2026 lines
56 KiB
Python
2026 lines
56 KiB
Python
|
"""Power series evaluation and manipulation using sparse Polynomials
|
||
|
|
||
|
Implementing a new function
|
||
|
---------------------------
|
||
|
|
||
|
There are a few things to be kept in mind when adding a new function here::
|
||
|
|
||
|
- The implementation should work on all possible input domains/rings.
|
||
|
Special cases include the ``EX`` ring and a constant term in the series
|
||
|
to be expanded. There can be two types of constant terms in the series:
|
||
|
|
||
|
+ A constant value or symbol.
|
||
|
+ A term of a multivariate series not involving the generator, with
|
||
|
respect to which the series is to expanded.
|
||
|
|
||
|
Strictly speaking, a generator of a ring should not be considered a
|
||
|
constant. However, for series expansion both the cases need similar
|
||
|
treatment (as the user does not care about inner details), i.e, use an
|
||
|
addition formula to separate the constant part and the variable part (see
|
||
|
rs_sin for reference).
|
||
|
|
||
|
- All the algorithms used here are primarily designed to work for Taylor
|
||
|
series (number of iterations in the algo equals the required order).
|
||
|
Hence, it becomes tricky to get the series of the right order if a
|
||
|
Puiseux series is input. Use rs_puiseux? in your function if your
|
||
|
algorithm is not designed to handle fractional powers.
|
||
|
|
||
|
Extending rs_series
|
||
|
-------------------
|
||
|
|
||
|
To make a function work with rs_series you need to do two things::
|
||
|
|
||
|
- Many sure it works with a constant term (as explained above).
|
||
|
- If the series contains constant terms, you might need to extend its ring.
|
||
|
You do so by adding the new terms to the rings as generators.
|
||
|
``PolyRing.compose`` and ``PolyRing.add_gens`` are two functions that do
|
||
|
so and need to be called every time you expand a series containing a
|
||
|
constant term.
|
||
|
|
||
|
Look at rs_sin and rs_series for further reference.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from sympy.polys.domains import QQ, EX
|
||
|
from sympy.polys.rings import PolyElement, ring, sring
|
||
|
from sympy.polys.polyerrors import DomainError
|
||
|
from sympy.polys.monomials import (monomial_min, monomial_mul, monomial_div,
|
||
|
monomial_ldiv)
|
||
|
from mpmath.libmp.libintmath import ifac
|
||
|
from sympy.core import PoleError, Function, Expr
|
||
|
from sympy.core.numbers import Rational, igcd
|
||
|
from sympy.functions import sin, cos, tan, atan, exp, atanh, tanh, log, ceiling
|
||
|
from sympy.utilities.misc import as_int
|
||
|
from mpmath.libmp.libintmath import giant_steps
|
||
|
import math
|
||
|
|
||
|
|
||
|
def _invert_monoms(p1):
|
||
|
"""
|
||
|
Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import _invert_monoms
|
||
|
>>> R, x = ring('x', ZZ)
|
||
|
>>> p = x**2 + 2*x + 3
|
||
|
>>> _invert_monoms(p)
|
||
|
3*x**2 + 2*x + 1
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.polys.densebasic.dup_reverse
|
||
|
"""
|
||
|
terms = list(p1.items())
|
||
|
terms.sort()
|
||
|
deg = p1.degree()
|
||
|
R = p1.ring
|
||
|
p = R.zero
|
||
|
cv = p1.listcoeffs()
|
||
|
mv = p1.listmonoms()
|
||
|
for mvi, cvi in zip(mv, cv):
|
||
|
p[(deg - mvi[0],)] = cvi
|
||
|
return p
|
||
|
|
||
|
def _giant_steps(target):
|
||
|
"""Return a list of precision steps for the Newton's method"""
|
||
|
res = giant_steps(2, target)
|
||
|
if res[0] != 2:
|
||
|
res = [2] + res
|
||
|
return res
|
||
|
|
||
|
def rs_trunc(p1, x, prec):
|
||
|
"""
|
||
|
Truncate the series in the ``x`` variable with precision ``prec``,
|
||
|
that is, modulo ``O(x**prec)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_trunc
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**10 + x**5 + x + 1
|
||
|
>>> rs_trunc(p, x, 12)
|
||
|
x**10 + x**5 + x + 1
|
||
|
>>> rs_trunc(p, x, 10)
|
||
|
x**5 + x + 1
|
||
|
"""
|
||
|
R = p1.ring
|
||
|
p = R.zero
|
||
|
i = R.gens.index(x)
|
||
|
for exp1 in p1:
|
||
|
if exp1[i] >= prec:
|
||
|
continue
|
||
|
p[exp1] = p1[exp1]
|
||
|
return p
|
||
|
|
||
|
def rs_is_puiseux(p, x):
|
||
|
"""
|
||
|
Test if ``p`` is Puiseux series in ``x``.
|
||
|
|
||
|
Raise an exception if it has a negative power in ``x``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_is_puiseux
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
|
||
|
>>> rs_is_puiseux(p, x)
|
||
|
True
|
||
|
"""
|
||
|
index = p.ring.gens.index(x)
|
||
|
for k in p:
|
||
|
if k[index] != int(k[index]):
|
||
|
return True
|
||
|
if k[index] < 0:
|
||
|
raise ValueError('The series is not regular in %s' % x)
|
||
|
return False
|
||
|
|
||
|
def rs_puiseux(f, p, x, prec):
|
||
|
"""
|
||
|
Return the puiseux series for `f(p, x, prec)`.
|
||
|
|
||
|
To be used when function ``f`` is implemented only for regular series.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_puiseux, rs_exp
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
|
||
|
>>> rs_puiseux(rs_exp,p, x, 1)
|
||
|
1/2*x**(4/5) + x**(2/3) + x**(2/5) + 1
|
||
|
"""
|
||
|
index = p.ring.gens.index(x)
|
||
|
n = 1
|
||
|
for k in p:
|
||
|
power = k[index]
|
||
|
if isinstance(power, Rational):
|
||
|
num, den = power.as_numer_denom()
|
||
|
n = int(n*den // igcd(n, den))
|
||
|
elif power != int(power):
|
||
|
den = power.denominator
|
||
|
n = int(n*den // igcd(n, den))
|
||
|
if n != 1:
|
||
|
p1 = pow_xin(p, index, n)
|
||
|
r = f(p1, x, prec*n)
|
||
|
n1 = QQ(1, n)
|
||
|
if isinstance(r, tuple):
|
||
|
r = tuple([pow_xin(rx, index, n1) for rx in r])
|
||
|
else:
|
||
|
r = pow_xin(r, index, n1)
|
||
|
else:
|
||
|
r = f(p, x, prec)
|
||
|
return r
|
||
|
|
||
|
def rs_puiseux2(f, p, q, x, prec):
|
||
|
"""
|
||
|
Return the puiseux series for `f(p, q, x, prec)`.
|
||
|
|
||
|
To be used when function ``f`` is implemented only for regular series.
|
||
|
"""
|
||
|
index = p.ring.gens.index(x)
|
||
|
n = 1
|
||
|
for k in p:
|
||
|
power = k[index]
|
||
|
if isinstance(power, Rational):
|
||
|
num, den = power.as_numer_denom()
|
||
|
n = n*den // igcd(n, den)
|
||
|
elif power != int(power):
|
||
|
den = power.denominator
|
||
|
n = n*den // igcd(n, den)
|
||
|
if n != 1:
|
||
|
p1 = pow_xin(p, index, n)
|
||
|
r = f(p1, q, x, prec*n)
|
||
|
n1 = QQ(1, n)
|
||
|
r = pow_xin(r, index, n1)
|
||
|
else:
|
||
|
r = f(p, q, x, prec)
|
||
|
return r
|
||
|
|
||
|
def rs_mul(p1, p2, x, prec):
|
||
|
"""
|
||
|
Return the product of the given two series, modulo ``O(x**prec)``.
|
||
|
|
||
|
``x`` is the series variable or its position in the generators.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_mul
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p1 = x**2 + 2*x + 1
|
||
|
>>> p2 = x + 1
|
||
|
>>> rs_mul(p1, p2, x, 3)
|
||
|
3*x**2 + 3*x + 1
|
||
|
"""
|
||
|
R = p1.ring
|
||
|
p = R.zero
|
||
|
if R.__class__ != p2.ring.__class__ or R != p2.ring:
|
||
|
raise ValueError('p1 and p2 must have the same ring')
|
||
|
iv = R.gens.index(x)
|
||
|
if not isinstance(p2, PolyElement):
|
||
|
raise ValueError('p2 must be a polynomial')
|
||
|
if R == p2.ring:
|
||
|
get = p.get
|
||
|
items2 = list(p2.items())
|
||
|
items2.sort(key=lambda e: e[0][iv])
|
||
|
if R.ngens == 1:
|
||
|
for exp1, v1 in p1.items():
|
||
|
for exp2, v2 in items2:
|
||
|
exp = exp1[0] + exp2[0]
|
||
|
if exp < prec:
|
||
|
exp = (exp, )
|
||
|
p[exp] = get(exp, 0) + v1*v2
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
monomial_mul = R.monomial_mul
|
||
|
for exp1, v1 in p1.items():
|
||
|
for exp2, v2 in items2:
|
||
|
if exp1[iv] + exp2[iv] < prec:
|
||
|
exp = monomial_mul(exp1, exp2)
|
||
|
p[exp] = get(exp, 0) + v1*v2
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
p.strip_zero()
|
||
|
return p
|
||
|
|
||
|
def rs_square(p1, x, prec):
|
||
|
"""
|
||
|
Square the series modulo ``O(x**prec)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_square
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**2 + 2*x + 1
|
||
|
>>> rs_square(p, x, 3)
|
||
|
6*x**2 + 4*x + 1
|
||
|
"""
|
||
|
R = p1.ring
|
||
|
p = R.zero
|
||
|
iv = R.gens.index(x)
|
||
|
get = p.get
|
||
|
items = list(p1.items())
|
||
|
items.sort(key=lambda e: e[0][iv])
|
||
|
monomial_mul = R.monomial_mul
|
||
|
for i in range(len(items)):
|
||
|
exp1, v1 = items[i]
|
||
|
for j in range(i):
|
||
|
exp2, v2 = items[j]
|
||
|
if exp1[iv] + exp2[iv] < prec:
|
||
|
exp = monomial_mul(exp1, exp2)
|
||
|
p[exp] = get(exp, 0) + v1*v2
|
||
|
else:
|
||
|
break
|
||
|
p = p.imul_num(2)
|
||
|
get = p.get
|
||
|
for expv, v in p1.items():
|
||
|
if 2*expv[iv] < prec:
|
||
|
e2 = monomial_mul(expv, expv)
|
||
|
p[e2] = get(e2, 0) + v**2
|
||
|
p.strip_zero()
|
||
|
return p
|
||
|
|
||
|
def rs_pow(p1, n, x, prec):
|
||
|
"""
|
||
|
Return ``p1**n`` modulo ``O(x**prec)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_pow
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x + 1
|
||
|
>>> rs_pow(p, 4, x, 3)
|
||
|
6*x**2 + 4*x + 1
|
||
|
"""
|
||
|
R = p1.ring
|
||
|
if isinstance(n, Rational):
|
||
|
np = int(n.p)
|
||
|
nq = int(n.q)
|
||
|
if nq != 1:
|
||
|
res = rs_nth_root(p1, nq, x, prec)
|
||
|
if np != 1:
|
||
|
res = rs_pow(res, np, x, prec)
|
||
|
else:
|
||
|
res = rs_pow(p1, np, x, prec)
|
||
|
return res
|
||
|
|
||
|
n = as_int(n)
|
||
|
if n == 0:
|
||
|
if p1:
|
||
|
return R(1)
|
||
|
else:
|
||
|
raise ValueError('0**0 is undefined')
|
||
|
if n < 0:
|
||
|
p1 = rs_pow(p1, -n, x, prec)
|
||
|
return rs_series_inversion(p1, x, prec)
|
||
|
if n == 1:
|
||
|
return rs_trunc(p1, x, prec)
|
||
|
if n == 2:
|
||
|
return rs_square(p1, x, prec)
|
||
|
if n == 3:
|
||
|
p2 = rs_square(p1, x, prec)
|
||
|
return rs_mul(p1, p2, x, prec)
|
||
|
p = R(1)
|
||
|
while 1:
|
||
|
if n & 1:
|
||
|
p = rs_mul(p1, p, x, prec)
|
||
|
n -= 1
|
||
|
if not n:
|
||
|
break
|
||
|
p1 = rs_square(p1, x, prec)
|
||
|
n = n // 2
|
||
|
return p
|
||
|
|
||
|
def rs_subs(p, rules, x, prec):
|
||
|
"""
|
||
|
Substitution with truncation according to the mapping in ``rules``.
|
||
|
|
||
|
Return a series with precision ``prec`` in the generator ``x``
|
||
|
|
||
|
Note that substitutions are not done one after the other
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_subs
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> p = x**2 + y**2
|
||
|
>>> rs_subs(p, {x: x+ y, y: x+ 2*y}, x, 3)
|
||
|
2*x**2 + 6*x*y + 5*y**2
|
||
|
>>> (x + y)**2 + (x + 2*y)**2
|
||
|
2*x**2 + 6*x*y + 5*y**2
|
||
|
|
||
|
which differs from
|
||
|
|
||
|
>>> rs_subs(rs_subs(p, {x: x+ y}, x, 3), {y: x+ 2*y}, x, 3)
|
||
|
5*x**2 + 12*x*y + 8*y**2
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : :class:`~.PolyElement` Input series.
|
||
|
rules : ``dict`` with substitution mappings.
|
||
|
x : :class:`~.PolyElement` in which the series truncation is to be done.
|
||
|
prec : :class:`~.Integer` order of the series after truncation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_subs
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_subs(x**2+y**2, {y: (x+y)**2}, x, 3)
|
||
|
6*x**2*y**2 + x**2 + 4*x*y**3 + y**4
|
||
|
"""
|
||
|
R = p.ring
|
||
|
ngens = R.ngens
|
||
|
d = R(0)
|
||
|
for i in range(ngens):
|
||
|
d[(i, 1)] = R.gens[i]
|
||
|
for var in rules:
|
||
|
d[(R.index(var), 1)] = rules[var]
|
||
|
p1 = R(0)
|
||
|
p_keys = sorted(p.keys())
|
||
|
for expv in p_keys:
|
||
|
p2 = R(1)
|
||
|
for i in range(ngens):
|
||
|
power = expv[i]
|
||
|
if power == 0:
|
||
|
continue
|
||
|
if (i, power) not in d:
|
||
|
q, r = divmod(power, 2)
|
||
|
if r == 0 and (i, q) in d:
|
||
|
d[(i, power)] = rs_square(d[(i, q)], x, prec)
|
||
|
elif (i, power - 1) in d:
|
||
|
d[(i, power)] = rs_mul(d[(i, power - 1)], d[(i, 1)],
|
||
|
x, prec)
|
||
|
else:
|
||
|
d[(i, power)] = rs_pow(d[(i, 1)], power, x, prec)
|
||
|
p2 = rs_mul(p2, d[(i, power)], x, prec)
|
||
|
p1 += p2*p[expv]
|
||
|
return p1
|
||
|
|
||
|
def _has_constant_term(p, x):
|
||
|
"""
|
||
|
Check if ``p`` has a constant term in ``x``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import _has_constant_term
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**2 + x + 1
|
||
|
>>> _has_constant_term(p, x)
|
||
|
True
|
||
|
"""
|
||
|
R = p.ring
|
||
|
iv = R.gens.index(x)
|
||
|
zm = R.zero_monom
|
||
|
a = [0]*R.ngens
|
||
|
a[iv] = 1
|
||
|
miv = tuple(a)
|
||
|
for expv in p:
|
||
|
if monomial_min(expv, miv) == zm:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
def _get_constant_term(p, x):
|
||
|
"""Return constant term in p with respect to x
|
||
|
|
||
|
Note that it is not simply `p[R.zero_monom]` as there might be multiple
|
||
|
generators in the ring R. We want the `x`-free term which can contain other
|
||
|
generators.
|
||
|
"""
|
||
|
R = p.ring
|
||
|
i = R.gens.index(x)
|
||
|
zm = R.zero_monom
|
||
|
a = [0]*R.ngens
|
||
|
a[i] = 1
|
||
|
miv = tuple(a)
|
||
|
c = 0
|
||
|
for expv in p:
|
||
|
if monomial_min(expv, miv) == zm:
|
||
|
c += R({expv: p[expv]})
|
||
|
return c
|
||
|
|
||
|
def _check_series_var(p, x, name):
|
||
|
index = p.ring.gens.index(x)
|
||
|
m = min(p, key=lambda k: k[index])[index]
|
||
|
if m < 0:
|
||
|
raise PoleError("Asymptotic expansion of %s around [oo] not "
|
||
|
"implemented." % name)
|
||
|
return index, m
|
||
|
|
||
|
def _series_inversion1(p, x, prec):
|
||
|
"""
|
||
|
Univariate series inversion ``1/p`` modulo ``O(x**prec)``.
|
||
|
|
||
|
The Newton method is used.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import _series_inversion1
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x + 1
|
||
|
>>> _series_inversion1(p, x, 4)
|
||
|
-x**3 + x**2 - x + 1
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(_series_inversion1, p, x, prec)
|
||
|
R = p.ring
|
||
|
zm = R.zero_monom
|
||
|
c = p[zm]
|
||
|
|
||
|
# giant_steps does not seem to work with PythonRational numbers with 1 as
|
||
|
# denominator. This makes sure such a number is converted to integer.
|
||
|
if prec == int(prec):
|
||
|
prec = int(prec)
|
||
|
|
||
|
if zm not in p:
|
||
|
raise ValueError("No constant term in series")
|
||
|
if _has_constant_term(p - c, x):
|
||
|
raise ValueError("p cannot contain a constant term depending on "
|
||
|
"parameters")
|
||
|
one = R(1)
|
||
|
if R.domain is EX:
|
||
|
one = 1
|
||
|
if c != one:
|
||
|
# TODO add check that it is a unit
|
||
|
p1 = R(1)/c
|
||
|
else:
|
||
|
p1 = R(1)
|
||
|
for precx in _giant_steps(prec):
|
||
|
t = 1 - rs_mul(p1, p, x, precx)
|
||
|
p1 = p1 + rs_mul(p1, t, x, precx)
|
||
|
return p1
|
||
|
|
||
|
def rs_series_inversion(p, x, prec):
|
||
|
"""
|
||
|
Multivariate series inversion ``1/p`` modulo ``O(x**prec)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_series_inversion
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_series_inversion(1 + x*y**2, x, 4)
|
||
|
-x**3*y**6 + x**2*y**4 - x*y**2 + 1
|
||
|
>>> rs_series_inversion(1 + x*y**2, y, 4)
|
||
|
-x*y**2 + 1
|
||
|
>>> rs_series_inversion(x + x**2, x, 4)
|
||
|
x**3 - x**2 + x - 1 + x**(-1)
|
||
|
"""
|
||
|
R = p.ring
|
||
|
if p == R.zero:
|
||
|
raise ZeroDivisionError
|
||
|
zm = R.zero_monom
|
||
|
index = R.gens.index(x)
|
||
|
m = min(p, key=lambda k: k[index])[index]
|
||
|
if m:
|
||
|
p = mul_xin(p, index, -m)
|
||
|
prec = prec + m
|
||
|
if zm not in p:
|
||
|
raise NotImplementedError("No constant term in series")
|
||
|
|
||
|
if _has_constant_term(p - p[zm], x):
|
||
|
raise NotImplementedError("p - p[0] must not have a constant term in "
|
||
|
"the series variables")
|
||
|
r = _series_inversion1(p, x, prec)
|
||
|
if m != 0:
|
||
|
r = mul_xin(r, index, -m)
|
||
|
return r
|
||
|
|
||
|
def _coefficient_t(p, t):
|
||
|
r"""Coefficient of `x_i**j` in p, where ``t`` = (i, j)"""
|
||
|
i, j = t
|
||
|
R = p.ring
|
||
|
expv1 = [0]*R.ngens
|
||
|
expv1[i] = j
|
||
|
expv1 = tuple(expv1)
|
||
|
p1 = R(0)
|
||
|
for expv in p:
|
||
|
if expv[i] == j:
|
||
|
p1[monomial_div(expv, expv1)] = p[expv]
|
||
|
return p1
|
||
|
|
||
|
def rs_series_reversion(p, x, n, y):
|
||
|
r"""
|
||
|
Reversion of a series.
|
||
|
|
||
|
``p`` is a series with ``O(x**n)`` of the form $p = ax + f(x)$
|
||
|
where $a$ is a number different from 0.
|
||
|
|
||
|
$f(x) = \sum_{k=2}^{n-1} a_kx_k$
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
a_k : Can depend polynomially on other variables, not indicated.
|
||
|
x : Variable with name x.
|
||
|
y : Variable with name y.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Solve $p = y$, that is, given $ax + f(x) - y = 0$,
|
||
|
find the solution $x = r(y)$ up to $O(y^n)$.
|
||
|
|
||
|
Algorithm
|
||
|
=========
|
||
|
|
||
|
If $r_i$ is the solution at order $i$, then:
|
||
|
$ar_i + f(r_i) - y = O\left(y^{i + 1}\right)$
|
||
|
|
||
|
and if $r_{i + 1}$ is the solution at order $i + 1$, then:
|
||
|
$ar_{i + 1} + f(r_{i + 1}) - y = O\left(y^{i + 2}\right)$
|
||
|
|
||
|
We have, $r_{i + 1} = r_i + e$, such that,
|
||
|
$ae + f(r_i) = O\left(y^{i + 2}\right)$
|
||
|
or $e = -f(r_i)/a$
|
||
|
|
||
|
So we use the recursion relation:
|
||
|
$r_{i + 1} = r_i - f(r_i)/a$
|
||
|
with the boundary condition: $r_1 = y$
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_series_reversion, rs_trunc
|
||
|
>>> R, x, y, a, b = ring('x, y, a, b', QQ)
|
||
|
>>> p = x - x**2 - 2*b*x**2 + 2*a*b*x**2
|
||
|
>>> p1 = rs_series_reversion(p, x, 3, y); p1
|
||
|
-2*y**2*a*b + 2*y**2*b + y**2 + y
|
||
|
>>> rs_trunc(p.compose(x, p1), y, 3)
|
||
|
y
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
raise NotImplementedError
|
||
|
R = p.ring
|
||
|
nx = R.gens.index(x)
|
||
|
y = R(y)
|
||
|
ny = R.gens.index(y)
|
||
|
if _has_constant_term(p, x):
|
||
|
raise ValueError("p must not contain a constant term in the series "
|
||
|
"variable")
|
||
|
a = _coefficient_t(p, (nx, 1))
|
||
|
zm = R.zero_monom
|
||
|
assert zm in a and len(a) == 1
|
||
|
a = a[zm]
|
||
|
r = y/a
|
||
|
for i in range(2, n):
|
||
|
sp = rs_subs(p, {x: r}, y, i + 1)
|
||
|
sp = _coefficient_t(sp, (ny, i))*y**i
|
||
|
r -= sp/a
|
||
|
return r
|
||
|
|
||
|
def rs_series_from_list(p, c, x, prec, concur=1):
|
||
|
"""
|
||
|
Return a series `sum c[n]*p**n` modulo `O(x**prec)`.
|
||
|
|
||
|
It reduces the number of multiplications by summing concurrently.
|
||
|
|
||
|
`ax = [1, p, p**2, .., p**(J - 1)]`
|
||
|
`s = sum(c[i]*ax[i]` for i in `range(r, (r + 1)*J))*p**((K - 1)*J)`
|
||
|
with `K >= (n + 1)/J`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_series_from_list, rs_trunc
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**2 + x + 1
|
||
|
>>> c = [1, 2, 3]
|
||
|
>>> rs_series_from_list(p, c, x, 4)
|
||
|
6*x**3 + 11*x**2 + 8*x + 6
|
||
|
>>> rs_trunc(1 + 2*p + 3*p**2, x, 4)
|
||
|
6*x**3 + 11*x**2 + 8*x + 6
|
||
|
>>> pc = R.from_list(list(reversed(c)))
|
||
|
>>> rs_trunc(pc.compose(x, p), x, 4)
|
||
|
6*x**3 + 11*x**2 + 8*x + 6
|
||
|
|
||
|
"""
|
||
|
|
||
|
# TODO: Add this when it is documented in Sphinx
|
||
|
"""
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.polys.rings.PolyRing.compose
|
||
|
|
||
|
"""
|
||
|
R = p.ring
|
||
|
n = len(c)
|
||
|
if not concur:
|
||
|
q = R(1)
|
||
|
s = c[0]*q
|
||
|
for i in range(1, n):
|
||
|
q = rs_mul(q, p, x, prec)
|
||
|
s += c[i]*q
|
||
|
return s
|
||
|
J = int(math.sqrt(n) + 1)
|
||
|
K, r = divmod(n, J)
|
||
|
if r:
|
||
|
K += 1
|
||
|
ax = [R(1)]
|
||
|
q = R(1)
|
||
|
if len(p) < 20:
|
||
|
for i in range(1, J):
|
||
|
q = rs_mul(q, p, x, prec)
|
||
|
ax.append(q)
|
||
|
else:
|
||
|
for i in range(1, J):
|
||
|
if i % 2 == 0:
|
||
|
q = rs_square(ax[i//2], x, prec)
|
||
|
else:
|
||
|
q = rs_mul(q, p, x, prec)
|
||
|
ax.append(q)
|
||
|
# optimize using rs_square
|
||
|
pj = rs_mul(ax[-1], p, x, prec)
|
||
|
b = R(1)
|
||
|
s = R(0)
|
||
|
for k in range(K - 1):
|
||
|
r = J*k
|
||
|
s1 = c[r]
|
||
|
for j in range(1, J):
|
||
|
s1 += c[r + j]*ax[j]
|
||
|
s1 = rs_mul(s1, b, x, prec)
|
||
|
s += s1
|
||
|
b = rs_mul(b, pj, x, prec)
|
||
|
if not b:
|
||
|
break
|
||
|
k = K - 1
|
||
|
r = J*k
|
||
|
if r < n:
|
||
|
s1 = c[r]*R(1)
|
||
|
for j in range(1, J):
|
||
|
if r + j >= n:
|
||
|
break
|
||
|
s1 += c[r + j]*ax[j]
|
||
|
s1 = rs_mul(s1, b, x, prec)
|
||
|
s += s1
|
||
|
return s
|
||
|
|
||
|
def rs_diff(p, x):
|
||
|
"""
|
||
|
Return partial derivative of ``p`` with respect to ``x``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
x : :class:`~.PolyElement` with respect to which ``p`` is differentiated.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_diff
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> p = x + x**2*y**3
|
||
|
>>> rs_diff(p, x)
|
||
|
2*x*y**3 + 1
|
||
|
"""
|
||
|
R = p.ring
|
||
|
n = R.gens.index(x)
|
||
|
p1 = R.zero
|
||
|
mn = [0]*R.ngens
|
||
|
mn[n] = 1
|
||
|
mn = tuple(mn)
|
||
|
for expv in p:
|
||
|
if expv[n]:
|
||
|
e = monomial_ldiv(expv, mn)
|
||
|
p1[e] = R.domain_new(p[expv]*expv[n])
|
||
|
return p1
|
||
|
|
||
|
def rs_integrate(p, x):
|
||
|
"""
|
||
|
Integrate ``p`` with respect to ``x``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
x : :class:`~.PolyElement` with respect to which ``p`` is integrated.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_integrate
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> p = x + x**2*y**3
|
||
|
>>> rs_integrate(p, x)
|
||
|
1/3*x**3*y**3 + 1/2*x**2
|
||
|
"""
|
||
|
R = p.ring
|
||
|
p1 = R.zero
|
||
|
n = R.gens.index(x)
|
||
|
mn = [0]*R.ngens
|
||
|
mn[n] = 1
|
||
|
mn = tuple(mn)
|
||
|
|
||
|
for expv in p:
|
||
|
e = monomial_mul(expv, mn)
|
||
|
p1[e] = R.domain_new(p[expv]/(expv[n] + 1))
|
||
|
return p1
|
||
|
|
||
|
def rs_fun(p, f, *args):
|
||
|
r"""
|
||
|
Function of a multivariate series computed by substitution.
|
||
|
|
||
|
The case with f method name is used to compute `rs\_tan` and `rs\_nth\_root`
|
||
|
of a multivariate series:
|
||
|
|
||
|
`rs\_fun(p, tan, iv, prec)`
|
||
|
|
||
|
tan series is first computed for a dummy variable _x,
|
||
|
i.e, `rs\_tan(\_x, iv, prec)`. Then we substitute _x with p to get the
|
||
|
desired series
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : :class:`~.PolyElement` The multivariate series to be expanded.
|
||
|
f : `ring\_series` function to be applied on `p`.
|
||
|
args[-2] : :class:`~.PolyElement` with respect to which, the series is to be expanded.
|
||
|
args[-1] : Required order of the expanded series.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_fun, _tan1
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> p = x + x*y + x**2*y + x**3*y**2
|
||
|
>>> rs_fun(p, _tan1, x, 4)
|
||
|
1/3*x**3*y**3 + 2*x**3*y**2 + x**3*y + 1/3*x**3 + x**2*y + x*y + x
|
||
|
"""
|
||
|
_R = p.ring
|
||
|
R1, _x = ring('_x', _R.domain)
|
||
|
h = int(args[-1])
|
||
|
args1 = args[:-2] + (_x, h)
|
||
|
zm = _R.zero_monom
|
||
|
# separate the constant term of the series
|
||
|
# compute the univariate series f(_x, .., 'x', sum(nv))
|
||
|
if zm in p:
|
||
|
x1 = _x + p[zm]
|
||
|
p1 = p - p[zm]
|
||
|
else:
|
||
|
x1 = _x
|
||
|
p1 = p
|
||
|
if isinstance(f, str):
|
||
|
q = getattr(x1, f)(*args1)
|
||
|
else:
|
||
|
q = f(x1, *args1)
|
||
|
a = sorted(q.items())
|
||
|
c = [0]*h
|
||
|
for x in a:
|
||
|
c[x[0][0]] = x[1]
|
||
|
p1 = rs_series_from_list(p1, c, args[-2], args[-1])
|
||
|
return p1
|
||
|
|
||
|
def mul_xin(p, i, n):
|
||
|
r"""
|
||
|
Return `p*x_i**n`.
|
||
|
|
||
|
`x\_i` is the ith variable in ``p``.
|
||
|
"""
|
||
|
R = p.ring
|
||
|
q = R(0)
|
||
|
for k, v in p.items():
|
||
|
k1 = list(k)
|
||
|
k1[i] += n
|
||
|
q[tuple(k1)] = v
|
||
|
return q
|
||
|
|
||
|
def pow_xin(p, i, n):
|
||
|
"""
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import pow_xin
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> p = x**QQ(2,5) + x + x**QQ(2,3)
|
||
|
>>> index = p.ring.gens.index(x)
|
||
|
>>> pow_xin(p, index, 15)
|
||
|
x**15 + x**10 + x**6
|
||
|
"""
|
||
|
R = p.ring
|
||
|
q = R(0)
|
||
|
for k, v in p.items():
|
||
|
k1 = list(k)
|
||
|
k1[i] *= n
|
||
|
q[tuple(k1)] = v
|
||
|
return q
|
||
|
|
||
|
def _nth_root1(p, n, x, prec):
|
||
|
"""
|
||
|
Univariate series expansion of the nth root of ``p``.
|
||
|
|
||
|
The Newton method is used.
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux2(_nth_root1, p, n, x, prec)
|
||
|
R = p.ring
|
||
|
zm = R.zero_monom
|
||
|
if zm not in p:
|
||
|
raise NotImplementedError('No constant term in series')
|
||
|
n = as_int(n)
|
||
|
assert p[zm] == 1
|
||
|
p1 = R(1)
|
||
|
if p == 1:
|
||
|
return p
|
||
|
if n == 0:
|
||
|
return R(1)
|
||
|
if n == 1:
|
||
|
return p
|
||
|
if n < 0:
|
||
|
n = -n
|
||
|
sign = 1
|
||
|
else:
|
||
|
sign = 0
|
||
|
for precx in _giant_steps(prec):
|
||
|
tmp = rs_pow(p1, n + 1, x, precx)
|
||
|
tmp = rs_mul(tmp, p, x, precx)
|
||
|
p1 += p1/n - tmp/n
|
||
|
if sign:
|
||
|
return p1
|
||
|
else:
|
||
|
return _series_inversion1(p1, x, prec)
|
||
|
|
||
|
def rs_nth_root(p, n, x, prec):
|
||
|
"""
|
||
|
Multivariate series expansion of the nth root of ``p``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : Expr
|
||
|
The polynomial to computer the root of.
|
||
|
n : integer
|
||
|
The order of the root to be computed.
|
||
|
x : :class:`~.PolyElement`
|
||
|
prec : integer
|
||
|
Order of the expanded series.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The result of this function is dependent on the ring over which the
|
||
|
polynomial has been defined. If the answer involves a root of a constant,
|
||
|
make sure that the polynomial is over a real field. It cannot yet handle
|
||
|
roots of symbols.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ, RR
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_nth_root
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_nth_root(1 + x + x*y, -3, x, 3)
|
||
|
2/9*x**2*y**2 + 4/9*x**2*y + 2/9*x**2 - 1/3*x*y - 1/3*x + 1
|
||
|
>>> R, x, y = ring('x, y', RR)
|
||
|
>>> rs_nth_root(3 + x + x*y, 3, x, 2)
|
||
|
0.160249952256379*x*y + 0.160249952256379*x + 1.44224957030741
|
||
|
"""
|
||
|
if n == 0:
|
||
|
if p == 0:
|
||
|
raise ValueError('0**0 expression')
|
||
|
else:
|
||
|
return p.ring(1)
|
||
|
if n == 1:
|
||
|
return rs_trunc(p, x, prec)
|
||
|
R = p.ring
|
||
|
index = R.gens.index(x)
|
||
|
m = min(p, key=lambda k: k[index])[index]
|
||
|
p = mul_xin(p, index, -m)
|
||
|
prec -= m
|
||
|
|
||
|
if _has_constant_term(p - 1, x):
|
||
|
zm = R.zero_monom
|
||
|
c = p[zm]
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
const = c_expr**QQ(1, n)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
const = R(c_expr**(QQ(1, n)))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
else:
|
||
|
try: # RealElement doesn't support
|
||
|
const = R(c**Rational(1, n)) # exponentiation with mpq object
|
||
|
except ValueError: # as exponent
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
res = rs_nth_root(p/c, n, x, prec)*const
|
||
|
else:
|
||
|
res = _nth_root1(p, n, x, prec)
|
||
|
if m:
|
||
|
m = QQ(m, n)
|
||
|
res = mul_xin(res, index, m)
|
||
|
return res
|
||
|
|
||
|
def rs_log(p, x, prec):
|
||
|
"""
|
||
|
The Logarithm of ``p`` modulo ``O(x**prec)``.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Truncation of ``integral dx p**-1*d p/dx`` is used.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_log
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> rs_log(1 + x, x, 8)
|
||
|
1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x
|
||
|
>>> rs_log(x**QQ(3, 2) + 1, x, 5)
|
||
|
1/3*x**(9/2) - 1/2*x**3 + x**(3/2)
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_log, p, x, prec)
|
||
|
R = p.ring
|
||
|
if p == 1:
|
||
|
return R.zero
|
||
|
c = _get_constant_term(p, x)
|
||
|
if c:
|
||
|
const = 0
|
||
|
if c == 1:
|
||
|
pass
|
||
|
else:
|
||
|
c_expr = c.as_expr()
|
||
|
if R.domain is EX:
|
||
|
const = log(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
const = R(log(c_expr))
|
||
|
except ValueError:
|
||
|
R = R.add_gens([log(c_expr)])
|
||
|
p = p.set_ring(R)
|
||
|
x = x.set_ring(R)
|
||
|
c = c.set_ring(R)
|
||
|
const = R(log(c_expr))
|
||
|
else:
|
||
|
try:
|
||
|
const = R(log(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
|
||
|
dlog = p.diff(x)
|
||
|
dlog = rs_mul(dlog, _series_inversion1(p, x, prec), x, prec - 1)
|
||
|
return rs_integrate(dlog, x) + const
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def rs_LambertW(p, x, prec):
|
||
|
"""
|
||
|
Calculate the series expansion of the principal branch of the Lambert W
|
||
|
function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_LambertW
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_LambertW(x + x*y, x, 3)
|
||
|
-x**2*y**2 - 2*x**2*y - x**2 + x*y + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
LambertW
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_LambertW, p, x, prec)
|
||
|
R = p.ring
|
||
|
p1 = R(0)
|
||
|
if _has_constant_term(p, x):
|
||
|
raise NotImplementedError("Polynomial must not have constant term in "
|
||
|
"the series variables")
|
||
|
if x in R.gens:
|
||
|
for precx in _giant_steps(prec):
|
||
|
e = rs_exp(p1, x, precx)
|
||
|
p2 = rs_mul(e, p1, x, precx) - p
|
||
|
p3 = rs_mul(e, p1 + 1, x, precx)
|
||
|
p3 = rs_series_inversion(p3, x, precx)
|
||
|
tmp = rs_mul(p2, p3, x, precx)
|
||
|
p1 -= tmp
|
||
|
return p1
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def _exp1(p, x, prec):
|
||
|
r"""Helper function for `rs\_exp`. """
|
||
|
R = p.ring
|
||
|
p1 = R(1)
|
||
|
for precx in _giant_steps(prec):
|
||
|
pt = p - rs_log(p1, x, precx)
|
||
|
tmp = rs_mul(pt, p1, x, precx)
|
||
|
p1 += tmp
|
||
|
return p1
|
||
|
|
||
|
def rs_exp(p, x, prec):
|
||
|
"""
|
||
|
Exponentiation of a series modulo ``O(x**prec)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_exp
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> rs_exp(x**2, x, 7)
|
||
|
1/6*x**6 + 1/2*x**4 + x**2 + 1
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_exp, p, x, prec)
|
||
|
R = p.ring
|
||
|
c = _get_constant_term(p, x)
|
||
|
if c:
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
const = exp(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
const = R(exp(c_expr))
|
||
|
except ValueError:
|
||
|
R = R.add_gens([exp(c_expr)])
|
||
|
p = p.set_ring(R)
|
||
|
x = x.set_ring(R)
|
||
|
c = c.set_ring(R)
|
||
|
const = R(exp(c_expr))
|
||
|
else:
|
||
|
try:
|
||
|
const = R(exp(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
p1 = p - c
|
||
|
|
||
|
# Makes use of SymPy functions to evaluate the values of the cos/sin
|
||
|
# of the constant term.
|
||
|
return const*rs_exp(p1, x, prec)
|
||
|
|
||
|
if len(p) > 20:
|
||
|
return _exp1(p, x, prec)
|
||
|
one = R(1)
|
||
|
n = 1
|
||
|
c = []
|
||
|
for k in range(prec):
|
||
|
c.append(one/n)
|
||
|
k += 1
|
||
|
n *= k
|
||
|
|
||
|
r = rs_series_from_list(p, c, x, prec)
|
||
|
return r
|
||
|
|
||
|
def _atan(p, iv, prec):
|
||
|
"""
|
||
|
Expansion using formula.
|
||
|
|
||
|
Faster on very small and univariate series.
|
||
|
"""
|
||
|
R = p.ring
|
||
|
mo = R(-1)
|
||
|
c = [-mo]
|
||
|
p2 = rs_square(p, iv, prec)
|
||
|
for k in range(1, prec):
|
||
|
c.append(mo**k/(2*k + 1))
|
||
|
s = rs_series_from_list(p2, c, iv, prec)
|
||
|
s = rs_mul(s, p, iv, prec)
|
||
|
return s
|
||
|
|
||
|
def rs_atan(p, x, prec):
|
||
|
"""
|
||
|
The arctangent of a series
|
||
|
|
||
|
Return the series expansion of the atan of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_atan
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_atan(x + x*y, x, 4)
|
||
|
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
atan
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_atan, p, x, prec)
|
||
|
R = p.ring
|
||
|
const = 0
|
||
|
if _has_constant_term(p, x):
|
||
|
zm = R.zero_monom
|
||
|
c = p[zm]
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
const = atan(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
const = R(atan(c_expr))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
else:
|
||
|
try:
|
||
|
const = R(atan(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
|
||
|
# Instead of using a closed form formula, we differentiate atan(p) to get
|
||
|
# `1/(1+p**2) * dp`, whose series expansion is much easier to calculate.
|
||
|
# Finally we integrate to get back atan
|
||
|
dp = p.diff(x)
|
||
|
p1 = rs_square(p, x, prec) + R(1)
|
||
|
p1 = rs_series_inversion(p1, x, prec - 1)
|
||
|
p1 = rs_mul(dp, p1, x, prec - 1)
|
||
|
return rs_integrate(p1, x) + const
|
||
|
|
||
|
def rs_asin(p, x, prec):
|
||
|
"""
|
||
|
Arcsine of a series
|
||
|
|
||
|
Return the series expansion of the asin of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_asin
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_asin(x, x, 8)
|
||
|
5/112*x**7 + 3/40*x**5 + 1/6*x**3 + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
asin
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_asin, p, x, prec)
|
||
|
if _has_constant_term(p, x):
|
||
|
raise NotImplementedError("Polynomial must not have constant term in "
|
||
|
"series variables")
|
||
|
R = p.ring
|
||
|
if x in R.gens:
|
||
|
# get a good value
|
||
|
if len(p) > 20:
|
||
|
dp = rs_diff(p, x)
|
||
|
p1 = 1 - rs_square(p, x, prec - 1)
|
||
|
p1 = rs_nth_root(p1, -2, x, prec - 1)
|
||
|
p1 = rs_mul(dp, p1, x, prec - 1)
|
||
|
return rs_integrate(p1, x)
|
||
|
one = R(1)
|
||
|
c = [0, one, 0]
|
||
|
for k in range(3, prec, 2):
|
||
|
c.append((k - 2)**2*c[-2]/(k*(k - 1)))
|
||
|
c.append(0)
|
||
|
return rs_series_from_list(p, c, x, prec)
|
||
|
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def _tan1(p, x, prec):
|
||
|
r"""
|
||
|
Helper function of :func:`rs_tan`.
|
||
|
|
||
|
Return the series expansion of tan of a univariate series using Newton's
|
||
|
method. It takes advantage of the fact that series expansion of atan is
|
||
|
easier than that of tan.
|
||
|
|
||
|
Consider `f(x) = y - \arctan(x)`
|
||
|
Let r be a root of f(x) found using Newton's method.
|
||
|
Then `f(r) = 0`
|
||
|
Or `y = \arctan(x)` where `x = \tan(y)` as required.
|
||
|
"""
|
||
|
R = p.ring
|
||
|
p1 = R(0)
|
||
|
for precx in _giant_steps(prec):
|
||
|
tmp = p - rs_atan(p1, x, precx)
|
||
|
tmp = rs_mul(tmp, 1 + rs_square(p1, x, precx), x, precx)
|
||
|
p1 += tmp
|
||
|
return p1
|
||
|
|
||
|
def rs_tan(p, x, prec):
|
||
|
"""
|
||
|
Tangent of a series.
|
||
|
|
||
|
Return the series expansion of the tan of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_tan
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_tan(x + x*y, x, 4)
|
||
|
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
_tan1, tan
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
r = rs_puiseux(rs_tan, p, x, prec)
|
||
|
return r
|
||
|
R = p.ring
|
||
|
const = 0
|
||
|
c = _get_constant_term(p, x)
|
||
|
if c:
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
const = tan(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
const = R(tan(c_expr))
|
||
|
except ValueError:
|
||
|
R = R.add_gens([tan(c_expr, )])
|
||
|
p = p.set_ring(R)
|
||
|
x = x.set_ring(R)
|
||
|
c = c.set_ring(R)
|
||
|
const = R(tan(c_expr))
|
||
|
else:
|
||
|
try:
|
||
|
const = R(tan(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
p1 = p - c
|
||
|
|
||
|
# Makes use of SymPy functions to evaluate the values of the cos/sin
|
||
|
# of the constant term.
|
||
|
t2 = rs_tan(p1, x, prec)
|
||
|
t = rs_series_inversion(1 - const*t2, x, prec)
|
||
|
return rs_mul(const + t2, t, x, prec)
|
||
|
|
||
|
if R.ngens == 1:
|
||
|
return _tan1(p, x, prec)
|
||
|
else:
|
||
|
return rs_fun(p, rs_tan, x, prec)
|
||
|
|
||
|
def rs_cot(p, x, prec):
|
||
|
"""
|
||
|
Cotangent of a series
|
||
|
|
||
|
Return the series expansion of the cot of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_cot
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_cot(x, x, 6)
|
||
|
-2/945*x**5 - 1/45*x**3 - 1/3*x + x**(-1)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
cot
|
||
|
"""
|
||
|
# It can not handle series like `p = x + x*y` where the coefficient of the
|
||
|
# linear term in the series variable is symbolic.
|
||
|
if rs_is_puiseux(p, x):
|
||
|
r = rs_puiseux(rs_cot, p, x, prec)
|
||
|
return r
|
||
|
i, m = _check_series_var(p, x, 'cot')
|
||
|
prec1 = prec + 2*m
|
||
|
c, s = rs_cos_sin(p, x, prec1)
|
||
|
s = mul_xin(s, i, -m)
|
||
|
s = rs_series_inversion(s, x, prec1)
|
||
|
res = rs_mul(c, s, x, prec1)
|
||
|
res = mul_xin(res, i, -m)
|
||
|
res = rs_trunc(res, x, prec)
|
||
|
return res
|
||
|
|
||
|
def rs_sin(p, x, prec):
|
||
|
"""
|
||
|
Sine of a series
|
||
|
|
||
|
Return the series expansion of the sin of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_sin
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_sin(x + x*y, x, 4)
|
||
|
-1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x
|
||
|
>>> rs_sin(x**QQ(3, 2) + x*y**QQ(7, 5), x, 4)
|
||
|
-1/2*x**(7/2)*y**(14/5) - 1/6*x**3*y**(21/5) + x**(3/2) + x*y**(7/5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sin
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_sin, p, x, prec)
|
||
|
R = x.ring
|
||
|
if not p:
|
||
|
return R(0)
|
||
|
c = _get_constant_term(p, x)
|
||
|
if c:
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
t1, t2 = sin(c_expr), cos(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
|
||
|
except ValueError:
|
||
|
R = R.add_gens([sin(c_expr), cos(c_expr)])
|
||
|
p = p.set_ring(R)
|
||
|
x = x.set_ring(R)
|
||
|
c = c.set_ring(R)
|
||
|
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
|
||
|
else:
|
||
|
try:
|
||
|
t1, t2 = R(sin(c)), R(cos(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
p1 = p - c
|
||
|
|
||
|
# Makes use of SymPy cos, sin functions to evaluate the values of the
|
||
|
# cos/sin of the constant term.
|
||
|
return rs_sin(p1, x, prec)*t2 + rs_cos(p1, x, prec)*t1
|
||
|
|
||
|
# Series is calculated in terms of tan as its evaluation is fast.
|
||
|
if len(p) > 20 and R.ngens == 1:
|
||
|
t = rs_tan(p/2, x, prec)
|
||
|
t2 = rs_square(t, x, prec)
|
||
|
p1 = rs_series_inversion(1 + t2, x, prec)
|
||
|
return rs_mul(p1, 2*t, x, prec)
|
||
|
one = R(1)
|
||
|
n = 1
|
||
|
c = [0]
|
||
|
for k in range(2, prec + 2, 2):
|
||
|
c.append(one/n)
|
||
|
c.append(0)
|
||
|
n *= -k*(k + 1)
|
||
|
return rs_series_from_list(p, c, x, prec)
|
||
|
|
||
|
def rs_cos(p, x, prec):
|
||
|
"""
|
||
|
Cosine of a series
|
||
|
|
||
|
Return the series expansion of the cos of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_cos
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_cos(x + x*y, x, 4)
|
||
|
-1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1
|
||
|
>>> rs_cos(x + x*y, x, 4)/x**QQ(7, 5)
|
||
|
-1/2*x**(3/5)*y**2 - x**(3/5)*y - 1/2*x**(3/5) + x**(-7/5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
cos
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_cos, p, x, prec)
|
||
|
R = p.ring
|
||
|
c = _get_constant_term(p, x)
|
||
|
if c:
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
_, _ = sin(c_expr), cos(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
_, _ = R(sin(c_expr)), R(cos(c_expr))
|
||
|
except ValueError:
|
||
|
R = R.add_gens([sin(c_expr), cos(c_expr)])
|
||
|
p = p.set_ring(R)
|
||
|
x = x.set_ring(R)
|
||
|
c = c.set_ring(R)
|
||
|
else:
|
||
|
try:
|
||
|
_, _ = R(sin(c)), R(cos(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
p1 = p - c
|
||
|
|
||
|
# Makes use of SymPy cos, sin functions to evaluate the values of the
|
||
|
# cos/sin of the constant term.
|
||
|
p_cos = rs_cos(p1, x, prec)
|
||
|
p_sin = rs_sin(p1, x, prec)
|
||
|
R = R.compose(p_cos.ring).compose(p_sin.ring)
|
||
|
p_cos.set_ring(R)
|
||
|
p_sin.set_ring(R)
|
||
|
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
|
||
|
return p_cos*t2 - p_sin*t1
|
||
|
|
||
|
# Series is calculated in terms of tan as its evaluation is fast.
|
||
|
if len(p) > 20 and R.ngens == 1:
|
||
|
t = rs_tan(p/2, x, prec)
|
||
|
t2 = rs_square(t, x, prec)
|
||
|
p1 = rs_series_inversion(1+t2, x, prec)
|
||
|
return rs_mul(p1, 1 - t2, x, prec)
|
||
|
one = R(1)
|
||
|
n = 1
|
||
|
c = []
|
||
|
for k in range(2, prec + 2, 2):
|
||
|
c.append(one/n)
|
||
|
c.append(0)
|
||
|
n *= -k*(k - 1)
|
||
|
return rs_series_from_list(p, c, x, prec)
|
||
|
|
||
|
def rs_cos_sin(p, x, prec):
|
||
|
r"""
|
||
|
Return the tuple ``(rs_cos(p, x, prec)`, `rs_sin(p, x, prec))``.
|
||
|
|
||
|
Is faster than calling rs_cos and rs_sin separately
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_cos_sin, p, x, prec)
|
||
|
t = rs_tan(p/2, x, prec)
|
||
|
t2 = rs_square(t, x, prec)
|
||
|
p1 = rs_series_inversion(1 + t2, x, prec)
|
||
|
return (rs_mul(p1, 1 - t2, x, prec), rs_mul(p1, 2*t, x, prec))
|
||
|
|
||
|
def _atanh(p, x, prec):
|
||
|
"""
|
||
|
Expansion using formula
|
||
|
|
||
|
Faster for very small and univariate series
|
||
|
"""
|
||
|
R = p.ring
|
||
|
one = R(1)
|
||
|
c = [one]
|
||
|
p2 = rs_square(p, x, prec)
|
||
|
for k in range(1, prec):
|
||
|
c.append(one/(2*k + 1))
|
||
|
s = rs_series_from_list(p2, c, x, prec)
|
||
|
s = rs_mul(s, p, x, prec)
|
||
|
return s
|
||
|
|
||
|
def rs_atanh(p, x, prec):
|
||
|
"""
|
||
|
Hyperbolic arctangent of a series
|
||
|
|
||
|
Return the series expansion of the atanh of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_atanh
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_atanh(x + x*y, x, 4)
|
||
|
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
atanh
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_atanh, p, x, prec)
|
||
|
R = p.ring
|
||
|
const = 0
|
||
|
if _has_constant_term(p, x):
|
||
|
zm = R.zero_monom
|
||
|
c = p[zm]
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
const = atanh(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
const = R(atanh(c_expr))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
else:
|
||
|
try:
|
||
|
const = R(atanh(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
|
||
|
# Instead of using a closed form formula, we differentiate atanh(p) to get
|
||
|
# `1/(1-p**2) * dp`, whose series expansion is much easier to calculate.
|
||
|
# Finally we integrate to get back atanh
|
||
|
dp = rs_diff(p, x)
|
||
|
p1 = - rs_square(p, x, prec) + 1
|
||
|
p1 = rs_series_inversion(p1, x, prec - 1)
|
||
|
p1 = rs_mul(dp, p1, x, prec - 1)
|
||
|
return rs_integrate(p1, x) + const
|
||
|
|
||
|
def rs_sinh(p, x, prec):
|
||
|
"""
|
||
|
Hyperbolic sine of a series
|
||
|
|
||
|
Return the series expansion of the sinh of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_sinh
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_sinh(x + x*y, x, 4)
|
||
|
1/6*x**3*y**3 + 1/2*x**3*y**2 + 1/2*x**3*y + 1/6*x**3 + x*y + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sinh
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_sinh, p, x, prec)
|
||
|
t = rs_exp(p, x, prec)
|
||
|
t1 = rs_series_inversion(t, x, prec)
|
||
|
return (t - t1)/2
|
||
|
|
||
|
def rs_cosh(p, x, prec):
|
||
|
"""
|
||
|
Hyperbolic cosine of a series
|
||
|
|
||
|
Return the series expansion of the cosh of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_cosh
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_cosh(x + x*y, x, 4)
|
||
|
1/2*x**2*y**2 + x**2*y + 1/2*x**2 + 1
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
cosh
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_cosh, p, x, prec)
|
||
|
t = rs_exp(p, x, prec)
|
||
|
t1 = rs_series_inversion(t, x, prec)
|
||
|
return (t + t1)/2
|
||
|
|
||
|
def _tanh(p, x, prec):
|
||
|
r"""
|
||
|
Helper function of :func:`rs_tanh`
|
||
|
|
||
|
Return the series expansion of tanh of a univariate series using Newton's
|
||
|
method. It takes advantage of the fact that series expansion of atanh is
|
||
|
easier than that of tanh.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
_tanh
|
||
|
"""
|
||
|
R = p.ring
|
||
|
p1 = R(0)
|
||
|
for precx in _giant_steps(prec):
|
||
|
tmp = p - rs_atanh(p1, x, precx)
|
||
|
tmp = rs_mul(tmp, 1 - rs_square(p1, x, prec), x, precx)
|
||
|
p1 += tmp
|
||
|
return p1
|
||
|
|
||
|
def rs_tanh(p, x, prec):
|
||
|
"""
|
||
|
Hyperbolic tangent of a series
|
||
|
|
||
|
Return the series expansion of the tanh of ``p``, about 0.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_tanh
|
||
|
>>> R, x, y = ring('x, y', QQ)
|
||
|
>>> rs_tanh(x + x*y, x, 4)
|
||
|
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
tanh
|
||
|
"""
|
||
|
if rs_is_puiseux(p, x):
|
||
|
return rs_puiseux(rs_tanh, p, x, prec)
|
||
|
R = p.ring
|
||
|
const = 0
|
||
|
if _has_constant_term(p, x):
|
||
|
zm = R.zero_monom
|
||
|
c = p[zm]
|
||
|
if R.domain is EX:
|
||
|
c_expr = c.as_expr()
|
||
|
const = tanh(c_expr)
|
||
|
elif isinstance(c, PolyElement):
|
||
|
try:
|
||
|
c_expr = c.as_expr()
|
||
|
const = R(tanh(c_expr))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
else:
|
||
|
try:
|
||
|
const = R(tanh(c))
|
||
|
except ValueError:
|
||
|
raise DomainError("The given series cannot be expanded in "
|
||
|
"this domain.")
|
||
|
p1 = p - c
|
||
|
t1 = rs_tanh(p1, x, prec)
|
||
|
t = rs_series_inversion(1 + const*t1, x, prec)
|
||
|
return rs_mul(const + t1, t, x, prec)
|
||
|
|
||
|
if R.ngens == 1:
|
||
|
return _tanh(p, x, prec)
|
||
|
else:
|
||
|
return rs_fun(p, _tanh, x, prec)
|
||
|
|
||
|
def rs_newton(p, x, prec):
|
||
|
"""
|
||
|
Compute the truncated Newton sum of the polynomial ``p``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_newton
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = x**2 - 2
|
||
|
>>> rs_newton(p, x, 5)
|
||
|
8*x**4 + 4*x**2 + 2
|
||
|
"""
|
||
|
deg = p.degree()
|
||
|
p1 = _invert_monoms(p)
|
||
|
p2 = rs_series_inversion(p1, x, prec)
|
||
|
p3 = rs_mul(p1.diff(x), p2, x, prec)
|
||
|
res = deg - p3*x
|
||
|
return res
|
||
|
|
||
|
def rs_hadamard_exp(p1, inverse=False):
|
||
|
"""
|
||
|
Return ``sum f_i/i!*x**i`` from ``sum f_i*x**i``,
|
||
|
where ``x`` is the first variable.
|
||
|
|
||
|
If ``invers=True`` return ``sum f_i*i!*x**i``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_hadamard_exp
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> p = 1 + x + x**2 + x**3
|
||
|
>>> rs_hadamard_exp(p)
|
||
|
1/6*x**3 + 1/2*x**2 + x + 1
|
||
|
"""
|
||
|
R = p1.ring
|
||
|
if R.domain != QQ:
|
||
|
raise NotImplementedError
|
||
|
p = R.zero
|
||
|
if not inverse:
|
||
|
for exp1, v1 in p1.items():
|
||
|
p[exp1] = v1/int(ifac(exp1[0]))
|
||
|
else:
|
||
|
for exp1, v1 in p1.items():
|
||
|
p[exp1] = v1*int(ifac(exp1[0]))
|
||
|
return p
|
||
|
|
||
|
def rs_compose_add(p1, p2):
|
||
|
"""
|
||
|
compute the composed sum ``prod(p2(x - beta) for beta root of p1)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.ring_series import rs_compose_add
|
||
|
>>> R, x = ring('x', QQ)
|
||
|
>>> f = x**2 - 2
|
||
|
>>> g = x**2 - 3
|
||
|
>>> rs_compose_add(f, g)
|
||
|
x**4 - 10*x**2 + 1
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] A. Bostan, P. Flajolet, B. Salvy and E. Schost
|
||
|
"Fast Computation with Two Algebraic Numbers",
|
||
|
(2002) Research Report 4579, Institut
|
||
|
National de Recherche en Informatique et en Automatique
|
||
|
"""
|
||
|
R = p1.ring
|
||
|
x = R.gens[0]
|
||
|
prec = p1.degree()*p2.degree() + 1
|
||
|
np1 = rs_newton(p1, x, prec)
|
||
|
np1e = rs_hadamard_exp(np1)
|
||
|
np2 = rs_newton(p2, x, prec)
|
||
|
np2e = rs_hadamard_exp(np2)
|
||
|
np3e = rs_mul(np1e, np2e, x, prec)
|
||
|
np3 = rs_hadamard_exp(np3e, True)
|
||
|
np3a = (np3[(0,)] - np3)/x
|
||
|
q = rs_integrate(np3a, x)
|
||
|
q = rs_exp(q, x, prec)
|
||
|
q = _invert_monoms(q)
|
||
|
q = q.primitive()[1]
|
||
|
dp = p1.degree()*p2.degree() - q.degree()
|
||
|
# `dp` is the multiplicity of the zeroes of the resultant;
|
||
|
# these zeroes are missed in this computation so they are put here.
|
||
|
# if p1 and p2 are monic irreducible polynomials,
|
||
|
# there are zeroes in the resultant
|
||
|
# if and only if p1 = p2 ; in fact in that case p1 and p2 have a
|
||
|
# root in common, so gcd(p1, p2) != 1; being p1 and p2 irreducible
|
||
|
# this means p1 = p2
|
||
|
if dp:
|
||
|
q = q*x**dp
|
||
|
return q
|
||
|
|
||
|
|
||
|
_convert_func = {
|
||
|
'sin': 'rs_sin',
|
||
|
'cos': 'rs_cos',
|
||
|
'exp': 'rs_exp',
|
||
|
'tan': 'rs_tan',
|
||
|
'log': 'rs_log'
|
||
|
}
|
||
|
|
||
|
def rs_min_pow(expr, series_rs, a):
|
||
|
"""Find the minimum power of `a` in the series expansion of expr"""
|
||
|
series = 0
|
||
|
n = 2
|
||
|
while series == 0:
|
||
|
series = _rs_series(expr, series_rs, a, n)
|
||
|
n *= 2
|
||
|
R = series.ring
|
||
|
a = R(a)
|
||
|
i = R.gens.index(a)
|
||
|
return min(series, key=lambda t: t[i])[i]
|
||
|
|
||
|
|
||
|
def _rs_series(expr, series_rs, a, prec):
|
||
|
# TODO Use _parallel_dict_from_expr instead of sring as sring is
|
||
|
# inefficient. For details, read the todo in sring.
|
||
|
args = expr.args
|
||
|
R = series_rs.ring
|
||
|
|
||
|
# expr does not contain any function to be expanded
|
||
|
if not any(arg.has(Function) for arg in args) and not expr.is_Function:
|
||
|
return series_rs
|
||
|
|
||
|
if not expr.has(a):
|
||
|
return series_rs
|
||
|
|
||
|
elif expr.is_Function:
|
||
|
arg = args[0]
|
||
|
if len(args) > 1:
|
||
|
raise NotImplementedError
|
||
|
R1, series = sring(arg, domain=QQ, expand=False, series=True)
|
||
|
series_inner = _rs_series(arg, series, a, prec)
|
||
|
|
||
|
# Why do we need to compose these three rings?
|
||
|
#
|
||
|
# We want to use a simple domain (like ``QQ`` or ``RR``) but they don't
|
||
|
# support symbolic coefficients. We need a ring that for example lets
|
||
|
# us have `sin(1)` and `cos(1)` as coefficients if we are expanding
|
||
|
# `sin(x + 1)`. The ``EX`` domain allows all symbolic coefficients, but
|
||
|
# that makes it very complex and hence slow.
|
||
|
#
|
||
|
# To solve this problem, we add only those symbolic elements as
|
||
|
# generators to our ring, that we need. Here, series_inner might
|
||
|
# involve terms like `sin(4)`, `exp(a)`, etc, which are not there in
|
||
|
# R1 or R. Hence, we compose these three rings to create one that has
|
||
|
# the generators of all three.
|
||
|
R = R.compose(R1).compose(series_inner.ring)
|
||
|
series_inner = series_inner.set_ring(R)
|
||
|
series = eval(_convert_func[str(expr.func)])(series_inner,
|
||
|
R(a), prec)
|
||
|
return series
|
||
|
|
||
|
elif expr.is_Mul:
|
||
|
n = len(args)
|
||
|
for arg in args: # XXX Looks redundant
|
||
|
if not arg.is_Number:
|
||
|
R1, _ = sring(arg, expand=False, series=True)
|
||
|
R = R.compose(R1)
|
||
|
min_pows = list(map(rs_min_pow, args, [R(arg) for arg in args],
|
||
|
[a]*len(args)))
|
||
|
sum_pows = sum(min_pows)
|
||
|
series = R(1)
|
||
|
|
||
|
for i in range(n):
|
||
|
_series = _rs_series(args[i], R(args[i]), a, prec - sum_pows +
|
||
|
min_pows[i])
|
||
|
R = R.compose(_series.ring)
|
||
|
_series = _series.set_ring(R)
|
||
|
series = series.set_ring(R)
|
||
|
series *= _series
|
||
|
series = rs_trunc(series, R(a), prec)
|
||
|
return series
|
||
|
|
||
|
elif expr.is_Add:
|
||
|
n = len(args)
|
||
|
series = R(0)
|
||
|
for i in range(n):
|
||
|
_series = _rs_series(args[i], R(args[i]), a, prec)
|
||
|
R = R.compose(_series.ring)
|
||
|
_series = _series.set_ring(R)
|
||
|
series = series.set_ring(R)
|
||
|
series += _series
|
||
|
return series
|
||
|
|
||
|
elif expr.is_Pow:
|
||
|
R1, _ = sring(expr.base, domain=QQ, expand=False, series=True)
|
||
|
R = R.compose(R1)
|
||
|
series_inner = _rs_series(expr.base, R(expr.base), a, prec)
|
||
|
return rs_pow(series_inner, expr.exp, series_inner.ring(a), prec)
|
||
|
|
||
|
# The `is_constant` method is buggy hence we check it at the end.
|
||
|
# See issue #9786 for details.
|
||
|
elif isinstance(expr, Expr) and expr.is_constant():
|
||
|
return sring(expr, domain=QQ, expand=False, series=True)[1]
|
||
|
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def rs_series(expr, a, prec):
|
||
|
"""Return the series expansion of an expression about 0.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : :class:`Expr`
|
||
|
a : :class:`Symbol` with respect to which expr is to be expanded
|
||
|
prec : order of the series expansion
|
||
|
|
||
|
Currently supports multivariate Taylor series expansion. This is much
|
||
|
faster that SymPy's series method as it uses sparse polynomial operations.
|
||
|
|
||
|
It automatically creates the simplest ring required to represent the series
|
||
|
expansion through repeated calls to sring.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.ring_series import rs_series
|
||
|
>>> from sympy import sin, cos, exp, tan, symbols, QQ
|
||
|
>>> a, b, c = symbols('a, b, c')
|
||
|
>>> rs_series(sin(a) + exp(a), a, 5)
|
||
|
1/24*a**4 + 1/2*a**2 + 2*a + 1
|
||
|
>>> series = rs_series(tan(a + b)*cos(a + c), a, 2)
|
||
|
>>> series.as_expr()
|
||
|
-a*sin(c)*tan(b) + a*cos(c)*tan(b)**2 + a*cos(c) + cos(c)*tan(b)
|
||
|
>>> series = rs_series(exp(a**QQ(1,3) + a**QQ(2, 5)), a, 1)
|
||
|
>>> series.as_expr()
|
||
|
a**(11/15) + a**(4/5)/2 + a**(2/5) + a**(2/3)/2 + a**(1/3) + 1
|
||
|
|
||
|
"""
|
||
|
R, series = sring(expr, domain=QQ, expand=False, series=True)
|
||
|
if a not in R.symbols:
|
||
|
R = R.add_gens([a, ])
|
||
|
series = series.set_ring(R)
|
||
|
series = _rs_series(expr, series, a, prec)
|
||
|
R = series.ring
|
||
|
gen = R(a)
|
||
|
prec_got = series.degree(gen) + 1
|
||
|
|
||
|
if prec_got >= prec:
|
||
|
return rs_trunc(series, gen, prec)
|
||
|
else:
|
||
|
# increase the requested number of terms to get the desired
|
||
|
# number keep increasing (up to 9) until the received order
|
||
|
# is different than the original order and then predict how
|
||
|
# many additional terms are needed
|
||
|
for more in range(1, 9):
|
||
|
p1 = _rs_series(expr, series, a, prec=prec + more)
|
||
|
gen = gen.set_ring(p1.ring)
|
||
|
new_prec = p1.degree(gen) + 1
|
||
|
if new_prec != prec_got:
|
||
|
prec_do = ceiling(prec + (prec - prec_got)*more/(new_prec -
|
||
|
prec_got))
|
||
|
p1 = _rs_series(expr, series, a, prec=prec_do)
|
||
|
while p1.degree(gen) + 1 < prec:
|
||
|
p1 = _rs_series(expr, series, a, prec=prec_do)
|
||
|
gen = gen.set_ring(p1.ring)
|
||
|
prec_do *= 2
|
||
|
break
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
raise ValueError('Could not calculate %s terms for %s'
|
||
|
% (str(prec), expr))
|
||
|
return rs_trunc(p1, gen, prec)
|