162 lines
7.4 KiB
Python
162 lines
7.4 KiB
Python
|
import torch
|
||
|
from . import _functional as F
|
||
|
from .optimizer import Optimizer, _maximize_doc
|
||
|
|
||
|
__all__ = ['SparseAdam']
|
||
|
|
||
|
class SparseAdam(Optimizer):
|
||
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, maximize: bool = False):
|
||
|
if not 0.0 < lr:
|
||
|
raise ValueError(f"Invalid learning rate: {lr}")
|
||
|
if not 0.0 < eps:
|
||
|
raise ValueError(f"Invalid epsilon value: {eps}")
|
||
|
if not 0.0 <= betas[0] < 1.0:
|
||
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
||
|
if not 0.0 <= betas[1] < 1.0:
|
||
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
||
|
|
||
|
defaults = dict(lr=lr, betas=betas, eps=eps, maximize=maximize)
|
||
|
super().__init__(params, defaults)
|
||
|
|
||
|
sparse_params = []
|
||
|
complex_params = []
|
||
|
for index, param_group in enumerate(self.param_groups):
|
||
|
assert isinstance(param_group, dict), f"param_groups must be a list of dicts, but got {type(param_group)}"
|
||
|
# given param group, convert given params to a list first before iterating
|
||
|
for d_index, d_param in enumerate(param_group['params']):
|
||
|
if d_param.is_sparse:
|
||
|
sparse_params.append([index, d_index])
|
||
|
if d_param.is_complex():
|
||
|
complex_params.append([index, d_index])
|
||
|
if sparse_params:
|
||
|
raise ValueError(
|
||
|
f"Sparse params at indices {sparse_params}: SparseAdam requires dense parameter tensors"
|
||
|
)
|
||
|
if complex_params:
|
||
|
raise ValueError(
|
||
|
f"Complex params at indices {complex_params}: SparseAdam does not support complex parameters"
|
||
|
)
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def step(self, closure=None):
|
||
|
"""Perform a single optimization step.
|
||
|
|
||
|
Args:
|
||
|
closure (Callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
with torch.enable_grad():
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
params_with_grad = []
|
||
|
grads = []
|
||
|
exp_avgs = []
|
||
|
exp_avg_sqs = []
|
||
|
state_steps = []
|
||
|
eps = group['eps']
|
||
|
lr = group['lr']
|
||
|
beta1, beta2 = group['betas']
|
||
|
maximize = group.get('maximize', False)
|
||
|
|
||
|
for p in group['params']:
|
||
|
if p.grad is not None:
|
||
|
params_with_grad.append(p)
|
||
|
if not p.grad.is_sparse:
|
||
|
raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead')
|
||
|
grads.append(p.grad)
|
||
|
|
||
|
state = self.state[p]
|
||
|
|
||
|
# State initialization
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
# Exponential moving average of gradient values
|
||
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||
|
# Exponential moving average of squared gradient values
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||
|
|
||
|
exp_avgs.append(state['exp_avg'])
|
||
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
||
|
|
||
|
# update the steps for each param group update
|
||
|
state['step'] += 1
|
||
|
# record the step after step update
|
||
|
state_steps.append(state['step'])
|
||
|
|
||
|
F.sparse_adam(params_with_grad,
|
||
|
grads,
|
||
|
exp_avgs,
|
||
|
exp_avg_sqs,
|
||
|
state_steps,
|
||
|
beta1=beta1,
|
||
|
beta2=beta2,
|
||
|
lr=group['lr'],
|
||
|
eps=group['eps'],
|
||
|
maximize=maximize)
|
||
|
|
||
|
return loss
|
||
|
|
||
|
SparseAdam.__doc__ = fr"""SparseAdam implements a masked version of the Adam algorithm
|
||
|
suitable for sparse gradients. Currently, due to implementation constraints (explained
|
||
|
below), SparseAdam is only intended for a narrow subset of use cases, specifically
|
||
|
parameters of a dense layout with gradients of a sparse layout. This occurs in a
|
||
|
special case where the module backwards produces grads already in a sparse layout.
|
||
|
One example NN module that behaves as such is ``nn.Embedding(sparse=True)``.
|
||
|
|
||
|
SparseAdam approximates the Adam algorithm by masking out the parameter and moment
|
||
|
updates corresponding to the zero values in the gradients. Whereas the Adam algorithm
|
||
|
will update the first moment, the second moment, and the parameters based on all values
|
||
|
of the gradients, SparseAdam only updates the moments and parameters corresponding
|
||
|
to the non-zero values of the gradients.
|
||
|
|
||
|
A simplified way of thinking about the `intended` implementation is as such:
|
||
|
|
||
|
1. Create a mask of the non-zero values in the sparse gradients. For example,
|
||
|
if your gradient looks like [0, 5, 0, 0, 9], the mask would be [0, 1, 0, 0, 1].
|
||
|
2. Apply this mask over the running moments and do computation on only the
|
||
|
non-zero values.
|
||
|
3. Apply this mask over the parameters and only apply an update on non-zero values.
|
||
|
|
||
|
In actuality, we use sparse layout Tensors to optimize this approximation, which means the
|
||
|
more gradients that are masked by not being materialized, the more performant the optimization.
|
||
|
Since we rely on using sparse layout tensors, we infer that any materialized value in the
|
||
|
sparse layout is non-zero and we do NOT actually verify that all values are not zero!
|
||
|
It is important to not conflate a semantically sparse tensor (a tensor where many
|
||
|
of its values are zeros) with a sparse layout tensor (a tensor where ``.is_sparse``
|
||
|
returns ``True``). The SparseAdam approximation is intended for `semantically` sparse
|
||
|
tensors and the sparse layout is only a implementation detail. A clearer implementation
|
||
|
would be to use MaskedTensors, but those are experimental.
|
||
|
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
If you suspect your gradients are semantically sparse (but do not have sparse
|
||
|
layout), this variant may not be the best for you. Ideally, you want to avoid
|
||
|
materializing anything that is suspected to be sparse in the first place, since
|
||
|
needing to convert all your grads from dense layout to sparse layout may outweigh
|
||
|
the performance gain. Here, using Adam may be the best alternative, unless you
|
||
|
can easily rig up your module to output sparse grads similar to
|
||
|
``nn.Embedding(sparse=True)``. If you insist on converting your grads, you can do
|
||
|
so by manually overriding your parameters' ``.grad`` fields with their sparse
|
||
|
equivalents before calling ``.step()``.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||
|
parameter groups
|
||
|
lr (float, optional): learning rate (default: 1e-3)
|
||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||
|
running averages of gradient and its square (default: (0.9, 0.999))
|
||
|
eps (float, optional): term added to the denominator to improve
|
||
|
numerical stability (default: 1e-8)
|
||
|
{_maximize_doc}
|
||
|
|
||
|
.. _Adam\: A Method for Stochastic Optimization:
|
||
|
https://arxiv.org/abs/1412.6980
|
||
|
|
||
|
"""
|