis, it might not
|
||
|
# be accurate. (In other words, if H was not already equal to ZK when we
|
||
|
# passed it to `_second_enlargement`, then we can't trust the nilradical
|
||
|
# so computed.) Example: if T(x) = x ** 3 + 15 * x ** 2 - 9 * x + 13, then
|
||
|
# F is divisible by 2, 3, and 7, and the nilradical mod 2 as computed above
|
||
|
# will not be accurate for the full, maximal order ZK.
|
||
|
if nilrad is not None and isinstance(radicals, dict):
|
||
|
radicals[p] = nilrad
|
||
|
ZK = H
|
||
|
# Pre-set expensive boolean properties which we already know to be true:
|
||
|
ZK._starts_with_unity = True
|
||
|
ZK._is_sq_maxrank_HNF = True
|
||
|
dK = (D * ZK.matrix.det() ** 2) // ZK.denom ** (2 * n)
|
||
|
return ZK, dK
|