181 lines
7.4 KiB
Python
181 lines
7.4 KiB
Python
|
import torch
|
||
|
from typing import Optional
|
||
|
|
||
|
|
||
|
class SobolEngine:
|
||
|
r"""
|
||
|
The :class:`torch.quasirandom.SobolEngine` is an engine for generating
|
||
|
(scrambled) Sobol sequences. Sobol sequences are an example of low
|
||
|
discrepancy quasi-random sequences.
|
||
|
|
||
|
This implementation of an engine for Sobol sequences is capable of
|
||
|
sampling sequences up to a maximum dimension of 21201. It uses direction
|
||
|
numbers from https://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using the
|
||
|
search criterion D(6) up to the dimension 21201. This is the recommended
|
||
|
choice by the authors.
|
||
|
|
||
|
References:
|
||
|
- Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
|
||
|
Journal of Complexity, 14(4):466-489, December 1998.
|
||
|
|
||
|
- I. M. Sobol. The distribution of points in a cube and the accurate
|
||
|
evaluation of integrals.
|
||
|
Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
|
||
|
|
||
|
Args:
|
||
|
dimension (Int): The dimensionality of the sequence to be drawn
|
||
|
scramble (bool, optional): Setting this to ``True`` will produce
|
||
|
scrambled Sobol sequences. Scrambling is
|
||
|
capable of producing better Sobol
|
||
|
sequences. Default: ``False``.
|
||
|
seed (Int, optional): This is the seed for the scrambling. The seed
|
||
|
of the random number generator is set to this,
|
||
|
if specified. Otherwise, it uses a random seed.
|
||
|
Default: ``None``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +SKIP("unseeded random state")
|
||
|
>>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
|
||
|
>>> soboleng.draw(3)
|
||
|
tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
||
|
[0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
|
||
|
[0.7500, 0.2500, 0.2500, 0.2500, 0.7500]])
|
||
|
"""
|
||
|
MAXBIT = 30
|
||
|
MAXDIM = 21201
|
||
|
|
||
|
def __init__(self, dimension, scramble=False, seed=None):
|
||
|
if dimension > self.MAXDIM or dimension < 1:
|
||
|
raise ValueError("Supported range of dimensionality "
|
||
|
f"for SobolEngine is [1, {self.MAXDIM}]")
|
||
|
|
||
|
self.seed = seed
|
||
|
self.scramble = scramble
|
||
|
self.dimension = dimension
|
||
|
|
||
|
cpu = torch.device("cpu")
|
||
|
|
||
|
self.sobolstate = torch.zeros(dimension, self.MAXBIT, device=cpu, dtype=torch.long)
|
||
|
torch._sobol_engine_initialize_state_(self.sobolstate, self.dimension)
|
||
|
|
||
|
if not self.scramble:
|
||
|
self.shift = torch.zeros(self.dimension, device=cpu, dtype=torch.long)
|
||
|
else:
|
||
|
self._scramble()
|
||
|
|
||
|
self.quasi = self.shift.clone(memory_format=torch.contiguous_format)
|
||
|
self._first_point = (self.quasi / 2 ** self.MAXBIT).reshape(1, -1)
|
||
|
self.num_generated = 0
|
||
|
|
||
|
def draw(self, n: int = 1, out: Optional[torch.Tensor] = None,
|
||
|
dtype: torch.dtype = torch.float32) -> torch.Tensor:
|
||
|
r"""
|
||
|
Function to draw a sequence of :attr:`n` points from a Sobol sequence.
|
||
|
Note that the samples are dependent on the previous samples. The size
|
||
|
of the result is :math:`(n, dimension)`.
|
||
|
|
||
|
Args:
|
||
|
n (Int, optional): The length of sequence of points to draw.
|
||
|
Default: 1
|
||
|
out (Tensor, optional): The output tensor
|
||
|
dtype (:class:`torch.dtype`, optional): the desired data type of the
|
||
|
returned tensor.
|
||
|
Default: ``torch.float32``
|
||
|
"""
|
||
|
if self.num_generated == 0:
|
||
|
if n == 1:
|
||
|
result = self._first_point.to(dtype)
|
||
|
else:
|
||
|
result, self.quasi = torch._sobol_engine_draw(
|
||
|
self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated, dtype=dtype,
|
||
|
)
|
||
|
result = torch.cat((self._first_point, result), dim=-2)
|
||
|
else:
|
||
|
result, self.quasi = torch._sobol_engine_draw(
|
||
|
self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1, dtype=dtype,
|
||
|
)
|
||
|
|
||
|
self.num_generated += n
|
||
|
|
||
|
if out is not None:
|
||
|
out.resize_as_(result).copy_(result)
|
||
|
return out
|
||
|
|
||
|
return result
|
||
|
|
||
|
def draw_base2(self, m: int, out: Optional[torch.Tensor] = None,
|
||
|
dtype: torch.dtype = torch.float32) -> torch.Tensor:
|
||
|
r"""
|
||
|
Function to draw a sequence of :attr:`2**m` points from a Sobol sequence.
|
||
|
Note that the samples are dependent on the previous samples. The size
|
||
|
of the result is :math:`(2**m, dimension)`.
|
||
|
|
||
|
Args:
|
||
|
m (Int): The (base2) exponent of the number of points to draw.
|
||
|
out (Tensor, optional): The output tensor
|
||
|
dtype (:class:`torch.dtype`, optional): the desired data type of the
|
||
|
returned tensor.
|
||
|
Default: ``torch.float32``
|
||
|
"""
|
||
|
n = 2 ** m
|
||
|
total_n = self.num_generated + n
|
||
|
if not (total_n & (total_n - 1) == 0):
|
||
|
raise ValueError("The balance properties of Sobol' points require "
|
||
|
f"n to be a power of 2. {self.num_generated} points have been "
|
||
|
f"previously generated, then: n={self.num_generated}+2**{m}={total_n}. "
|
||
|
"If you still want to do this, please use "
|
||
|
"'SobolEngine.draw()' instead."
|
||
|
)
|
||
|
return self.draw(n=n, out=out, dtype=dtype)
|
||
|
|
||
|
def reset(self):
|
||
|
r"""
|
||
|
Function to reset the ``SobolEngine`` to base state.
|
||
|
"""
|
||
|
self.quasi.copy_(self.shift)
|
||
|
self.num_generated = 0
|
||
|
return self
|
||
|
|
||
|
def fast_forward(self, n):
|
||
|
r"""
|
||
|
Function to fast-forward the state of the ``SobolEngine`` by
|
||
|
:attr:`n` steps. This is equivalent to drawing :attr:`n` samples
|
||
|
without using the samples.
|
||
|
|
||
|
Args:
|
||
|
n (Int): The number of steps to fast-forward by.
|
||
|
"""
|
||
|
if self.num_generated == 0:
|
||
|
torch._sobol_engine_ff_(self.quasi, n - 1, self.sobolstate, self.dimension, self.num_generated)
|
||
|
else:
|
||
|
torch._sobol_engine_ff_(self.quasi, n, self.sobolstate, self.dimension, self.num_generated - 1)
|
||
|
self.num_generated += n
|
||
|
return self
|
||
|
|
||
|
def _scramble(self):
|
||
|
g: Optional[torch.Generator] = None
|
||
|
if self.seed is not None:
|
||
|
g = torch.Generator()
|
||
|
g.manual_seed(self.seed)
|
||
|
|
||
|
cpu = torch.device("cpu")
|
||
|
|
||
|
# Generate shift vector
|
||
|
shift_ints = torch.randint(2, (self.dimension, self.MAXBIT), device=cpu, generator=g)
|
||
|
self.shift = torch.mv(shift_ints, torch.pow(2, torch.arange(0, self.MAXBIT, device=cpu)))
|
||
|
|
||
|
# Generate lower triangular matrices (stacked across dimensions)
|
||
|
ltm_dims = (self.dimension, self.MAXBIT, self.MAXBIT)
|
||
|
ltm = torch.randint(2, ltm_dims, device=cpu, generator=g).tril()
|
||
|
|
||
|
torch._sobol_engine_scramble_(self.sobolstate, ltm, self.dimension)
|
||
|
|
||
|
def __repr__(self):
|
||
|
fmt_string = [f'dimension={self.dimension}']
|
||
|
if self.scramble:
|
||
|
fmt_string += ['scramble=True']
|
||
|
if self.seed is not None:
|
||
|
fmt_string += [f'seed={self.seed}']
|
||
|
return self.__class__.__name__ + '(' + ', '.join(fmt_string) + ')'
|