177 lines
5.1 KiB
Python
177 lines
5.1 KiB
Python
|
from typing import Iterable, List, Union
|
||
|
|
||
|
import torch
|
||
|
from .. import Tensor
|
||
|
from . import _lazy_call, _lazy_init, current_device, device_count
|
||
|
|
||
|
|
||
|
def get_rng_state(device: Union[int, str, torch.device] = "xpu") -> Tensor:
|
||
|
r"""Return the random number generator state of the specified GPU as a ByteTensor.
|
||
|
|
||
|
Args:
|
||
|
device (torch.device or int, optional): The device to return the RNG state of.
|
||
|
Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device).
|
||
|
|
||
|
.. warning::
|
||
|
This function eagerly initializes XPU.
|
||
|
"""
|
||
|
_lazy_init()
|
||
|
if isinstance(device, str):
|
||
|
device = torch.device(device)
|
||
|
elif isinstance(device, int):
|
||
|
device = torch.device("xpu", device)
|
||
|
idx = device.index
|
||
|
if idx is None:
|
||
|
idx = current_device()
|
||
|
default_generator = torch.xpu.default_generators[idx]
|
||
|
return default_generator.get_state()
|
||
|
|
||
|
|
||
|
def get_rng_state_all() -> List[Tensor]:
|
||
|
r"""Return a list of ByteTensor representing the random number states of all devices."""
|
||
|
results = []
|
||
|
for i in range(device_count()):
|
||
|
results.append(get_rng_state(i))
|
||
|
return results
|
||
|
|
||
|
|
||
|
def set_rng_state(
|
||
|
new_state: Tensor, device: Union[int, str, torch.device] = "xpu"
|
||
|
) -> None:
|
||
|
r"""Set the random number generator state of the specified GPU.
|
||
|
|
||
|
Args:
|
||
|
new_state (torch.ByteTensor): The desired state
|
||
|
device (torch.device or int, optional): The device to set the RNG state.
|
||
|
Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device).
|
||
|
"""
|
||
|
with torch._C._DisableFuncTorch():
|
||
|
new_state_copy = new_state.clone(memory_format=torch.contiguous_format)
|
||
|
if isinstance(device, str):
|
||
|
device = torch.device(device)
|
||
|
elif isinstance(device, int):
|
||
|
device = torch.device("xpu", device)
|
||
|
|
||
|
def cb():
|
||
|
idx = device.index
|
||
|
if idx is None:
|
||
|
idx = current_device()
|
||
|
default_generator = torch.xpu.default_generators[idx]
|
||
|
default_generator.set_state(new_state_copy)
|
||
|
|
||
|
_lazy_call(cb)
|
||
|
|
||
|
|
||
|
def set_rng_state_all(new_states: Iterable[Tensor]) -> None:
|
||
|
r"""Set the random number generator state of all devices.
|
||
|
|
||
|
Args:
|
||
|
new_states (Iterable of torch.ByteTensor): The desired state for each device.
|
||
|
"""
|
||
|
for i, state in enumerate(new_states):
|
||
|
set_rng_state(state, i)
|
||
|
|
||
|
|
||
|
def manual_seed(seed: int) -> None:
|
||
|
r"""Set the seed for generating random numbers for the current GPU.
|
||
|
|
||
|
It's safe to call this function if XPU is not available; in that case, it is silently ignored.
|
||
|
|
||
|
Args:
|
||
|
seed (int): The desired seed.
|
||
|
|
||
|
.. warning::
|
||
|
If you are working with a multi-GPU model, this function is insufficient
|
||
|
to get determinism. To seed all GPUs, use :func:`manual_seed_all`.
|
||
|
"""
|
||
|
seed = int(seed)
|
||
|
|
||
|
def cb():
|
||
|
idx = current_device()
|
||
|
default_generator = torch.xpu.default_generators[idx]
|
||
|
default_generator.manual_seed(seed)
|
||
|
|
||
|
_lazy_call(cb, seed=True)
|
||
|
|
||
|
|
||
|
def manual_seed_all(seed: int) -> None:
|
||
|
r"""Set the seed for generating random numbers on all GPUs.
|
||
|
|
||
|
It's safe to call this function if XPU is not available; in that case, it is silently ignored.
|
||
|
|
||
|
Args:
|
||
|
seed (int): The desired seed.
|
||
|
"""
|
||
|
seed = int(seed)
|
||
|
|
||
|
def cb():
|
||
|
for i in range(device_count()):
|
||
|
default_generator = torch.xpu.default_generators[i]
|
||
|
default_generator.manual_seed(seed)
|
||
|
|
||
|
_lazy_call(cb, seed_all=True)
|
||
|
|
||
|
|
||
|
def seed() -> None:
|
||
|
r"""Set the seed for generating random numbers to a random number for the current GPU.
|
||
|
|
||
|
It's safe to call this function if XPU is not available; in that case, it is silently ignored.
|
||
|
|
||
|
.. warning::
|
||
|
If you are working with a multi-GPU model, this function will only initialize
|
||
|
the seed on one GPU. To initialize all GPUs, use :func:`seed_all`.
|
||
|
"""
|
||
|
|
||
|
def cb():
|
||
|
idx = current_device()
|
||
|
default_generator = torch.xpu.default_generators[idx]
|
||
|
default_generator.seed()
|
||
|
|
||
|
_lazy_call(cb)
|
||
|
|
||
|
|
||
|
def seed_all() -> None:
|
||
|
r"""Set the seed for generating random numbers to a random number on all GPUs.
|
||
|
|
||
|
It's safe to call this function if XPU is not available; in that case, it is silently ignored.
|
||
|
"""
|
||
|
|
||
|
def cb():
|
||
|
random_seed = 0
|
||
|
seeded = False
|
||
|
for i in range(device_count()):
|
||
|
default_generator = torch.xpu.default_generators[i]
|
||
|
if not seeded:
|
||
|
default_generator.seed()
|
||
|
random_seed = default_generator.initial_seed()
|
||
|
seeded = True
|
||
|
else:
|
||
|
default_generator.manual_seed(random_seed)
|
||
|
|
||
|
_lazy_call(cb)
|
||
|
|
||
|
|
||
|
def initial_seed() -> int:
|
||
|
r"""Return the current random seed of the current GPU.
|
||
|
|
||
|
.. warning::
|
||
|
This function eagerly initializes XPU.
|
||
|
"""
|
||
|
_lazy_init()
|
||
|
idx = current_device()
|
||
|
default_generator = torch.xpu.default_generators[idx]
|
||
|
return default_generator.initial_seed()
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"get_rng_state",
|
||
|
"get_rng_state_all",
|
||
|
"set_rng_state",
|
||
|
"set_rng_state_all",
|
||
|
"manual_seed",
|
||
|
"manual_seed_all",
|
||
|
"seed",
|
||
|
"seed_all",
|
||
|
"initial_seed",
|
||
|
]
|