2536 lines
94 KiB
Python
2536 lines
94 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import math
|
||
|
import tempfile
|
||
|
import warnings
|
||
|
from collections.abc import Sequence
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torchaudio
|
||
|
from torch import Tensor
|
||
|
from torchaudio._internal.module_utils import deprecated
|
||
|
|
||
|
from .filtering import highpass_biquad, treble_biquad
|
||
|
|
||
|
__all__ = [
|
||
|
"spectrogram",
|
||
|
"inverse_spectrogram",
|
||
|
"griffinlim",
|
||
|
"amplitude_to_DB",
|
||
|
"DB_to_amplitude",
|
||
|
"compute_deltas",
|
||
|
"melscale_fbanks",
|
||
|
"linear_fbanks",
|
||
|
"create_dct",
|
||
|
"compute_deltas",
|
||
|
"detect_pitch_frequency",
|
||
|
"DB_to_amplitude",
|
||
|
"mu_law_encoding",
|
||
|
"mu_law_decoding",
|
||
|
"phase_vocoder",
|
||
|
"mask_along_axis",
|
||
|
"mask_along_axis_iid",
|
||
|
"sliding_window_cmn",
|
||
|
"spectral_centroid",
|
||
|
"apply_codec",
|
||
|
"resample",
|
||
|
"edit_distance",
|
||
|
"loudness",
|
||
|
"pitch_shift",
|
||
|
"rnnt_loss",
|
||
|
"psd",
|
||
|
"mvdr_weights_souden",
|
||
|
"mvdr_weights_rtf",
|
||
|
"rtf_evd",
|
||
|
"rtf_power",
|
||
|
"apply_beamforming",
|
||
|
"fftconvolve",
|
||
|
"convolve",
|
||
|
"add_noise",
|
||
|
"speed",
|
||
|
"preemphasis",
|
||
|
"deemphasis",
|
||
|
]
|
||
|
|
||
|
|
||
|
def spectrogram(
|
||
|
waveform: Tensor,
|
||
|
pad: int,
|
||
|
window: Tensor,
|
||
|
n_fft: int,
|
||
|
hop_length: int,
|
||
|
win_length: int,
|
||
|
power: Optional[float],
|
||
|
normalized: Union[bool, str],
|
||
|
center: bool = True,
|
||
|
pad_mode: str = "reflect",
|
||
|
onesided: bool = True,
|
||
|
return_complex: Optional[bool] = None,
|
||
|
) -> Tensor:
|
||
|
r"""Create a spectrogram or a batch of spectrograms from a raw audio signal.
|
||
|
The spectrogram can be either magnitude-only or complex.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform (Tensor): Tensor of audio of dimension `(..., time)`
|
||
|
pad (int): Two sided padding of signal
|
||
|
window (Tensor): Window tensor that is applied/multiplied to each frame/window
|
||
|
n_fft (int): Size of FFT
|
||
|
hop_length (int): Length of hop between STFT windows
|
||
|
win_length (int): Window size
|
||
|
power (float or None): Exponent for the magnitude spectrogram,
|
||
|
(must be > 0) e.g., 1 for magnitude, 2 for power, etc.
|
||
|
If None, then the complex spectrum is returned instead.
|
||
|
normalized (bool or str): Whether to normalize by magnitude after stft. If input is str, choices are
|
||
|
``"window"`` and ``"frame_length"``, if specific normalization type is desirable. ``True`` maps to
|
||
|
``"window"``. When normalized on ``"window"``, waveform is normalized upon the window's L2 energy. If
|
||
|
normalized on ``"frame_length"``, waveform is normalized by dividing by
|
||
|
:math:`(\text{frame\_length})^{0.5}`.
|
||
|
center (bool, optional): whether to pad :attr:`waveform` on both sides so
|
||
|
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
|
||
|
Default: ``True``
|
||
|
pad_mode (string, optional): controls the padding method used when
|
||
|
:attr:`center` is ``True``. Default: ``"reflect"``
|
||
|
onesided (bool, optional): controls whether to return half of results to
|
||
|
avoid redundancy. Default: ``True``
|
||
|
return_complex (bool, optional):
|
||
|
Deprecated and not used.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Dimension `(..., freq, time)`, freq is
|
||
|
``n_fft // 2 + 1`` and ``n_fft`` is the number of
|
||
|
Fourier bins, and time is the number of window hops (n_frame).
|
||
|
"""
|
||
|
if return_complex is not None:
|
||
|
warnings.warn(
|
||
|
"`return_complex` argument is now deprecated and is not effective."
|
||
|
"`torchaudio.functional.spectrogram(power=None)` always returns a tensor with "
|
||
|
"complex dtype. Please remove the argument in the function call."
|
||
|
)
|
||
|
|
||
|
if pad > 0:
|
||
|
# TODO add "with torch.no_grad():" back when JIT supports it
|
||
|
waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant")
|
||
|
|
||
|
frame_length_norm, window_norm = _get_spec_norms(normalized)
|
||
|
|
||
|
# pack batch
|
||
|
shape = waveform.size()
|
||
|
waveform = waveform.reshape(-1, shape[-1])
|
||
|
|
||
|
# default values are consistent with librosa.core.spectrum._spectrogram
|
||
|
spec_f = torch.stft(
|
||
|
input=waveform,
|
||
|
n_fft=n_fft,
|
||
|
hop_length=hop_length,
|
||
|
win_length=win_length,
|
||
|
window=window,
|
||
|
center=center,
|
||
|
pad_mode=pad_mode,
|
||
|
normalized=frame_length_norm,
|
||
|
onesided=onesided,
|
||
|
return_complex=True,
|
||
|
)
|
||
|
|
||
|
# unpack batch
|
||
|
spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:])
|
||
|
|
||
|
if window_norm:
|
||
|
spec_f /= window.pow(2.0).sum().sqrt()
|
||
|
if power is not None:
|
||
|
if power == 1.0:
|
||
|
return spec_f.abs()
|
||
|
return spec_f.abs().pow(power)
|
||
|
return spec_f
|
||
|
|
||
|
|
||
|
def inverse_spectrogram(
|
||
|
spectrogram: Tensor,
|
||
|
length: Optional[int],
|
||
|
pad: int,
|
||
|
window: Tensor,
|
||
|
n_fft: int,
|
||
|
hop_length: int,
|
||
|
win_length: int,
|
||
|
normalized: Union[bool, str],
|
||
|
center: bool = True,
|
||
|
pad_mode: str = "reflect",
|
||
|
onesided: bool = True,
|
||
|
) -> Tensor:
|
||
|
r"""Create an inverse spectrogram or a batch of inverse spectrograms from the provided
|
||
|
complex-valued spectrogram.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
spectrogram (Tensor): Complex tensor of audio of dimension (..., freq, time).
|
||
|
length (int or None): The output length of the waveform.
|
||
|
pad (int): Two sided padding of signal. It is only effective when ``length`` is provided.
|
||
|
window (Tensor): Window tensor that is applied/multiplied to each frame/window
|
||
|
n_fft (int): Size of FFT
|
||
|
hop_length (int): Length of hop between STFT windows
|
||
|
win_length (int): Window size
|
||
|
normalized (bool or str): Whether the stft output was normalized by magnitude. If input is str, choices are
|
||
|
``"window"`` and ``"frame_length"``, dependent on normalization mode. ``True`` maps to
|
||
|
``"window"``.
|
||
|
center (bool, optional): whether the waveform was padded on both sides so
|
||
|
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
|
||
|
Default: ``True``
|
||
|
pad_mode (string, optional): controls the padding method used when
|
||
|
:attr:`center` is ``True``. This parameter is provided for compatibility with the
|
||
|
spectrogram function and is not used. Default: ``"reflect"``
|
||
|
onesided (bool, optional): controls whether spectrogram was done in onesided mode.
|
||
|
Default: ``True``
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Dimension `(..., time)`. Least squares estimation of the original signal.
|
||
|
"""
|
||
|
|
||
|
frame_length_norm, window_norm = _get_spec_norms(normalized)
|
||
|
|
||
|
if not spectrogram.is_complex():
|
||
|
raise ValueError("Expected `spectrogram` to be complex dtype.")
|
||
|
|
||
|
if window_norm:
|
||
|
spectrogram = spectrogram * window.pow(2.0).sum().sqrt()
|
||
|
|
||
|
# pack batch
|
||
|
shape = spectrogram.size()
|
||
|
spectrogram = spectrogram.reshape(-1, shape[-2], shape[-1])
|
||
|
|
||
|
# default values are consistent with librosa.core.spectrum._spectrogram
|
||
|
waveform = torch.istft(
|
||
|
input=spectrogram,
|
||
|
n_fft=n_fft,
|
||
|
hop_length=hop_length,
|
||
|
win_length=win_length,
|
||
|
window=window,
|
||
|
center=center,
|
||
|
normalized=frame_length_norm,
|
||
|
onesided=onesided,
|
||
|
length=length + 2 * pad if length is not None else None,
|
||
|
return_complex=False,
|
||
|
)
|
||
|
|
||
|
if length is not None and pad > 0:
|
||
|
# remove padding from front and back
|
||
|
waveform = waveform[:, pad:-pad]
|
||
|
|
||
|
# unpack batch
|
||
|
waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])
|
||
|
|
||
|
return waveform
|
||
|
|
||
|
|
||
|
def _get_spec_norms(normalized: Union[str, bool]):
|
||
|
frame_length_norm, window_norm = False, False
|
||
|
if torch.jit.isinstance(normalized, str):
|
||
|
if normalized not in ["frame_length", "window"]:
|
||
|
raise ValueError("Invalid normalized parameter: {}".format(normalized))
|
||
|
if normalized == "frame_length":
|
||
|
frame_length_norm = True
|
||
|
elif normalized == "window":
|
||
|
window_norm = True
|
||
|
elif torch.jit.isinstance(normalized, bool):
|
||
|
if normalized:
|
||
|
window_norm = True
|
||
|
else:
|
||
|
raise TypeError("Input type not supported")
|
||
|
return frame_length_norm, window_norm
|
||
|
|
||
|
|
||
|
def _get_complex_dtype(real_dtype: torch.dtype):
|
||
|
if real_dtype == torch.double:
|
||
|
return torch.cdouble
|
||
|
if real_dtype == torch.float:
|
||
|
return torch.cfloat
|
||
|
if real_dtype == torch.half:
|
||
|
return torch.complex32
|
||
|
raise ValueError(f"Unexpected dtype {real_dtype}")
|
||
|
|
||
|
|
||
|
def griffinlim(
|
||
|
specgram: Tensor,
|
||
|
window: Tensor,
|
||
|
n_fft: int,
|
||
|
hop_length: int,
|
||
|
win_length: int,
|
||
|
power: float,
|
||
|
n_iter: int,
|
||
|
momentum: float,
|
||
|
length: Optional[int],
|
||
|
rand_init: bool,
|
||
|
) -> Tensor:
|
||
|
r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Implementation ported from
|
||
|
*librosa* :cite:`brian_mcfee-proc-scipy-2015`, *A fast Griffin-Lim algorithm* :cite:`6701851`
|
||
|
and *Signal estimation from modified short-time Fourier transform* :cite:`1172092`.
|
||
|
|
||
|
Args:
|
||
|
specgram (Tensor): A magnitude-only STFT spectrogram of dimension `(..., freq, frames)`
|
||
|
where freq is ``n_fft // 2 + 1``.
|
||
|
window (Tensor): Window tensor that is applied/multiplied to each frame/window
|
||
|
n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins
|
||
|
hop_length (int): Length of hop between STFT windows. (
|
||
|
Default: ``win_length // 2``)
|
||
|
win_length (int): Window size. (Default: ``n_fft``)
|
||
|
power (float): Exponent for the magnitude spectrogram,
|
||
|
(must be > 0) e.g., 1 for magnitude, 2 for power, etc.
|
||
|
n_iter (int): Number of iteration for phase recovery process.
|
||
|
momentum (float): The momentum parameter for fast Griffin-Lim.
|
||
|
Setting this to 0 recovers the original Griffin-Lim method.
|
||
|
Values near 1 can lead to faster convergence, but above 1 may not converge.
|
||
|
length (int or None): Array length of the expected output.
|
||
|
rand_init (bool): Initializes phase randomly if True, to zero otherwise.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: waveform of `(..., time)`, where time equals the ``length`` parameter if given.
|
||
|
"""
|
||
|
if not 0 <= momentum < 1:
|
||
|
raise ValueError("momentum must be in range [0, 1). Found: {}".format(momentum))
|
||
|
|
||
|
momentum = momentum / (1 + momentum)
|
||
|
|
||
|
# pack batch
|
||
|
shape = specgram.size()
|
||
|
specgram = specgram.reshape([-1] + list(shape[-2:]))
|
||
|
|
||
|
specgram = specgram.pow(1 / power)
|
||
|
|
||
|
# initialize the phase
|
||
|
if rand_init:
|
||
|
angles = torch.rand(specgram.size(), dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
|
||
|
else:
|
||
|
angles = torch.full(specgram.size(), 1, dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
|
||
|
|
||
|
# And initialize the previous iterate to 0
|
||
|
tprev = torch.tensor(0.0, dtype=specgram.dtype, device=specgram.device)
|
||
|
for _ in range(n_iter):
|
||
|
# Invert with our current estimate of the phases
|
||
|
inverse = torch.istft(
|
||
|
specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length
|
||
|
)
|
||
|
|
||
|
# Rebuild the spectrogram
|
||
|
rebuilt = torch.stft(
|
||
|
input=inverse,
|
||
|
n_fft=n_fft,
|
||
|
hop_length=hop_length,
|
||
|
win_length=win_length,
|
||
|
window=window,
|
||
|
center=True,
|
||
|
pad_mode="reflect",
|
||
|
normalized=False,
|
||
|
onesided=True,
|
||
|
return_complex=True,
|
||
|
)
|
||
|
|
||
|
# Update our phase estimates
|
||
|
angles = rebuilt
|
||
|
if momentum:
|
||
|
angles = angles - tprev.mul_(momentum)
|
||
|
angles = angles.div(angles.abs().add(1e-16))
|
||
|
|
||
|
# Store the previous iterate
|
||
|
tprev = rebuilt
|
||
|
|
||
|
# Return the final phase estimates
|
||
|
waveform = torch.istft(
|
||
|
specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length
|
||
|
)
|
||
|
|
||
|
# unpack batch
|
||
|
waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])
|
||
|
|
||
|
return waveform
|
||
|
|
||
|
|
||
|
def amplitude_to_DB(
|
||
|
x: Tensor, multiplier: float, amin: float, db_multiplier: float, top_db: Optional[float] = None
|
||
|
) -> Tensor:
|
||
|
r"""Turn a spectrogram from the power/amplitude scale to the decibel scale.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
The output of each tensor in a batch depends on the maximum value of that tensor,
|
||
|
and so may return different values for an audio clip split into snippets vs. a full clip.
|
||
|
|
||
|
Args:
|
||
|
|
||
|
x (Tensor): Input spectrogram(s) before being converted to decibel scale.
|
||
|
The expected shapes are ``(freq, time)``, ``(channel, freq, time)`` or
|
||
|
``(..., batch, channel, freq, time)``.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
When ``top_db`` is specified, cut-off values are computed for each audio
|
||
|
in the batch. Therefore if the input shape is 4D (or larger), different
|
||
|
cut-off values are used for audio data in the batch.
|
||
|
If the input shape is 2D or 3D, a single cutoff value is used.
|
||
|
|
||
|
multiplier (float): Use 10. for power and 20. for amplitude
|
||
|
amin (float): Number to clamp ``x``
|
||
|
db_multiplier (float): Log10(max(reference value and amin))
|
||
|
top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number
|
||
|
is 80. (Default: ``None``)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Output tensor in decibel scale
|
||
|
"""
|
||
|
x_db = multiplier * torch.log10(torch.clamp(x, min=amin))
|
||
|
x_db -= multiplier * db_multiplier
|
||
|
|
||
|
if top_db is not None:
|
||
|
# Expand batch
|
||
|
shape = x_db.size()
|
||
|
packed_channels = shape[-3] if x_db.dim() > 2 else 1
|
||
|
x_db = x_db.reshape(-1, packed_channels, shape[-2], shape[-1])
|
||
|
|
||
|
x_db = torch.max(x_db, (x_db.amax(dim=(-3, -2, -1)) - top_db).view(-1, 1, 1, 1))
|
||
|
|
||
|
# Repack batch
|
||
|
x_db = x_db.reshape(shape)
|
||
|
|
||
|
return x_db
|
||
|
|
||
|
|
||
|
def DB_to_amplitude(x: Tensor, ref: float, power: float) -> Tensor:
|
||
|
r"""Turn a tensor from the decibel scale to the power/amplitude scale.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Input tensor before being converted to power/amplitude scale.
|
||
|
ref (float): Reference which the output will be scaled by.
|
||
|
power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Output tensor in power/amplitude scale.
|
||
|
"""
|
||
|
return ref * torch.pow(torch.pow(10.0, 0.1 * x), power)
|
||
|
|
||
|
|
||
|
def _hz_to_mel(freq: float, mel_scale: str = "htk") -> float:
|
||
|
r"""Convert Hz to Mels.
|
||
|
|
||
|
Args:
|
||
|
freqs (float): Frequencies in Hz
|
||
|
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
|
||
|
|
||
|
Returns:
|
||
|
mels (float): Frequency in Mels
|
||
|
"""
|
||
|
|
||
|
if mel_scale not in ["slaney", "htk"]:
|
||
|
raise ValueError('mel_scale should be one of "htk" or "slaney".')
|
||
|
|
||
|
if mel_scale == "htk":
|
||
|
return 2595.0 * math.log10(1.0 + (freq / 700.0))
|
||
|
|
||
|
# Fill in the linear part
|
||
|
f_min = 0.0
|
||
|
f_sp = 200.0 / 3
|
||
|
|
||
|
mels = (freq - f_min) / f_sp
|
||
|
|
||
|
# Fill in the log-scale part
|
||
|
min_log_hz = 1000.0
|
||
|
min_log_mel = (min_log_hz - f_min) / f_sp
|
||
|
logstep = math.log(6.4) / 27.0
|
||
|
|
||
|
if freq >= min_log_hz:
|
||
|
mels = min_log_mel + math.log(freq / min_log_hz) / logstep
|
||
|
|
||
|
return mels
|
||
|
|
||
|
|
||
|
def _mel_to_hz(mels: Tensor, mel_scale: str = "htk") -> Tensor:
|
||
|
"""Convert mel bin numbers to frequencies.
|
||
|
|
||
|
Args:
|
||
|
mels (Tensor): Mel frequencies
|
||
|
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
|
||
|
|
||
|
Returns:
|
||
|
freqs (Tensor): Mels converted in Hz
|
||
|
"""
|
||
|
|
||
|
if mel_scale not in ["slaney", "htk"]:
|
||
|
raise ValueError('mel_scale should be one of "htk" or "slaney".')
|
||
|
|
||
|
if mel_scale == "htk":
|
||
|
return 700.0 * (10.0 ** (mels / 2595.0) - 1.0)
|
||
|
|
||
|
# Fill in the linear scale
|
||
|
f_min = 0.0
|
||
|
f_sp = 200.0 / 3
|
||
|
freqs = f_min + f_sp * mels
|
||
|
|
||
|
# And now the nonlinear scale
|
||
|
min_log_hz = 1000.0
|
||
|
min_log_mel = (min_log_hz - f_min) / f_sp
|
||
|
logstep = math.log(6.4) / 27.0
|
||
|
|
||
|
log_t = mels >= min_log_mel
|
||
|
freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel))
|
||
|
|
||
|
return freqs
|
||
|
|
||
|
|
||
|
def _create_triangular_filterbank(
|
||
|
all_freqs: Tensor,
|
||
|
f_pts: Tensor,
|
||
|
) -> Tensor:
|
||
|
"""Create a triangular filter bank.
|
||
|
|
||
|
Args:
|
||
|
all_freqs (Tensor): STFT freq points of size (`n_freqs`).
|
||
|
f_pts (Tensor): Filter mid points of size (`n_filter`).
|
||
|
|
||
|
Returns:
|
||
|
fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`).
|
||
|
"""
|
||
|
# Adopted from Librosa
|
||
|
# calculate the difference between each filter mid point and each stft freq point in hertz
|
||
|
f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1)
|
||
|
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2)
|
||
|
# create overlapping triangles
|
||
|
zero = torch.zeros(1)
|
||
|
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter)
|
||
|
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter)
|
||
|
fb = torch.max(zero, torch.min(down_slopes, up_slopes))
|
||
|
|
||
|
return fb
|
||
|
|
||
|
|
||
|
def melscale_fbanks(
|
||
|
n_freqs: int,
|
||
|
f_min: float,
|
||
|
f_max: float,
|
||
|
n_mels: int,
|
||
|
sample_rate: int,
|
||
|
norm: Optional[str] = None,
|
||
|
mel_scale: str = "htk",
|
||
|
) -> Tensor:
|
||
|
r"""Create a frequency bin conversion matrix.
|
||
|
|
||
|
.. devices:: CPU
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Note:
|
||
|
For the sake of the numerical compatibility with librosa, not all the coefficients
|
||
|
in the resulting filter bank has magnitude of 1.
|
||
|
|
||
|
.. image:: https://download.pytorch.org/torchaudio/doc-assets/mel_fbanks.png
|
||
|
:alt: Visualization of generated filter bank
|
||
|
|
||
|
Args:
|
||
|
n_freqs (int): Number of frequencies to highlight/apply
|
||
|
f_min (float): Minimum frequency (Hz)
|
||
|
f_max (float): Maximum frequency (Hz)
|
||
|
n_mels (int): Number of mel filterbanks
|
||
|
sample_rate (int): Sample rate of the audio waveform
|
||
|
norm (str or None, optional): If "slaney", divide the triangular mel weights by the width of the mel band
|
||
|
(area normalization). (Default: ``None``)
|
||
|
mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
|
||
|
meaning number of frequencies to highlight/apply to x the number of filterbanks.
|
||
|
Each column is a filterbank so that assuming there is a matrix A of
|
||
|
size (..., ``n_freqs``), the applied result would be
|
||
|
``A @ melscale_fbanks(A.size(-1), ...)``.
|
||
|
|
||
|
"""
|
||
|
|
||
|
if norm is not None and norm != "slaney":
|
||
|
raise ValueError('norm must be one of None or "slaney"')
|
||
|
|
||
|
# freq bins
|
||
|
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
|
||
|
|
||
|
# calculate mel freq bins
|
||
|
m_min = _hz_to_mel(f_min, mel_scale=mel_scale)
|
||
|
m_max = _hz_to_mel(f_max, mel_scale=mel_scale)
|
||
|
|
||
|
m_pts = torch.linspace(m_min, m_max, n_mels + 2)
|
||
|
f_pts = _mel_to_hz(m_pts, mel_scale=mel_scale)
|
||
|
|
||
|
# create filterbank
|
||
|
fb = _create_triangular_filterbank(all_freqs, f_pts)
|
||
|
|
||
|
if norm is not None and norm == "slaney":
|
||
|
# Slaney-style mel is scaled to be approx constant energy per channel
|
||
|
enorm = 2.0 / (f_pts[2 : n_mels + 2] - f_pts[:n_mels])
|
||
|
fb *= enorm.unsqueeze(0)
|
||
|
|
||
|
if (fb.max(dim=0).values == 0.0).any():
|
||
|
warnings.warn(
|
||
|
"At least one mel filterbank has all zero values. "
|
||
|
f"The value for `n_mels` ({n_mels}) may be set too high. "
|
||
|
f"Or, the value for `n_freqs` ({n_freqs}) may be set too low."
|
||
|
)
|
||
|
|
||
|
return fb
|
||
|
|
||
|
|
||
|
def linear_fbanks(
|
||
|
n_freqs: int,
|
||
|
f_min: float,
|
||
|
f_max: float,
|
||
|
n_filter: int,
|
||
|
sample_rate: int,
|
||
|
) -> Tensor:
|
||
|
r"""Creates a linear triangular filterbank.
|
||
|
|
||
|
.. devices:: CPU
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Note:
|
||
|
For the sake of the numerical compatibility with librosa, not all the coefficients
|
||
|
in the resulting filter bank has magnitude of 1.
|
||
|
|
||
|
.. image:: https://download.pytorch.org/torchaudio/doc-assets/lin_fbanks.png
|
||
|
:alt: Visualization of generated filter bank
|
||
|
|
||
|
Args:
|
||
|
n_freqs (int): Number of frequencies to highlight/apply
|
||
|
f_min (float): Minimum frequency (Hz)
|
||
|
f_max (float): Maximum frequency (Hz)
|
||
|
n_filter (int): Number of (linear) triangular filter
|
||
|
sample_rate (int): Sample rate of the audio waveform
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_filter``)
|
||
|
meaning number of frequencies to highlight/apply to x the number of filterbanks.
|
||
|
Each column is a filterbank so that assuming there is a matrix A of
|
||
|
size (..., ``n_freqs``), the applied result would be
|
||
|
``A * linear_fbanks(A.size(-1), ...)``.
|
||
|
"""
|
||
|
# freq bins
|
||
|
all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
|
||
|
|
||
|
# filter mid-points
|
||
|
f_pts = torch.linspace(f_min, f_max, n_filter + 2)
|
||
|
|
||
|
# create filterbank
|
||
|
fb = _create_triangular_filterbank(all_freqs, f_pts)
|
||
|
|
||
|
return fb
|
||
|
|
||
|
|
||
|
def create_dct(n_mfcc: int, n_mels: int, norm: Optional[str]) -> Tensor:
|
||
|
r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
|
||
|
normalized depending on norm.
|
||
|
|
||
|
.. devices:: CPU
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Args:
|
||
|
n_mfcc (int): Number of mfc coefficients to retain
|
||
|
n_mels (int): Number of mel filterbanks
|
||
|
norm (str or None): Norm to use (either "ortho" or None)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The transformation matrix, to be right-multiplied to
|
||
|
row-wise data of size (``n_mels``, ``n_mfcc``).
|
||
|
"""
|
||
|
|
||
|
if norm is not None and norm != "ortho":
|
||
|
raise ValueError('norm must be either "ortho" or None')
|
||
|
|
||
|
# http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
|
||
|
n = torch.arange(float(n_mels))
|
||
|
k = torch.arange(float(n_mfcc)).unsqueeze(1)
|
||
|
dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels)
|
||
|
|
||
|
if norm is None:
|
||
|
dct *= 2.0
|
||
|
else:
|
||
|
dct[0] *= 1.0 / math.sqrt(2.0)
|
||
|
dct *= math.sqrt(2.0 / float(n_mels))
|
||
|
return dct.t()
|
||
|
|
||
|
|
||
|
def mu_law_encoding(x: Tensor, quantization_channels: int) -> Tensor:
|
||
|
r"""Encode signal based on mu-law companding.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
For more info see the
|
||
|
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
|
||
|
|
||
|
This algorithm expects the signal has been scaled to between -1 and 1 and
|
||
|
returns a signal encoded with values from 0 to quantization_channels - 1.
|
||
|
|
||
|
Args:
|
||
|
x (Tensor): Input tensor
|
||
|
quantization_channels (int): Number of channels
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Input after mu-law encoding
|
||
|
"""
|
||
|
mu = quantization_channels - 1.0
|
||
|
if not x.is_floating_point():
|
||
|
warnings.warn(
|
||
|
"The input Tensor must be of floating type. \
|
||
|
This will be an error in the v0.12 release."
|
||
|
)
|
||
|
x = x.to(torch.float)
|
||
|
mu = torch.tensor(mu, dtype=x.dtype)
|
||
|
x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
|
||
|
x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
|
||
|
return x_mu
|
||
|
|
||
|
|
||
|
def mu_law_decoding(x_mu: Tensor, quantization_channels: int) -> Tensor:
|
||
|
r"""Decode mu-law encoded signal.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
For more info see the
|
||
|
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
|
||
|
|
||
|
This expects an input with values between 0 and quantization_channels - 1
|
||
|
and returns a signal scaled between -1 and 1.
|
||
|
|
||
|
Args:
|
||
|
x_mu (Tensor): Input tensor
|
||
|
quantization_channels (int): Number of channels
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Input after mu-law decoding
|
||
|
"""
|
||
|
mu = quantization_channels - 1.0
|
||
|
if not x_mu.is_floating_point():
|
||
|
x_mu = x_mu.to(torch.float)
|
||
|
mu = torch.tensor(mu, dtype=x_mu.dtype)
|
||
|
x = ((x_mu) / mu) * 2 - 1.0
|
||
|
x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
|
||
|
return x
|
||
|
|
||
|
|
||
|
def phase_vocoder(complex_specgrams: Tensor, rate: float, phase_advance: Tensor) -> Tensor:
|
||
|
r"""Given a STFT tensor, speed up in time without modifying pitch by a factor of ``rate``.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
complex_specgrams (Tensor):
|
||
|
A tensor of dimension `(..., freq, num_frame)` with complex dtype.
|
||
|
rate (float): Speed-up factor
|
||
|
phase_advance (Tensor): Expected phase advance in each bin. Dimension of `(freq, 1)`
|
||
|
|
||
|
Returns:
|
||
|
Tensor:
|
||
|
Stretched spectrogram. The resulting tensor is of the same dtype as the input
|
||
|
spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``.
|
||
|
|
||
|
Example
|
||
|
>>> freq, hop_length = 1025, 512
|
||
|
>>> # (channel, freq, time)
|
||
|
>>> complex_specgrams = torch.randn(2, freq, 300, dtype=torch.cfloat)
|
||
|
>>> rate = 1.3 # Speed up by 30%
|
||
|
>>> phase_advance = torch.linspace(
|
||
|
>>> 0, math.pi * hop_length, freq)[..., None]
|
||
|
>>> x = phase_vocoder(complex_specgrams, rate, phase_advance)
|
||
|
>>> x.shape # with 231 == ceil(300 / 1.3)
|
||
|
torch.Size([2, 1025, 231])
|
||
|
"""
|
||
|
if rate == 1.0:
|
||
|
return complex_specgrams
|
||
|
|
||
|
# pack batch
|
||
|
shape = complex_specgrams.size()
|
||
|
complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-2:]))
|
||
|
|
||
|
# Figures out the corresponding real dtype, i.e. complex128 -> float64, complex64 -> float32
|
||
|
# Note torch.real is a view so it does not incur any memory copy.
|
||
|
real_dtype = torch.real(complex_specgrams).dtype
|
||
|
time_steps = torch.arange(0, complex_specgrams.size(-1), rate, device=complex_specgrams.device, dtype=real_dtype)
|
||
|
|
||
|
alphas = time_steps % 1.0
|
||
|
phase_0 = complex_specgrams[..., :1].angle()
|
||
|
|
||
|
# Time Padding
|
||
|
complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 2])
|
||
|
|
||
|
# (new_bins, freq, 2)
|
||
|
complex_specgrams_0 = complex_specgrams.index_select(-1, time_steps.long())
|
||
|
complex_specgrams_1 = complex_specgrams.index_select(-1, (time_steps + 1).long())
|
||
|
|
||
|
angle_0 = complex_specgrams_0.angle()
|
||
|
angle_1 = complex_specgrams_1.angle()
|
||
|
|
||
|
norm_0 = complex_specgrams_0.abs()
|
||
|
norm_1 = complex_specgrams_1.abs()
|
||
|
|
||
|
phase = angle_1 - angle_0 - phase_advance
|
||
|
phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi))
|
||
|
|
||
|
# Compute Phase Accum
|
||
|
phase = phase + phase_advance
|
||
|
phase = torch.cat([phase_0, phase[..., :-1]], dim=-1)
|
||
|
phase_acc = torch.cumsum(phase, -1)
|
||
|
|
||
|
mag = alphas * norm_1 + (1 - alphas) * norm_0
|
||
|
|
||
|
complex_specgrams_stretch = torch.polar(mag, phase_acc)
|
||
|
|
||
|
# unpack batch
|
||
|
complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-2] + complex_specgrams_stretch.shape[1:])
|
||
|
return complex_specgrams_stretch
|
||
|
|
||
|
|
||
|
def _get_mask_param(mask_param: int, p: float, axis_length: int) -> int:
|
||
|
if p == 1.0:
|
||
|
return mask_param
|
||
|
else:
|
||
|
return min(mask_param, int(axis_length * p))
|
||
|
|
||
|
|
||
|
def mask_along_axis_iid(
|
||
|
specgrams: Tensor,
|
||
|
mask_param: int,
|
||
|
mask_value: float,
|
||
|
axis: int,
|
||
|
p: float = 1.0,
|
||
|
) -> Tensor:
|
||
|
r"""Apply a mask along ``axis``.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Mask will be applied from indices ``[v_0, v_0 + v)``,
|
||
|
where ``v`` is sampled from ``uniform(0, max_v)`` and
|
||
|
``v_0`` from ``uniform(0, specgrams.size(axis) - v)``,
|
||
|
with ``max_v = mask_param`` when ``p = 1.0`` and
|
||
|
``max_v = min(mask_param, floor(specgrams.size(axis) * p))`` otherwise.
|
||
|
|
||
|
Args:
|
||
|
specgrams (Tensor): Real spectrograms `(..., freq, time)`, with at least 3 dimensions.
|
||
|
mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]
|
||
|
mask_value (float): Value to assign to the masked columns
|
||
|
axis (int): Axis to apply masking on, which should be the one of the last two dimensions.
|
||
|
p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Masked spectrograms with the same dimensions as input specgrams Tensor`
|
||
|
"""
|
||
|
|
||
|
dim = specgrams.dim()
|
||
|
|
||
|
if dim < 3:
|
||
|
raise ValueError(f"Spectrogram must have at least three dimensions ({dim} given).")
|
||
|
|
||
|
if axis not in [dim - 2, dim - 1]:
|
||
|
raise ValueError(
|
||
|
f"Only Frequency and Time masking are supported (axis {dim-2} and axis {dim-1} supported; {axis} given)."
|
||
|
)
|
||
|
|
||
|
if not 0.0 <= p <= 1.0:
|
||
|
raise ValueError(f"The value of p must be between 0.0 and 1.0 ({p} given).")
|
||
|
|
||
|
mask_param = _get_mask_param(mask_param, p, specgrams.shape[axis])
|
||
|
if mask_param < 1:
|
||
|
return specgrams
|
||
|
|
||
|
device = specgrams.device
|
||
|
dtype = specgrams.dtype
|
||
|
|
||
|
value = torch.rand(specgrams.shape[: (dim - 2)], device=device, dtype=dtype) * mask_param
|
||
|
min_value = torch.rand(specgrams.shape[: (dim - 2)], device=device, dtype=dtype) * (specgrams.size(axis) - value)
|
||
|
|
||
|
# Create broadcastable mask
|
||
|
mask_start = min_value.long()[..., None, None]
|
||
|
mask_end = (min_value.long() + value.long())[..., None, None]
|
||
|
mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype)
|
||
|
|
||
|
# Per batch example masking
|
||
|
specgrams = specgrams.transpose(axis, -1)
|
||
|
specgrams = specgrams.masked_fill((mask >= mask_start) & (mask < mask_end), mask_value)
|
||
|
specgrams = specgrams.transpose(axis, -1)
|
||
|
|
||
|
return specgrams
|
||
|
|
||
|
|
||
|
def mask_along_axis(
|
||
|
specgram: Tensor,
|
||
|
mask_param: int,
|
||
|
mask_value: float,
|
||
|
axis: int,
|
||
|
p: float = 1.0,
|
||
|
) -> Tensor:
|
||
|
r"""Apply a mask along ``axis``.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Mask will be applied from indices ``[v_0, v_0 + v)``,
|
||
|
where ``v`` is sampled from ``uniform(0, max_v)`` and
|
||
|
``v_0`` from ``uniform(0, specgram.size(axis) - v)``, with
|
||
|
``max_v = mask_param`` when ``p = 1.0`` and
|
||
|
``max_v = min(mask_param, floor(specgram.size(axis) * p))``
|
||
|
otherwise.
|
||
|
All examples will have the same mask interval.
|
||
|
|
||
|
Args:
|
||
|
specgram (Tensor): Real spectrograms `(..., freq, time)`, with at least 2 dimensions.
|
||
|
mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]
|
||
|
mask_value (float): Value to assign to the masked columns
|
||
|
axis (int): Axis to apply masking on, which should be the one of the last two dimensions.
|
||
|
p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Masked spectrograms with the same dimensions as input specgram Tensor
|
||
|
"""
|
||
|
dim = specgram.dim()
|
||
|
|
||
|
if dim < 2:
|
||
|
raise ValueError(f"Spectrogram must have at least two dimensions (time and frequency) ({dim} given).")
|
||
|
|
||
|
if axis not in [dim - 2, dim - 1]:
|
||
|
raise ValueError(
|
||
|
f"Only Frequency and Time masking are supported (axis {dim-2} and axis {dim-1} supported; {axis} given)."
|
||
|
)
|
||
|
|
||
|
if not 0.0 <= p <= 1.0:
|
||
|
raise ValueError(f"The value of p must be between 0.0 and 1.0 ({p} given).")
|
||
|
|
||
|
mask_param = _get_mask_param(mask_param, p, specgram.shape[axis])
|
||
|
if mask_param < 1:
|
||
|
return specgram
|
||
|
|
||
|
# pack batch
|
||
|
shape = specgram.size()
|
||
|
specgram = specgram.reshape([-1] + list(shape[-2:]))
|
||
|
# After packing, specgram is a 3D tensor, and the axis corresponding to the to-be-masked dimension
|
||
|
# is now (axis - dim + 3), e.g. a tensor of shape (10, 2, 50, 10, 2) becomes a tensor of shape (1000, 10, 2).
|
||
|
value = torch.rand(1) * mask_param
|
||
|
min_value = torch.rand(1) * (specgram.size(axis - dim + 3) - value)
|
||
|
|
||
|
mask_start = (min_value.long()).squeeze()
|
||
|
mask_end = (min_value.long() + value.long()).squeeze()
|
||
|
mask = torch.arange(0, specgram.shape[axis - dim + 3], device=specgram.device, dtype=specgram.dtype)
|
||
|
mask = (mask >= mask_start) & (mask < mask_end)
|
||
|
# unsqueeze the mask if the axis is frequency
|
||
|
if axis == dim - 2:
|
||
|
mask = mask.unsqueeze(-1)
|
||
|
|
||
|
if mask_end - mask_start >= mask_param:
|
||
|
raise ValueError("Number of columns to be masked should be less than mask_param")
|
||
|
|
||
|
specgram = specgram.masked_fill(mask, mask_value)
|
||
|
|
||
|
# unpack batch
|
||
|
specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:])
|
||
|
|
||
|
return specgram
|
||
|
|
||
|
|
||
|
def compute_deltas(specgram: Tensor, win_length: int = 5, mode: str = "replicate") -> Tensor:
|
||
|
r"""Compute delta coefficients of a tensor, usually a spectrogram:
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
.. math::
|
||
|
d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2}
|
||
|
|
||
|
where :math:`d_t` is the deltas at time :math:`t`,
|
||
|
:math:`c_t` is the spectrogram coeffcients at time :math:`t`,
|
||
|
:math:`N` is ``(win_length-1)//2``.
|
||
|
|
||
|
Args:
|
||
|
specgram (Tensor): Tensor of audio of dimension `(..., freq, time)`
|
||
|
win_length (int, optional): The window length used for computing delta (Default: ``5``)
|
||
|
mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Tensor of deltas of dimension `(..., freq, time)`
|
||
|
|
||
|
Example
|
||
|
>>> specgram = torch.randn(1, 40, 1000)
|
||
|
>>> delta = compute_deltas(specgram)
|
||
|
>>> delta2 = compute_deltas(delta)
|
||
|
"""
|
||
|
device = specgram.device
|
||
|
dtype = specgram.dtype
|
||
|
|
||
|
# pack batch
|
||
|
shape = specgram.size()
|
||
|
specgram = specgram.reshape(1, -1, shape[-1])
|
||
|
|
||
|
if win_length < 3:
|
||
|
raise ValueError(f"Window length should be greater than or equal to 3. Found win_length {win_length}")
|
||
|
|
||
|
n = (win_length - 1) // 2
|
||
|
|
||
|
# twice sum of integer squared
|
||
|
denom = n * (n + 1) * (2 * n + 1) / 3
|
||
|
|
||
|
specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode)
|
||
|
|
||
|
kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1)
|
||
|
|
||
|
output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom
|
||
|
|
||
|
# unpack batch
|
||
|
output = output.reshape(shape)
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def _compute_nccf(waveform: Tensor, sample_rate: int, frame_time: float, freq_low: int) -> Tensor:
|
||
|
r"""
|
||
|
Compute Normalized Cross-Correlation Function (NCCF).
|
||
|
|
||
|
.. math::
|
||
|
\phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}},
|
||
|
|
||
|
where
|
||
|
:math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,
|
||
|
:math:`w` is the waveform,
|
||
|
:math:`N` is the length of a frame,
|
||
|
:math:`b_i` is the beginning of frame :math:`i`,
|
||
|
:math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.
|
||
|
"""
|
||
|
|
||
|
EPSILON = 10 ** (-9)
|
||
|
|
||
|
# Number of lags to check
|
||
|
lags = int(math.ceil(sample_rate / freq_low))
|
||
|
|
||
|
frame_size = int(math.ceil(sample_rate * frame_time))
|
||
|
|
||
|
waveform_length = waveform.size()[-1]
|
||
|
num_of_frames = int(math.ceil(waveform_length / frame_size))
|
||
|
|
||
|
p = lags + num_of_frames * frame_size - waveform_length
|
||
|
waveform = torch.nn.functional.pad(waveform, (0, p))
|
||
|
|
||
|
# Compute lags
|
||
|
output_lag = []
|
||
|
for lag in range(1, lags + 1):
|
||
|
s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
|
||
|
s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
|
||
|
|
||
|
output_frames = (
|
||
|
(s1 * s2).sum(-1)
|
||
|
/ (EPSILON + torch.linalg.vector_norm(s1, ord=2, dim=-1)).pow(2)
|
||
|
/ (EPSILON + torch.linalg.vector_norm(s2, ord=2, dim=-1)).pow(2)
|
||
|
)
|
||
|
|
||
|
output_lag.append(output_frames.unsqueeze(-1))
|
||
|
|
||
|
nccf = torch.cat(output_lag, -1)
|
||
|
|
||
|
return nccf
|
||
|
|
||
|
|
||
|
def _combine_max(a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor], thresh: float = 0.99) -> Tuple[Tensor, Tensor]:
|
||
|
"""
|
||
|
Take value from first if bigger than a multiplicative factor of the second, elementwise.
|
||
|
"""
|
||
|
mask = a[0] > thresh * b[0]
|
||
|
values = mask * a[0] + ~mask * b[0]
|
||
|
indices = mask * a[1] + ~mask * b[1]
|
||
|
return values, indices
|
||
|
|
||
|
|
||
|
def _find_max_per_frame(nccf: Tensor, sample_rate: int, freq_high: int) -> Tensor:
|
||
|
r"""
|
||
|
For each frame, take the highest value of NCCF,
|
||
|
apply centered median smoothing, and convert to frequency.
|
||
|
|
||
|
Note: If the max among all the lags is very close
|
||
|
to the first half of lags, then the latter is taken.
|
||
|
"""
|
||
|
|
||
|
lag_min = int(math.ceil(sample_rate / freq_high))
|
||
|
|
||
|
# Find near enough max that is smallest
|
||
|
|
||
|
best = torch.max(nccf[..., lag_min:], -1)
|
||
|
|
||
|
half_size = nccf.shape[-1] // 2
|
||
|
half = torch.max(nccf[..., lag_min:half_size], -1)
|
||
|
|
||
|
best = _combine_max(half, best)
|
||
|
indices = best[1]
|
||
|
|
||
|
# Add back minimal lag
|
||
|
indices += lag_min
|
||
|
# Add 1 empirical calibration offset
|
||
|
indices += 1
|
||
|
|
||
|
return indices
|
||
|
|
||
|
|
||
|
def _median_smoothing(indices: Tensor, win_length: int) -> Tensor:
|
||
|
r"""
|
||
|
Apply median smoothing to the 1D tensor over the given window.
|
||
|
"""
|
||
|
|
||
|
# Centered windowed
|
||
|
pad_length = (win_length - 1) // 2
|
||
|
|
||
|
# "replicate" padding in any dimension
|
||
|
indices = torch.nn.functional.pad(indices, (pad_length, 0), mode="constant", value=0.0)
|
||
|
|
||
|
indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1)
|
||
|
roll = indices.unfold(-1, win_length, 1)
|
||
|
|
||
|
values, _ = torch.median(roll, -1)
|
||
|
return values
|
||
|
|
||
|
|
||
|
def detect_pitch_frequency(
|
||
|
waveform: Tensor,
|
||
|
sample_rate: int,
|
||
|
frame_time: float = 10 ** (-2),
|
||
|
win_length: int = 30,
|
||
|
freq_low: int = 85,
|
||
|
freq_high: int = 3400,
|
||
|
) -> Tensor:
|
||
|
r"""Detect pitch frequency.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
It is implemented using normalized cross-correlation function and median smoothing.
|
||
|
|
||
|
Args:
|
||
|
waveform (Tensor): Tensor of audio of dimension `(..., freq, time)`
|
||
|
sample_rate (int): The sample rate of the waveform (Hz)
|
||
|
frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``).
|
||
|
win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``).
|
||
|
freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``).
|
||
|
freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``).
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Tensor of freq of dimension `(..., frame)`
|
||
|
"""
|
||
|
# pack batch
|
||
|
shape = list(waveform.size())
|
||
|
waveform = waveform.reshape([-1] + shape[-1:])
|
||
|
|
||
|
nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low)
|
||
|
indices = _find_max_per_frame(nccf, sample_rate, freq_high)
|
||
|
indices = _median_smoothing(indices, win_length)
|
||
|
|
||
|
# Convert indices to frequency
|
||
|
EPSILON = 10 ** (-9)
|
||
|
freq = sample_rate / (EPSILON + indices.to(torch.float))
|
||
|
|
||
|
# unpack batch
|
||
|
freq = freq.reshape(shape[:-1] + list(freq.shape[-1:]))
|
||
|
|
||
|
return freq
|
||
|
|
||
|
|
||
|
def sliding_window_cmn(
|
||
|
specgram: Tensor,
|
||
|
cmn_window: int = 600,
|
||
|
min_cmn_window: int = 100,
|
||
|
center: bool = False,
|
||
|
norm_vars: bool = False,
|
||
|
) -> Tensor:
|
||
|
r"""
|
||
|
Apply sliding-window cepstral mean (and optionally variance) normalization per utterance.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Args:
|
||
|
specgram (Tensor): Tensor of spectrogram of dimension `(..., time, freq)`
|
||
|
cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600)
|
||
|
min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start).
|
||
|
Only applicable if center == false, ignored if center==true (int, default = 100)
|
||
|
center (bool, optional): If true, use a window centered on the current frame
|
||
|
(to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false)
|
||
|
norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Tensor matching input shape `(..., freq, time)`
|
||
|
"""
|
||
|
input_shape = specgram.shape
|
||
|
num_frames, num_feats = input_shape[-2:]
|
||
|
specgram = specgram.view(-1, num_frames, num_feats)
|
||
|
num_channels = specgram.shape[0]
|
||
|
|
||
|
dtype = specgram.dtype
|
||
|
device = specgram.device
|
||
|
last_window_start = last_window_end = -1
|
||
|
cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
|
||
|
cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
|
||
|
cmn_specgram = torch.zeros(num_channels, num_frames, num_feats, dtype=dtype, device=device)
|
||
|
for t in range(num_frames):
|
||
|
window_start = 0
|
||
|
window_end = 0
|
||
|
if center:
|
||
|
window_start = t - cmn_window // 2
|
||
|
window_end = window_start + cmn_window
|
||
|
else:
|
||
|
window_start = t - cmn_window
|
||
|
window_end = t + 1
|
||
|
if window_start < 0:
|
||
|
window_end -= window_start
|
||
|
window_start = 0
|
||
|
if not center:
|
||
|
if window_end > t:
|
||
|
window_end = max(t + 1, min_cmn_window)
|
||
|
if window_end > num_frames:
|
||
|
window_start -= window_end - num_frames
|
||
|
window_end = num_frames
|
||
|
if window_start < 0:
|
||
|
window_start = 0
|
||
|
if last_window_start == -1:
|
||
|
input_part = specgram[:, window_start : window_end - window_start, :]
|
||
|
cur_sum += torch.sum(input_part, 1)
|
||
|
if norm_vars:
|
||
|
cur_sumsq += torch.cumsum(input_part**2, 1)[:, -1, :]
|
||
|
else:
|
||
|
if window_start > last_window_start:
|
||
|
frame_to_remove = specgram[:, last_window_start, :]
|
||
|
cur_sum -= frame_to_remove
|
||
|
if norm_vars:
|
||
|
cur_sumsq -= frame_to_remove**2
|
||
|
if window_end > last_window_end:
|
||
|
frame_to_add = specgram[:, last_window_end, :]
|
||
|
cur_sum += frame_to_add
|
||
|
if norm_vars:
|
||
|
cur_sumsq += frame_to_add**2
|
||
|
window_frames = window_end - window_start
|
||
|
last_window_start = window_start
|
||
|
last_window_end = window_end
|
||
|
cmn_specgram[:, t, :] = specgram[:, t, :] - cur_sum / window_frames
|
||
|
if norm_vars:
|
||
|
if window_frames == 1:
|
||
|
cmn_specgram[:, t, :] = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
|
||
|
else:
|
||
|
variance = cur_sumsq
|
||
|
variance = variance / window_frames
|
||
|
variance -= (cur_sum**2) / (window_frames**2)
|
||
|
variance = torch.pow(variance, -0.5)
|
||
|
cmn_specgram[:, t, :] *= variance
|
||
|
|
||
|
cmn_specgram = cmn_specgram.view(input_shape[:-2] + (num_frames, num_feats))
|
||
|
if len(input_shape) == 2:
|
||
|
cmn_specgram = cmn_specgram.squeeze(0)
|
||
|
return cmn_specgram
|
||
|
|
||
|
|
||
|
def spectral_centroid(
|
||
|
waveform: Tensor,
|
||
|
sample_rate: int,
|
||
|
pad: int,
|
||
|
window: Tensor,
|
||
|
n_fft: int,
|
||
|
hop_length: int,
|
||
|
win_length: int,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the spectral centroid for each channel along the time axis.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
The spectral centroid is defined as the weighted average of the
|
||
|
frequency values, weighted by their magnitude.
|
||
|
|
||
|
Args:
|
||
|
waveform (Tensor): Tensor of audio of dimension `(..., time)`
|
||
|
sample_rate (int): Sample rate of the audio waveform
|
||
|
pad (int): Two sided padding of signal
|
||
|
window (Tensor): Window tensor that is applied/multiplied to each frame/window
|
||
|
n_fft (int): Size of FFT
|
||
|
hop_length (int): Length of hop between STFT windows
|
||
|
win_length (int): Window size
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Dimension `(..., time)`
|
||
|
"""
|
||
|
specgram = spectrogram(
|
||
|
waveform,
|
||
|
pad=pad,
|
||
|
window=window,
|
||
|
n_fft=n_fft,
|
||
|
hop_length=hop_length,
|
||
|
win_length=win_length,
|
||
|
power=1.0,
|
||
|
normalized=False,
|
||
|
)
|
||
|
freqs = torch.linspace(0, sample_rate // 2, steps=1 + n_fft // 2, device=specgram.device).reshape((-1, 1))
|
||
|
freq_dim = -2
|
||
|
return (freqs * specgram).sum(dim=freq_dim) / specgram.sum(dim=freq_dim)
|
||
|
|
||
|
|
||
|
@deprecated("Please migrate to :py:class:`torchaudio.io.AudioEffector`.", remove=False)
|
||
|
def apply_codec(
|
||
|
waveform: Tensor,
|
||
|
sample_rate: int,
|
||
|
format: str,
|
||
|
channels_first: bool = True,
|
||
|
compression: Optional[float] = None,
|
||
|
encoding: Optional[str] = None,
|
||
|
bits_per_sample: Optional[int] = None,
|
||
|
) -> Tensor:
|
||
|
r"""
|
||
|
Apply codecs as a form of augmentation.
|
||
|
|
||
|
.. devices:: CPU
|
||
|
|
||
|
Args:
|
||
|
waveform (Tensor): Audio data. Must be 2 dimensional. See also ```channels_first```.
|
||
|
sample_rate (int): Sample rate of the audio waveform.
|
||
|
format (str): File format.
|
||
|
channels_first (bool, optional):
|
||
|
When True, both the input and output Tensor have dimension `(channel, time)`.
|
||
|
Otherwise, they have dimension `(time, channel)`.
|
||
|
compression (float or None, optional): Used for formats other than WAV.
|
||
|
For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.
|
||
|
encoding (str or None, optional): Changes the encoding for the supported formats.
|
||
|
For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.
|
||
|
bits_per_sample (int or None, optional): Changes the bit depth for the supported formats.
|
||
|
For more details see :py:func:`torchaudio.backend.sox_io_backend.save`.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Resulting Tensor.
|
||
|
If ``channels_first=True``, it has `(channel, time)` else `(time, channel)`.
|
||
|
"""
|
||
|
from torchaudio.backend import _sox_io_backend
|
||
|
|
||
|
with tempfile.NamedTemporaryFile() as f:
|
||
|
torchaudio.backend._sox_io_backend.save(
|
||
|
f.name, waveform, sample_rate, channels_first, compression, format, encoding, bits_per_sample
|
||
|
)
|
||
|
augmented, sr = _sox_io_backend.load(f.name, channels_first=channels_first, format=format)
|
||
|
if sr != sample_rate:
|
||
|
augmented = resample(augmented, sr, sample_rate)
|
||
|
return augmented
|
||
|
|
||
|
|
||
|
_CPU = torch.device("cpu")
|
||
|
|
||
|
|
||
|
def _get_sinc_resample_kernel(
|
||
|
orig_freq: int,
|
||
|
new_freq: int,
|
||
|
gcd: int,
|
||
|
lowpass_filter_width: int = 6,
|
||
|
rolloff: float = 0.99,
|
||
|
resampling_method: str = "sinc_interp_hann",
|
||
|
beta: Optional[float] = None,
|
||
|
device: torch.device = _CPU,
|
||
|
dtype: Optional[torch.dtype] = None,
|
||
|
):
|
||
|
if not (int(orig_freq) == orig_freq and int(new_freq) == new_freq):
|
||
|
raise Exception(
|
||
|
"Frequencies must be of integer type to ensure quality resampling computation. "
|
||
|
"To work around this, manually convert both frequencies to integer values "
|
||
|
"that maintain their resampling rate ratio before passing them into the function. "
|
||
|
"Example: To downsample a 44100 hz waveform by a factor of 8, use "
|
||
|
"`orig_freq=8` and `new_freq=1` instead of `orig_freq=44100` and `new_freq=5512.5`. "
|
||
|
"For more information, please refer to https://github.com/pytorch/audio/issues/1487."
|
||
|
)
|
||
|
|
||
|
if resampling_method in ["sinc_interpolation", "kaiser_window"]:
|
||
|
method_map = {
|
||
|
"sinc_interpolation": "sinc_interp_hann",
|
||
|
"kaiser_window": "sinc_interp_kaiser",
|
||
|
}
|
||
|
warnings.warn(
|
||
|
f'"{resampling_method}" resampling method name is being deprecated and replaced by '
|
||
|
f'"{method_map[resampling_method]}" in the next release. '
|
||
|
"The default behavior remains unchanged.",
|
||
|
stacklevel=3,
|
||
|
)
|
||
|
elif resampling_method not in ["sinc_interp_hann", "sinc_interp_kaiser"]:
|
||
|
raise ValueError("Invalid resampling method: {}".format(resampling_method))
|
||
|
|
||
|
orig_freq = int(orig_freq) // gcd
|
||
|
new_freq = int(new_freq) // gcd
|
||
|
|
||
|
if lowpass_filter_width <= 0:
|
||
|
raise ValueError("Low pass filter width should be positive.")
|
||
|
base_freq = min(orig_freq, new_freq)
|
||
|
# This will perform antialiasing filtering by removing the highest frequencies.
|
||
|
# At first I thought I only needed this when downsampling, but when upsampling
|
||
|
# you will get edge artifacts without this, as the edge is equivalent to zero padding,
|
||
|
# which will add high freq artifacts.
|
||
|
base_freq *= rolloff
|
||
|
|
||
|
# The key idea of the algorithm is that x(t) can be exactly reconstructed from x[i] (tensor)
|
||
|
# using the sinc interpolation formula:
|
||
|
# x(t) = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - t))
|
||
|
# We can then sample the function x(t) with a different sample rate:
|
||
|
# y[j] = x(j / new_freq)
|
||
|
# or,
|
||
|
# y[j] = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
|
||
|
|
||
|
# We see here that y[j] is the convolution of x[i] with a specific filter, for which
|
||
|
# we take an FIR approximation, stopping when we see at least `lowpass_filter_width` zeros crossing.
|
||
|
# But y[j+1] is going to have a different set of weights and so on, until y[j + new_freq].
|
||
|
# Indeed:
|
||
|
# y[j + new_freq] = sum_i x[i] sinc(pi * orig_freq * ((i / orig_freq - (j + new_freq) / new_freq))
|
||
|
# = sum_i x[i] sinc(pi * orig_freq * ((i - orig_freq) / orig_freq - j / new_freq))
|
||
|
# = sum_i x[i + orig_freq] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
|
||
|
# so y[j+new_freq] uses the same filter as y[j], but on a shifted version of x by `orig_freq`.
|
||
|
# This will explain the F.conv1d after, with a stride of orig_freq.
|
||
|
width = math.ceil(lowpass_filter_width * orig_freq / base_freq)
|
||
|
# If orig_freq is still big after GCD reduction, most filters will be very unbalanced, i.e.,
|
||
|
# they will have a lot of almost zero values to the left or to the right...
|
||
|
# There is probably a way to evaluate those filters more efficiently, but this is kept for
|
||
|
# future work.
|
||
|
idx_dtype = dtype if dtype is not None else torch.float64
|
||
|
|
||
|
idx = torch.arange(-width, width + orig_freq, dtype=idx_dtype, device=device)[None, None] / orig_freq
|
||
|
|
||
|
t = torch.arange(0, -new_freq, -1, dtype=dtype, device=device)[:, None, None] / new_freq + idx
|
||
|
t *= base_freq
|
||
|
t = t.clamp_(-lowpass_filter_width, lowpass_filter_width)
|
||
|
|
||
|
# we do not use built in torch windows here as we need to evaluate the window
|
||
|
# at specific positions, not over a regular grid.
|
||
|
if resampling_method == "sinc_interp_hann":
|
||
|
window = torch.cos(t * math.pi / lowpass_filter_width / 2) ** 2
|
||
|
else:
|
||
|
# sinc_interp_kaiser
|
||
|
if beta is None:
|
||
|
beta = 14.769656459379492
|
||
|
beta_tensor = torch.tensor(float(beta))
|
||
|
window = torch.i0(beta_tensor * torch.sqrt(1 - (t / lowpass_filter_width) ** 2)) / torch.i0(beta_tensor)
|
||
|
|
||
|
t *= math.pi
|
||
|
|
||
|
scale = base_freq / orig_freq
|
||
|
kernels = torch.where(t == 0, torch.tensor(1.0).to(t), t.sin() / t)
|
||
|
kernels *= window * scale
|
||
|
|
||
|
if dtype is None:
|
||
|
kernels = kernels.to(dtype=torch.float32)
|
||
|
|
||
|
return kernels, width
|
||
|
|
||
|
|
||
|
def _apply_sinc_resample_kernel(
|
||
|
waveform: Tensor,
|
||
|
orig_freq: int,
|
||
|
new_freq: int,
|
||
|
gcd: int,
|
||
|
kernel: Tensor,
|
||
|
width: int,
|
||
|
):
|
||
|
if not waveform.is_floating_point():
|
||
|
raise TypeError(f"Expected floating point type for waveform tensor, but received {waveform.dtype}.")
|
||
|
|
||
|
orig_freq = int(orig_freq) // gcd
|
||
|
new_freq = int(new_freq) // gcd
|
||
|
|
||
|
# pack batch
|
||
|
shape = waveform.size()
|
||
|
waveform = waveform.view(-1, shape[-1])
|
||
|
|
||
|
num_wavs, length = waveform.shape
|
||
|
waveform = torch.nn.functional.pad(waveform, (width, width + orig_freq))
|
||
|
resampled = torch.nn.functional.conv1d(waveform[:, None], kernel, stride=orig_freq)
|
||
|
resampled = resampled.transpose(1, 2).reshape(num_wavs, -1)
|
||
|
target_length = torch.ceil(torch.as_tensor(new_freq * length / orig_freq)).long()
|
||
|
resampled = resampled[..., :target_length]
|
||
|
|
||
|
# unpack batch
|
||
|
resampled = resampled.view(shape[:-1] + resampled.shape[-1:])
|
||
|
return resampled
|
||
|
|
||
|
|
||
|
def resample(
|
||
|
waveform: Tensor,
|
||
|
orig_freq: int,
|
||
|
new_freq: int,
|
||
|
lowpass_filter_width: int = 6,
|
||
|
rolloff: float = 0.99,
|
||
|
resampling_method: str = "sinc_interp_hann",
|
||
|
beta: Optional[float] = None,
|
||
|
) -> Tensor:
|
||
|
r"""Resamples the waveform at the new frequency using bandlimited interpolation. :cite:`RESAMPLE`.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Note:
|
||
|
``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in
|
||
|
more efficient computation if resampling multiple waveforms with the same resampling parameters.
|
||
|
|
||
|
Args:
|
||
|
waveform (Tensor): The input signal of dimension `(..., time)`
|
||
|
orig_freq (int): The original frequency of the signal
|
||
|
new_freq (int): The desired frequency
|
||
|
lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper
|
||
|
but less efficient. (Default: ``6``)
|
||
|
rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist.
|
||
|
Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``)
|
||
|
resampling_method (str, optional): The resampling method to use.
|
||
|
Options: [``"sinc_interp_hann"``, ``"sinc_interp_kaiser"``] (Default: ``"sinc_interp_hann"``)
|
||
|
beta (float or None, optional): The shape parameter used for kaiser window.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The waveform at the new frequency of dimension `(..., time).`
|
||
|
"""
|
||
|
|
||
|
if orig_freq <= 0.0 or new_freq <= 0.0:
|
||
|
raise ValueError("Original frequency and desired frequecy should be positive")
|
||
|
|
||
|
if orig_freq == new_freq:
|
||
|
return waveform
|
||
|
|
||
|
gcd = math.gcd(int(orig_freq), int(new_freq))
|
||
|
|
||
|
kernel, width = _get_sinc_resample_kernel(
|
||
|
orig_freq,
|
||
|
new_freq,
|
||
|
gcd,
|
||
|
lowpass_filter_width,
|
||
|
rolloff,
|
||
|
resampling_method,
|
||
|
beta,
|
||
|
waveform.device,
|
||
|
waveform.dtype,
|
||
|
)
|
||
|
resampled = _apply_sinc_resample_kernel(waveform, orig_freq, new_freq, gcd, kernel, width)
|
||
|
return resampled
|
||
|
|
||
|
|
||
|
@torch.jit.unused
|
||
|
def edit_distance(seq1: Sequence, seq2: Sequence) -> int:
|
||
|
"""
|
||
|
Calculate the word level edit (Levenshtein) distance between two sequences.
|
||
|
|
||
|
.. devices:: CPU
|
||
|
|
||
|
The function computes an edit distance allowing deletion, insertion and
|
||
|
substitution. The result is an integer.
|
||
|
|
||
|
For most applications, the two input sequences should be the same type. If
|
||
|
two strings are given, the output is the edit distance between the two
|
||
|
strings (character edit distance). If two lists of strings are given, the
|
||
|
output is the edit distance between sentences (word edit distance). Users
|
||
|
may want to normalize the output by the length of the reference sequence.
|
||
|
|
||
|
Args:
|
||
|
seq1 (Sequence): the first sequence to compare.
|
||
|
seq2 (Sequence): the second sequence to compare.
|
||
|
Returns:
|
||
|
int: The distance between the first and second sequences.
|
||
|
"""
|
||
|
len_sent2 = len(seq2)
|
||
|
dold = list(range(len_sent2 + 1))
|
||
|
dnew = [0 for _ in range(len_sent2 + 1)]
|
||
|
|
||
|
for i in range(1, len(seq1) + 1):
|
||
|
dnew[0] = i
|
||
|
for j in range(1, len_sent2 + 1):
|
||
|
if seq1[i - 1] == seq2[j - 1]:
|
||
|
dnew[j] = dold[j - 1]
|
||
|
else:
|
||
|
substitution = dold[j - 1] + 1
|
||
|
insertion = dnew[j - 1] + 1
|
||
|
deletion = dold[j] + 1
|
||
|
dnew[j] = min(substitution, insertion, deletion)
|
||
|
|
||
|
dnew, dold = dold, dnew
|
||
|
|
||
|
return int(dold[-1])
|
||
|
|
||
|
|
||
|
def loudness(waveform: Tensor, sample_rate: int):
|
||
|
r"""Measure audio loudness according to the ITU-R BS.1770-4 recommendation.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform(torch.Tensor): audio waveform of dimension `(..., channels, time)`
|
||
|
sample_rate (int): sampling rate of the waveform
|
||
|
|
||
|
Returns:
|
||
|
Tensor: loudness estimates (LKFS)
|
||
|
|
||
|
Reference:
|
||
|
- https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en
|
||
|
"""
|
||
|
|
||
|
if waveform.size(-2) > 5:
|
||
|
raise ValueError("Only up to 5 channels are supported.")
|
||
|
|
||
|
gate_duration = 0.4
|
||
|
overlap = 0.75
|
||
|
gamma_abs = -70.0
|
||
|
kweight_bias = -0.691
|
||
|
gate_samples = int(round(gate_duration * sample_rate))
|
||
|
step = int(round(gate_samples * (1 - overlap)))
|
||
|
|
||
|
# Apply K-weighting
|
||
|
waveform = treble_biquad(waveform, sample_rate, 4.0, 1500.0, 1 / math.sqrt(2))
|
||
|
waveform = highpass_biquad(waveform, sample_rate, 38.0, 0.5)
|
||
|
|
||
|
# Compute the energy for each block
|
||
|
energy = torch.square(waveform).unfold(-1, gate_samples, step)
|
||
|
energy = torch.mean(energy, dim=-1)
|
||
|
|
||
|
# Compute channel-weighted summation
|
||
|
g = torch.tensor([1.0, 1.0, 1.0, 1.41, 1.41], dtype=waveform.dtype, device=waveform.device)
|
||
|
g = g[: energy.size(-2)]
|
||
|
|
||
|
energy_weighted = torch.sum(g.unsqueeze(-1) * energy, dim=-2)
|
||
|
loudness = -0.691 + 10 * torch.log10(energy_weighted)
|
||
|
|
||
|
# Apply absolute gating of the blocks
|
||
|
gated_blocks = loudness > gamma_abs
|
||
|
gated_blocks = gated_blocks.unsqueeze(-2)
|
||
|
|
||
|
energy_filtered = torch.sum(gated_blocks * energy, dim=-1) / torch.count_nonzero(gated_blocks, dim=-1)
|
||
|
energy_weighted = torch.sum(g * energy_filtered, dim=-1)
|
||
|
gamma_rel = kweight_bias + 10 * torch.log10(energy_weighted) - 10
|
||
|
|
||
|
# Apply relative gating of the blocks
|
||
|
gated_blocks = torch.logical_and(gated_blocks.squeeze(-2), loudness > gamma_rel.unsqueeze(-1))
|
||
|
gated_blocks = gated_blocks.unsqueeze(-2)
|
||
|
|
||
|
energy_filtered = torch.sum(gated_blocks * energy, dim=-1) / torch.count_nonzero(gated_blocks, dim=-1)
|
||
|
energy_weighted = torch.sum(g * energy_filtered, dim=-1)
|
||
|
LKFS = kweight_bias + 10 * torch.log10(energy_weighted)
|
||
|
return LKFS
|
||
|
|
||
|
|
||
|
def pitch_shift(
|
||
|
waveform: Tensor,
|
||
|
sample_rate: int,
|
||
|
n_steps: int,
|
||
|
bins_per_octave: int = 12,
|
||
|
n_fft: int = 512,
|
||
|
win_length: Optional[int] = None,
|
||
|
hop_length: Optional[int] = None,
|
||
|
window: Optional[Tensor] = None,
|
||
|
) -> Tensor:
|
||
|
"""
|
||
|
Shift the pitch of a waveform by ``n_steps`` steps.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform (Tensor): The input waveform of shape `(..., time)`.
|
||
|
sample_rate (int): Sample rate of `waveform`.
|
||
|
n_steps (int): The (fractional) steps to shift `waveform`.
|
||
|
bins_per_octave (int, optional): The number of steps per octave (Default: ``12``).
|
||
|
n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).
|
||
|
win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).
|
||
|
hop_length (int or None, optional): Length of hop between STFT windows. If None, then
|
||
|
``win_length // 4`` is used (Default: ``None``).
|
||
|
window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.
|
||
|
If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).
|
||
|
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The pitch-shifted audio waveform of shape `(..., time)`.
|
||
|
"""
|
||
|
waveform_stretch = _stretch_waveform(
|
||
|
waveform,
|
||
|
n_steps,
|
||
|
bins_per_octave,
|
||
|
n_fft,
|
||
|
win_length,
|
||
|
hop_length,
|
||
|
window,
|
||
|
)
|
||
|
rate = 2.0 ** (-float(n_steps) / bins_per_octave)
|
||
|
waveform_shift = resample(waveform_stretch, int(sample_rate / rate), sample_rate)
|
||
|
|
||
|
return _fix_waveform_shape(waveform_shift, waveform.size())
|
||
|
|
||
|
|
||
|
def _stretch_waveform(
|
||
|
waveform: Tensor,
|
||
|
n_steps: int,
|
||
|
bins_per_octave: int = 12,
|
||
|
n_fft: int = 512,
|
||
|
win_length: Optional[int] = None,
|
||
|
hop_length: Optional[int] = None,
|
||
|
window: Optional[Tensor] = None,
|
||
|
) -> Tensor:
|
||
|
"""
|
||
|
Pitch shift helper function to preprocess and stretch waveform before resampling step.
|
||
|
|
||
|
Args:
|
||
|
See pitch_shift arg descriptions.
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The preprocessed waveform stretched prior to resampling.
|
||
|
"""
|
||
|
if hop_length is None:
|
||
|
hop_length = n_fft // 4
|
||
|
if win_length is None:
|
||
|
win_length = n_fft
|
||
|
if window is None:
|
||
|
window = torch.hann_window(window_length=win_length, device=waveform.device)
|
||
|
|
||
|
# pack batch
|
||
|
shape = waveform.size()
|
||
|
waveform = waveform.reshape(-1, shape[-1])
|
||
|
|
||
|
ori_len = shape[-1]
|
||
|
rate = 2.0 ** (-float(n_steps) / bins_per_octave)
|
||
|
spec_f = torch.stft(
|
||
|
input=waveform,
|
||
|
n_fft=n_fft,
|
||
|
hop_length=hop_length,
|
||
|
win_length=win_length,
|
||
|
window=window,
|
||
|
center=True,
|
||
|
pad_mode="reflect",
|
||
|
normalized=False,
|
||
|
onesided=True,
|
||
|
return_complex=True,
|
||
|
)
|
||
|
phase_advance = torch.linspace(0, math.pi * hop_length, spec_f.shape[-2], device=spec_f.device)[..., None]
|
||
|
spec_stretch = phase_vocoder(spec_f, rate, phase_advance)
|
||
|
len_stretch = int(round(ori_len / rate))
|
||
|
waveform_stretch = torch.istft(
|
||
|
spec_stretch, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=len_stretch
|
||
|
)
|
||
|
return waveform_stretch
|
||
|
|
||
|
|
||
|
def _fix_waveform_shape(
|
||
|
waveform_shift: Tensor,
|
||
|
shape: List[int],
|
||
|
) -> Tensor:
|
||
|
"""
|
||
|
PitchShift helper function to process after resampling step to fix the shape back.
|
||
|
|
||
|
Args:
|
||
|
waveform_shift(Tensor): The waveform after stretch and resample
|
||
|
shape (List[int]): The shape of initial waveform
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The pitch-shifted audio waveform of shape `(..., time)`.
|
||
|
"""
|
||
|
ori_len = shape[-1]
|
||
|
shift_len = waveform_shift.size()[-1]
|
||
|
if shift_len > ori_len:
|
||
|
waveform_shift = waveform_shift[..., :ori_len]
|
||
|
else:
|
||
|
waveform_shift = torch.nn.functional.pad(waveform_shift, [0, ori_len - shift_len])
|
||
|
|
||
|
# unpack batch
|
||
|
waveform_shift = waveform_shift.view(shape[:-1] + waveform_shift.shape[-1:])
|
||
|
return waveform_shift
|
||
|
|
||
|
|
||
|
def rnnt_loss(
|
||
|
logits: Tensor,
|
||
|
targets: Tensor,
|
||
|
logit_lengths: Tensor,
|
||
|
target_lengths: Tensor,
|
||
|
blank: int = -1,
|
||
|
clamp: float = -1,
|
||
|
reduction: str = "mean",
|
||
|
fused_log_softmax: bool = True,
|
||
|
):
|
||
|
"""Compute the RNN Transducer loss from *Sequence Transduction with Recurrent Neural Networks*
|
||
|
:cite:`graves2012sequence`.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
The RNN Transducer loss extends the CTC loss by defining a distribution over output
|
||
|
sequences of all lengths, and by jointly modelling both input-output and output-output
|
||
|
dependencies.
|
||
|
|
||
|
Args:
|
||
|
logits (Tensor): Tensor of dimension `(batch, max seq length, max target length + 1, class)`
|
||
|
containing output from joiner
|
||
|
targets (Tensor): Tensor of dimension `(batch, max target length)` containing targets with zero padded
|
||
|
logit_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of each sequence from encoder
|
||
|
target_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of targets for each sequence
|
||
|
blank (int, optional): blank label (Default: ``-1``)
|
||
|
clamp (float, optional): clamp for gradients (Default: ``-1``)
|
||
|
reduction (string, optional): Specifies the reduction to apply to the output:
|
||
|
``"none"`` | ``"mean"`` | ``"sum"``. (Default: ``"mean"``)
|
||
|
fused_log_softmax (bool): set to False if calling log_softmax outside of loss (Default: ``True``)
|
||
|
Returns:
|
||
|
Tensor: Loss with the reduction option applied. If ``reduction`` is ``"none"``, then size `(batch)`,
|
||
|
otherwise scalar.
|
||
|
"""
|
||
|
if reduction not in ["none", "mean", "sum"]:
|
||
|
raise ValueError('reduction should be one of "none", "mean", or "sum"')
|
||
|
|
||
|
if blank < 0: # reinterpret blank index if blank < 0.
|
||
|
blank = logits.shape[-1] + blank
|
||
|
|
||
|
costs, _ = torch.ops.torchaudio.rnnt_loss(
|
||
|
logits=logits,
|
||
|
targets=targets,
|
||
|
logit_lengths=logit_lengths,
|
||
|
target_lengths=target_lengths,
|
||
|
blank=blank,
|
||
|
clamp=clamp,
|
||
|
fused_log_softmax=fused_log_softmax,
|
||
|
)
|
||
|
|
||
|
if reduction == "mean":
|
||
|
return costs.mean()
|
||
|
elif reduction == "sum":
|
||
|
return costs.sum()
|
||
|
|
||
|
return costs
|
||
|
|
||
|
|
||
|
def psd(
|
||
|
specgram: Tensor,
|
||
|
mask: Optional[Tensor] = None,
|
||
|
normalize: bool = True,
|
||
|
eps: float = 1e-10,
|
||
|
) -> Tensor:
|
||
|
"""Compute cross-channel power spectral density (PSD) matrix.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
specgram (torch.Tensor): Multi-channel complex-valued spectrum.
|
||
|
Tensor with dimensions `(..., channel, freq, time)`.
|
||
|
mask (torch.Tensor or None, optional): Time-Frequency mask for normalization.
|
||
|
Tensor with dimensions `(..., freq, time)`. (Default: ``None``)
|
||
|
normalize (bool, optional): If ``True``, normalize the mask along the time dimension. (Default: ``True``)
|
||
|
eps (float, optional): Value to add to the denominator in mask normalization. (Default: ``1e-15``)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: The complex-valued PSD matrix of the input spectrum.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`
|
||
|
"""
|
||
|
specgram = specgram.transpose(-3, -2) # shape (freq, channel, time)
|
||
|
# outer product:
|
||
|
# (..., ch_1, time) x (..., ch_2, time) -> (..., time, ch_1, ch_2)
|
||
|
psd = torch.einsum("...ct,...et->...tce", [specgram, specgram.conj()])
|
||
|
|
||
|
if mask is not None:
|
||
|
if mask.shape[:-1] != specgram.shape[:-2] or mask.shape[-1] != specgram.shape[-1]:
|
||
|
raise ValueError(
|
||
|
"The dimensions of mask except the channel dimension should be the same as specgram."
|
||
|
f"Found {mask.shape} for mask and {specgram.shape} for specgram."
|
||
|
)
|
||
|
# Normalized mask along time dimension:
|
||
|
if normalize:
|
||
|
mask = mask / (mask.sum(dim=-1, keepdim=True) + eps)
|
||
|
|
||
|
psd = psd * mask[..., None, None]
|
||
|
|
||
|
psd = psd.sum(dim=-3)
|
||
|
return psd
|
||
|
|
||
|
|
||
|
def _compute_mat_trace(input: torch.Tensor, dim1: int = -1, dim2: int = -2) -> torch.Tensor:
|
||
|
r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions.
|
||
|
|
||
|
Args:
|
||
|
input (torch.Tensor): Tensor with dimensions `(..., channel, channel)`.
|
||
|
dim1 (int, optional): The first dimension of the diagonal matrix.
|
||
|
(Default: ``-1``)
|
||
|
dim2 (int, optional): The second dimension of the diagonal matrix.
|
||
|
(Default: ``-2``)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The trace of the input Tensor.
|
||
|
"""
|
||
|
if input.ndim < 2:
|
||
|
raise ValueError("The dimension of the tensor must be at least 2.")
|
||
|
if input.shape[dim1] != input.shape[dim2]:
|
||
|
raise ValueError("The size of ``dim1`` and ``dim2`` must be the same.")
|
||
|
input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2)
|
||
|
return input.sum(dim=-1)
|
||
|
|
||
|
|
||
|
def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor:
|
||
|
"""Perform Tikhonov regularization (only modifying real part).
|
||
|
|
||
|
Args:
|
||
|
mat (torch.Tensor): Input matrix with dimensions `(..., channel, channel)`.
|
||
|
reg (float, optional): Regularization factor. (Default: 1e-8)
|
||
|
eps (float, optional): Value to avoid the correlation matrix is all-zero. (Default: ``1e-8``)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: Regularized matrix with dimensions `(..., channel, channel)`.
|
||
|
"""
|
||
|
# Add eps
|
||
|
C = mat.size(-1)
|
||
|
eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
|
||
|
epsilon = _compute_mat_trace(mat).real[..., None, None] * reg
|
||
|
# in case that correlation_matrix is all-zero
|
||
|
epsilon = epsilon + eps
|
||
|
mat = mat + epsilon * eye[..., :, :]
|
||
|
return mat
|
||
|
|
||
|
|
||
|
def _assert_psd_matrices(psd_s: torch.Tensor, psd_n: torch.Tensor) -> None:
|
||
|
"""Assertion checks of the PSD matrices of target speech and noise.
|
||
|
|
||
|
Args:
|
||
|
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
"""
|
||
|
if psd_s.ndim < 3 or psd_n.ndim < 3:
|
||
|
raise ValueError(
|
||
|
"Expected at least 3D Tensor (..., freq, channel, channel) for psd_s and psd_n. "
|
||
|
f"Found {psd_s.shape} for psd_s and {psd_n.shape} for psd_n."
|
||
|
)
|
||
|
if not (psd_s.is_complex() and psd_n.is_complex()):
|
||
|
raise TypeError(
|
||
|
"The type of psd_s and psd_n must be ``torch.cfloat`` or ``torch.cdouble``. "
|
||
|
f"Found {psd_s.dtype} for psd_s and {psd_n.dtype} for psd_n."
|
||
|
)
|
||
|
if psd_s.shape != psd_n.shape:
|
||
|
raise ValueError(
|
||
|
f"The dimensions of psd_s and psd_n should be the same. Found {psd_s.shape} and {psd_n.shape}."
|
||
|
)
|
||
|
if psd_s.shape[-1] != psd_s.shape[-2]:
|
||
|
raise ValueError(f"The last two dimensions of psd_s should be the same. Found {psd_s.shape}.")
|
||
|
|
||
|
|
||
|
def mvdr_weights_souden(
|
||
|
psd_s: Tensor,
|
||
|
psd_n: Tensor,
|
||
|
reference_channel: Union[int, Tensor],
|
||
|
diagonal_loading: bool = True,
|
||
|
diag_eps: float = 1e-7,
|
||
|
eps: float = 1e-8,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) beamforming weights
|
||
|
by the method proposed by *Souden et, al.* :cite:`souden2009optimal`.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Given the power spectral density (PSD) matrix of target speech :math:`\bf{\Phi}_{\textbf{SS}}`,
|
||
|
the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and a one-hot vector that represents the
|
||
|
reference channel :math:`\bf{u}`, the method computes the MVDR beamforming weight martrix
|
||
|
:math:`\textbf{w}_{\text{MVDR}}`. The formula is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\textbf{w}_{\text{MVDR}}(f) =
|
||
|
\frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bf{\Phi}_{\textbf{SS}}}}(f)}
|
||
|
{\text{Trace}({{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f) \bf{\Phi}_{\textbf{SS}}}(f))}}\bm{u}
|
||
|
|
||
|
Args:
|
||
|
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
reference_channel (int or torch.Tensor): Specifies the reference channel.
|
||
|
If the dtype is ``int``, it represents the reference channel index.
|
||
|
If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
|
||
|
is one-hot.
|
||
|
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
|
||
|
(Default: ``True``)
|
||
|
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
|
||
|
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
|
||
|
eps (float, optional): Value to add to the denominator in the beamforming weight formula.
|
||
|
(Default: ``1e-8``)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: The complex-valued MVDR beamforming weight matrix with dimensions `(..., freq, channel)`.
|
||
|
"""
|
||
|
_assert_psd_matrices(psd_s, psd_n)
|
||
|
|
||
|
if diagonal_loading:
|
||
|
psd_n = _tik_reg(psd_n, reg=diag_eps)
|
||
|
numerator = torch.linalg.solve(psd_n, psd_s) # psd_n.inv() @ psd_s
|
||
|
# ws: (..., C, C) / (...,) -> (..., C, C)
|
||
|
ws = numerator / (_compute_mat_trace(numerator)[..., None, None] + eps)
|
||
|
if torch.jit.isinstance(reference_channel, int):
|
||
|
beamform_weights = ws[..., :, reference_channel]
|
||
|
elif torch.jit.isinstance(reference_channel, Tensor):
|
||
|
reference_channel = reference_channel.to(psd_n.dtype)
|
||
|
# h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
|
||
|
beamform_weights = torch.einsum("...c,...c->...", [ws, reference_channel[..., None, None, :]])
|
||
|
else:
|
||
|
raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
|
||
|
|
||
|
return beamform_weights
|
||
|
|
||
|
|
||
|
def mvdr_weights_rtf(
|
||
|
rtf: Tensor,
|
||
|
psd_n: Tensor,
|
||
|
reference_channel: Optional[Union[int, Tensor]] = None,
|
||
|
diagonal_loading: bool = True,
|
||
|
diag_eps: float = 1e-7,
|
||
|
eps: float = 1e-8,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) beamforming weights
|
||
|
based on the relative transfer function (RTF) and power spectral density (PSD) matrix of noise.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Given the relative transfer function (RTF) matrix or the steering vector of target speech :math:`\bm{v}`,
|
||
|
the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and a one-hot vector that represents the
|
||
|
reference channel :math:`\bf{u}`, the method computes the MVDR beamforming weight martrix
|
||
|
:math:`\textbf{w}_{\text{MVDR}}`. The formula is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\textbf{w}_{\text{MVDR}}(f) =
|
||
|
\frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}}
|
||
|
{{\bm{v}^{\mathsf{H}}}(f){\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}
|
||
|
|
||
|
where :math:`(.)^{\mathsf{H}}` denotes the Hermitian Conjugate operation.
|
||
|
|
||
|
Args:
|
||
|
rtf (torch.Tensor): The complex-valued RTF vector of target speech.
|
||
|
Tensor with dimensions `(..., freq, channel)`.
|
||
|
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
reference_channel (int or torch.Tensor): Specifies the reference channel.
|
||
|
If the dtype is ``int``, it represents the reference channel index.
|
||
|
If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
|
||
|
is one-hot.
|
||
|
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
|
||
|
(Default: ``True``)
|
||
|
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
|
||
|
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
|
||
|
eps (float, optional): Value to add to the denominator in the beamforming weight formula.
|
||
|
(Default: ``1e-8``)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: The complex-valued MVDR beamforming weight matrix with dimensions `(..., freq, channel)`.
|
||
|
"""
|
||
|
if rtf.ndim < 2:
|
||
|
raise ValueError(f"Expected at least 2D Tensor (..., freq, channel) for rtf. Found {rtf.shape}.")
|
||
|
if psd_n.ndim < 3:
|
||
|
raise ValueError(f"Expected at least 3D Tensor (..., freq, channel, channel) for psd_n. Found {psd_n.shape}.")
|
||
|
if not (rtf.is_complex() and psd_n.is_complex()):
|
||
|
raise TypeError(
|
||
|
"The type of rtf and psd_n must be ``torch.cfloat`` or ``torch.cdouble``. "
|
||
|
f"Found {rtf.dtype} for rtf and {psd_n.dtype} for psd_n."
|
||
|
)
|
||
|
if rtf.shape != psd_n.shape[:-1]:
|
||
|
raise ValueError(
|
||
|
"The dimensions of rtf and the dimensions withou the last dimension of psd_n should be the same. "
|
||
|
f"Found {rtf.shape} for rtf and {psd_n.shape} for psd_n."
|
||
|
)
|
||
|
if psd_n.shape[-1] != psd_n.shape[-2]:
|
||
|
raise ValueError(f"The last two dimensions of psd_n should be the same. Found {psd_n.shape}.")
|
||
|
|
||
|
if diagonal_loading:
|
||
|
psd_n = _tik_reg(psd_n, reg=diag_eps)
|
||
|
# numerator = psd_n.inv() @ stv
|
||
|
numerator = torch.linalg.solve(psd_n, rtf.unsqueeze(-1)).squeeze(-1) # (..., freq, channel)
|
||
|
# denominator = stv^H @ psd_n.inv() @ stv
|
||
|
denominator = torch.einsum("...d,...d->...", [rtf.conj(), numerator])
|
||
|
beamform_weights = numerator / (denominator.real.unsqueeze(-1) + eps)
|
||
|
# normalize the numerator
|
||
|
if reference_channel is not None:
|
||
|
if torch.jit.isinstance(reference_channel, int):
|
||
|
scale = rtf[..., reference_channel].conj()
|
||
|
elif torch.jit.isinstance(reference_channel, Tensor):
|
||
|
reference_channel = reference_channel.to(psd_n.dtype)
|
||
|
scale = torch.einsum("...c,...c->...", [rtf.conj(), reference_channel[..., None, :]])
|
||
|
else:
|
||
|
raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
|
||
|
|
||
|
beamform_weights = beamform_weights * scale[..., None]
|
||
|
|
||
|
return beamform_weights
|
||
|
|
||
|
|
||
|
def rtf_evd(psd_s: Tensor) -> Tensor:
|
||
|
r"""Estimate the relative transfer function (RTF) or the steering vector by eigenvalue decomposition.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: TorchScript
|
||
|
|
||
|
Args:
|
||
|
psd_s (Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
|
||
|
Tensor of dimension `(..., freq, channel, channel)`
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The estimated complex-valued RTF of target speech.
|
||
|
Tensor of dimension `(..., freq, channel)`
|
||
|
"""
|
||
|
if not psd_s.is_complex():
|
||
|
raise TypeError(f"The type of psd_s must be ``torch.cfloat`` or ``torch.cdouble``. Found {psd_s.dtype}.")
|
||
|
if psd_s.shape[-1] != psd_s.shape[-2]:
|
||
|
raise ValueError(f"The last two dimensions of psd_s should be the same. Found {psd_s.shape}.")
|
||
|
_, v = torch.linalg.eigh(psd_s) # v is sorted along with eigenvalues in ascending order
|
||
|
rtf = v[..., -1] # choose the eigenvector with max eigenvalue
|
||
|
return rtf
|
||
|
|
||
|
|
||
|
def rtf_power(
|
||
|
psd_s: Tensor,
|
||
|
psd_n: Tensor,
|
||
|
reference_channel: Union[int, Tensor],
|
||
|
n_iter: int = 3,
|
||
|
diagonal_loading: bool = True,
|
||
|
diag_eps: float = 1e-7,
|
||
|
) -> Tensor:
|
||
|
r"""Estimate the relative transfer function (RTF) or the steering vector by the power method.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
|
||
|
Tensor with dimensions `(..., freq, channel, channel)`.
|
||
|
reference_channel (int or torch.Tensor): Specifies the reference channel.
|
||
|
If the dtype is ``int``, it represents the reference channel index.
|
||
|
If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
|
||
|
is one-hot.
|
||
|
diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
|
||
|
(Default: ``True``)
|
||
|
diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
|
||
|
It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: The estimated complex-valued RTF of target speech.
|
||
|
Tensor of dimension `(..., freq, channel)`.
|
||
|
"""
|
||
|
_assert_psd_matrices(psd_s, psd_n)
|
||
|
if n_iter <= 0:
|
||
|
raise ValueError("The number of iteration must be greater than 0.")
|
||
|
|
||
|
# Apply diagonal loading to psd_n to improve robustness.
|
||
|
if diagonal_loading:
|
||
|
psd_n = _tik_reg(psd_n, reg=diag_eps)
|
||
|
# phi is regarded as the first iteration
|
||
|
phi = torch.linalg.solve(psd_n, psd_s) # psd_n.inv() @ psd_s
|
||
|
if torch.jit.isinstance(reference_channel, int):
|
||
|
rtf = phi[..., reference_channel]
|
||
|
elif torch.jit.isinstance(reference_channel, Tensor):
|
||
|
reference_channel = reference_channel.to(psd_n.dtype)
|
||
|
rtf = torch.einsum("...c,...c->...", [phi, reference_channel[..., None, None, :]])
|
||
|
else:
|
||
|
raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
|
||
|
rtf = rtf.unsqueeze(-1) # (..., freq, channel, 1)
|
||
|
if n_iter >= 2:
|
||
|
# The number of iterations in the for loop is `n_iter - 2`
|
||
|
# because the `phi` above and `torch.matmul(psd_s, rtf)` are regarded as
|
||
|
# two iterations.
|
||
|
for _ in range(n_iter - 2):
|
||
|
rtf = torch.matmul(phi, rtf)
|
||
|
rtf = torch.matmul(psd_s, rtf)
|
||
|
else:
|
||
|
# if there is only one iteration, the rtf is the psd_s[..., referenc_channel]
|
||
|
# which is psd_n @ phi @ ref_channel
|
||
|
rtf = torch.matmul(psd_n, rtf)
|
||
|
return rtf.squeeze(-1)
|
||
|
|
||
|
|
||
|
def apply_beamforming(beamform_weights: Tensor, specgram: Tensor) -> Tensor:
|
||
|
r"""Apply the beamforming weight to the multi-channel noisy spectrum to obtain the single-channel enhanced spectrum.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
.. math::
|
||
|
\hat{\textbf{S}}(f) = \textbf{w}_{\text{bf}}(f)^{\mathsf{H}} \textbf{Y}(f)
|
||
|
|
||
|
where :math:`\textbf{w}_{\text{bf}}(f)` is the beamforming weight for the :math:`f`-th frequency bin,
|
||
|
:math:`\textbf{Y}` is the multi-channel spectrum for the :math:`f`-th frequency bin.
|
||
|
|
||
|
Args:
|
||
|
beamform_weights (Tensor): The complex-valued beamforming weight matrix.
|
||
|
Tensor of dimension `(..., freq, channel)`
|
||
|
specgram (Tensor): The multi-channel complex-valued noisy spectrum.
|
||
|
Tensor of dimension `(..., channel, freq, time)`
|
||
|
|
||
|
Returns:
|
||
|
Tensor: The single-channel complex-valued enhanced spectrum.
|
||
|
Tensor of dimension `(..., freq, time)`
|
||
|
"""
|
||
|
if beamform_weights.shape[:-2] != specgram.shape[:-3]:
|
||
|
raise ValueError(
|
||
|
"The dimensions except the last two dimensions of beamform_weights should be the same "
|
||
|
"as the dimensions except the last three dimensions of specgram. "
|
||
|
f"Found {beamform_weights.shape} for beamform_weights and {specgram.shape} for specgram."
|
||
|
)
|
||
|
|
||
|
if not (beamform_weights.is_complex() and specgram.is_complex()):
|
||
|
raise TypeError(
|
||
|
"The type of beamform_weights and specgram must be ``torch.cfloat`` or ``torch.cdouble``. "
|
||
|
f"Found {beamform_weights.dtype} for beamform_weights and {specgram.dtype} for specgram."
|
||
|
)
|
||
|
|
||
|
# (..., freq, channel) x (..., channel, freq, time) -> (..., freq, time)
|
||
|
specgram_enhanced = torch.einsum("...fc,...cft->...ft", [beamform_weights.conj(), specgram])
|
||
|
return specgram_enhanced
|
||
|
|
||
|
|
||
|
def _check_shape_compatible(x: torch.Tensor, y: torch.Tensor) -> None:
|
||
|
if x.ndim != y.ndim:
|
||
|
raise ValueError(f"The operands must be the same dimension (got {x.ndim} and {y.ndim}).")
|
||
|
|
||
|
for i in range(x.ndim - 1):
|
||
|
xi = x.size(i)
|
||
|
yi = y.size(i)
|
||
|
if xi == yi or xi == 1 or yi == 1:
|
||
|
continue
|
||
|
raise ValueError(f"Leading dimensions of x and y are not broadcastable (got {x.shape} and {y.shape}).")
|
||
|
|
||
|
|
||
|
def _check_convolve_mode(mode: str) -> None:
|
||
|
valid_convolve_modes = ["full", "valid", "same"]
|
||
|
if mode not in valid_convolve_modes:
|
||
|
raise ValueError(f"Unrecognized mode value '{mode}'. Please specify one of {valid_convolve_modes}.")
|
||
|
|
||
|
|
||
|
def _apply_convolve_mode(conv_result: torch.Tensor, x_length: int, y_length: int, mode: str) -> torch.Tensor:
|
||
|
valid_convolve_modes = ["full", "valid", "same"]
|
||
|
if mode == "full":
|
||
|
return conv_result
|
||
|
elif mode == "valid":
|
||
|
target_length = max(x_length, y_length) - min(x_length, y_length) + 1
|
||
|
start_idx = (conv_result.size(-1) - target_length) // 2
|
||
|
return conv_result[..., start_idx : start_idx + target_length]
|
||
|
elif mode == "same":
|
||
|
start_idx = (conv_result.size(-1) - x_length) // 2
|
||
|
return conv_result[..., start_idx : start_idx + x_length]
|
||
|
else:
|
||
|
raise ValueError(f"Unrecognized mode value '{mode}'. Please specify one of {valid_convolve_modes}.")
|
||
|
|
||
|
|
||
|
def fftconvolve(x: torch.Tensor, y: torch.Tensor, mode: str = "full") -> torch.Tensor:
|
||
|
r"""
|
||
|
Convolves inputs along their last dimension using FFT. For inputs with large last dimensions, this function
|
||
|
is generally much faster than :meth:`convolve`.
|
||
|
Note that, in contrast to :meth:`torch.nn.functional.conv1d`, which actually applies the valid cross-correlation
|
||
|
operator, this function applies the true `convolution`_ operator.
|
||
|
Also note that this function can only output float tensors (int tensor inputs will be cast to float).
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): First convolution operand, with shape `(..., N)`.
|
||
|
y (torch.Tensor): Second convolution operand, with shape `(..., M)`
|
||
|
(leading dimensions must be broadcast-able with those of ``x``).
|
||
|
mode (str, optional): Must be one of ("full", "valid", "same").
|
||
|
|
||
|
* "full": Returns the full convolution result, with shape `(..., N + M - 1)`. (Default)
|
||
|
* "valid": Returns the segment of the full convolution result corresponding to where
|
||
|
the two inputs overlap completely, with shape `(..., max(N, M) - min(N, M) + 1)`.
|
||
|
* "same": Returns the center segment of the full convolution result, with shape `(..., N)`.
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Result of convolving ``x`` and ``y``, with shape `(..., L)`, where
|
||
|
the leading dimensions match those of ``x`` and `L` is dictated by ``mode``.
|
||
|
|
||
|
.. _convolution:
|
||
|
https://en.wikipedia.org/wiki/Convolution
|
||
|
"""
|
||
|
_check_shape_compatible(x, y)
|
||
|
_check_convolve_mode(mode)
|
||
|
|
||
|
n = x.size(-1) + y.size(-1) - 1
|
||
|
fresult = torch.fft.rfft(x, n=n) * torch.fft.rfft(y, n=n)
|
||
|
result = torch.fft.irfft(fresult, n=n)
|
||
|
return _apply_convolve_mode(result, x.size(-1), y.size(-1), mode)
|
||
|
|
||
|
|
||
|
def convolve(x: torch.Tensor, y: torch.Tensor, mode: str = "full") -> torch.Tensor:
|
||
|
r"""
|
||
|
Convolves inputs along their last dimension using the direct method.
|
||
|
Note that, in contrast to :meth:`torch.nn.functional.conv1d`, which actually applies the valid cross-correlation
|
||
|
operator, this function applies the true `convolution`_ operator.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
x (torch.Tensor): First convolution operand, with shape `(..., N)`.
|
||
|
y (torch.Tensor): Second convolution operand, with shape `(..., M)`
|
||
|
(leading dimensions must be broadcast-able with those of ``x``).
|
||
|
mode (str, optional): Must be one of ("full", "valid", "same").
|
||
|
|
||
|
* "full": Returns the full convolution result, with shape `(..., N + M - 1)`. (Default)
|
||
|
* "valid": Returns the segment of the full convolution result corresponding to where
|
||
|
the two inputs overlap completely, with shape `(..., max(N, M) - min(N, M) + 1)`.
|
||
|
* "same": Returns the center segment of the full convolution result, with shape `(..., N)`.
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Result of convolving ``x`` and ``y``, with shape `(..., L)`, where
|
||
|
the leading dimensions match those of ``x`` and `L` is dictated by ``mode``.
|
||
|
|
||
|
.. _convolution:
|
||
|
https://en.wikipedia.org/wiki/Convolution
|
||
|
"""
|
||
|
_check_shape_compatible(x, y)
|
||
|
_check_convolve_mode(mode)
|
||
|
|
||
|
x_size, y_size = x.size(-1), y.size(-1)
|
||
|
|
||
|
if x.size(-1) < y.size(-1):
|
||
|
x, y = y, x
|
||
|
|
||
|
if x.shape[:-1] != y.shape[:-1]:
|
||
|
new_shape = [max(i, j) for i, j in zip(x.shape[:-1], y.shape[:-1])]
|
||
|
x = x.broadcast_to(new_shape + [x.shape[-1]])
|
||
|
y = y.broadcast_to(new_shape + [y.shape[-1]])
|
||
|
|
||
|
num_signals = torch.tensor(x.shape[:-1]).prod()
|
||
|
reshaped_x = x.reshape((int(num_signals), x.size(-1)))
|
||
|
reshaped_y = y.reshape((int(num_signals), y.size(-1)))
|
||
|
output = torch.nn.functional.conv1d(
|
||
|
input=reshaped_x,
|
||
|
weight=reshaped_y.flip(-1).unsqueeze(1),
|
||
|
stride=1,
|
||
|
groups=reshaped_x.size(0),
|
||
|
padding=reshaped_y.size(-1) - 1,
|
||
|
)
|
||
|
output_shape = x.shape[:-1] + (-1,)
|
||
|
result = output.reshape(output_shape)
|
||
|
return _apply_convolve_mode(result, x_size, y_size, mode)
|
||
|
|
||
|
|
||
|
def add_noise(
|
||
|
waveform: torch.Tensor, noise: torch.Tensor, snr: torch.Tensor, lengths: Optional[torch.Tensor] = None
|
||
|
) -> torch.Tensor:
|
||
|
r"""Scales and adds noise to waveform per signal-to-noise ratio.
|
||
|
|
||
|
Specifically, for each pair of waveform vector :math:`x \in \mathbb{R}^L` and noise vector
|
||
|
:math:`n \in \mathbb{R}^L`, the function computes output :math:`y` as
|
||
|
|
||
|
.. math::
|
||
|
y = x + a n \, \text{,}
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math::
|
||
|
a = \sqrt{ \frac{ ||x||_{2}^{2} }{ ||n||_{2}^{2} } \cdot 10^{-\frac{\text{SNR}}{10}} } \, \text{,}
|
||
|
|
||
|
with :math:`\text{SNR}` being the desired signal-to-noise ratio between :math:`x` and :math:`n`, in dB.
|
||
|
|
||
|
Note that this function broadcasts singleton leading dimensions in its inputs in a manner that is
|
||
|
consistent with the above formulae and PyTorch's broadcasting semantics.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform (torch.Tensor): Input waveform, with shape `(..., L)`.
|
||
|
noise (torch.Tensor): Noise, with shape `(..., L)` (same shape as ``waveform``).
|
||
|
snr (torch.Tensor): Signal-to-noise ratios in dB, with shape `(...,)`.
|
||
|
lengths (torch.Tensor or None, optional): Valid lengths of signals in ``waveform`` and ``noise``, with shape
|
||
|
`(...,)` (leading dimensions must match those of ``waveform``). If ``None``, all elements in ``waveform``
|
||
|
and ``noise`` are treated as valid. (Default: ``None``)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Result of scaling and adding ``noise`` to ``waveform``, with shape `(..., L)`
|
||
|
(same shape as ``waveform``).
|
||
|
"""
|
||
|
|
||
|
if not (waveform.ndim - 1 == noise.ndim - 1 == snr.ndim and (lengths is None or lengths.ndim == snr.ndim)):
|
||
|
raise ValueError("Input leading dimensions don't match.")
|
||
|
|
||
|
L = waveform.size(-1)
|
||
|
|
||
|
if L != noise.size(-1):
|
||
|
raise ValueError(f"Length dimensions of waveform and noise don't match (got {L} and {noise.size(-1)}).")
|
||
|
|
||
|
# compute scale
|
||
|
if lengths is not None:
|
||
|
mask = torch.arange(0, L, device=lengths.device).expand(waveform.shape) < lengths.unsqueeze(
|
||
|
-1
|
||
|
) # (*, L) < (*, 1) = (*, L)
|
||
|
masked_waveform = waveform * mask
|
||
|
masked_noise = noise * mask
|
||
|
else:
|
||
|
masked_waveform = waveform
|
||
|
masked_noise = noise
|
||
|
|
||
|
energy_signal = torch.linalg.vector_norm(masked_waveform, ord=2, dim=-1) ** 2 # (*,)
|
||
|
energy_noise = torch.linalg.vector_norm(masked_noise, ord=2, dim=-1) ** 2 # (*,)
|
||
|
original_snr_db = 10 * (torch.log10(energy_signal) - torch.log10(energy_noise))
|
||
|
scale = 10 ** ((original_snr_db - snr) / 20.0) # (*,)
|
||
|
|
||
|
# scale noise
|
||
|
scaled_noise = scale.unsqueeze(-1) * noise # (*, 1) * (*, L) = (*, L)
|
||
|
|
||
|
return waveform + scaled_noise # (*, L)
|
||
|
|
||
|
|
||
|
def speed(
|
||
|
waveform: torch.Tensor, orig_freq: int, factor: float, lengths: Optional[torch.Tensor] = None
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||
|
r"""Adjusts waveform speed.
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform (torch.Tensor): Input signals, with shape `(..., time)`.
|
||
|
orig_freq (int): Original frequency of the signals in ``waveform``.
|
||
|
factor (float): Factor by which to adjust speed of input. Values greater than 1.0
|
||
|
compress ``waveform`` in time, whereas values less than 1.0 stretch ``waveform`` in time.
|
||
|
lengths (torch.Tensor or None, optional): Valid lengths of signals in ``waveform``, with shape `(...)`.
|
||
|
If ``None``, all elements in ``waveform`` are treated as valid. (Default: ``None``)
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor, torch.Tensor or None):
|
||
|
torch.Tensor
|
||
|
Speed-adjusted waveform, with shape `(..., new_time).`
|
||
|
torch.Tensor or None
|
||
|
If ``lengths`` is not ``None``, valid lengths of signals in speed-adjusted waveform,
|
||
|
with shape `(...)`; otherwise, ``None``.
|
||
|
"""
|
||
|
|
||
|
source_sample_rate = int(factor * orig_freq)
|
||
|
target_sample_rate = int(orig_freq)
|
||
|
|
||
|
gcd = math.gcd(source_sample_rate, target_sample_rate)
|
||
|
source_sample_rate = source_sample_rate // gcd
|
||
|
target_sample_rate = target_sample_rate // gcd
|
||
|
|
||
|
if lengths is None:
|
||
|
out_lengths = None
|
||
|
else:
|
||
|
out_lengths = torch.ceil(lengths * target_sample_rate / source_sample_rate).to(lengths.dtype)
|
||
|
|
||
|
return resample(waveform, source_sample_rate, target_sample_rate), out_lengths
|
||
|
|
||
|
|
||
|
def preemphasis(waveform, coeff: float = 0.97) -> torch.Tensor:
|
||
|
r"""Pre-emphasizes a waveform along its last dimension, i.e.
|
||
|
for each signal :math:`x` in ``waveform``, computes
|
||
|
output :math:`y` as
|
||
|
|
||
|
.. math::
|
||
|
y[i] = x[i] - \text{coeff} \cdot x[i - 1]
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform (torch.Tensor): Waveform, with shape `(..., N)`.
|
||
|
coeff (float, optional): Pre-emphasis coefficient. Typically between 0.0 and 1.0.
|
||
|
(Default: 0.97)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: Pre-emphasized waveform, with shape `(..., N)`.
|
||
|
"""
|
||
|
waveform = waveform.clone()
|
||
|
waveform[..., 1:] -= coeff * waveform[..., :-1]
|
||
|
return waveform
|
||
|
|
||
|
|
||
|
def deemphasis(waveform, coeff: float = 0.97) -> torch.Tensor:
|
||
|
r"""De-emphasizes a waveform along its last dimension.
|
||
|
Inverse of :meth:`preemphasis`. Concretely, for each signal
|
||
|
:math:`x` in ``waveform``, computes output :math:`y` as
|
||
|
|
||
|
.. math::
|
||
|
y[i] = x[i] + \text{coeff} \cdot y[i - 1]
|
||
|
|
||
|
.. devices:: CPU CUDA
|
||
|
|
||
|
.. properties:: Autograd TorchScript
|
||
|
|
||
|
Args:
|
||
|
waveform (torch.Tensor): Waveform, with shape `(..., N)`.
|
||
|
coeff (float, optional): De-emphasis coefficient. Typically between 0.0 and 1.0.
|
||
|
(Default: 0.97)
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: De-emphasized waveform, with shape `(..., N)`.
|
||
|
"""
|
||
|
a_coeffs = torch.tensor([1.0, -coeff], dtype=waveform.dtype, device=waveform.device)
|
||
|
b_coeffs = torch.tensor([1.0, 0.0], dtype=waveform.dtype, device=waveform.device)
|
||
|
return torchaudio.functional.lfilter(waveform, a_coeffs=a_coeffs, b_coeffs=b_coeffs)
|
||
|
|
||
|
|
||
|
def frechet_distance(mu_x, sigma_x, mu_y, sigma_y):
|
||
|
r"""Computes the Fréchet distance between two multivariate normal distributions :cite:`dowson1982frechet`.
|
||
|
|
||
|
Concretely, for multivariate Gaussians :math:`X(\mu_X, \Sigma_X)`
|
||
|
and :math:`Y(\mu_Y, \Sigma_Y)`, the function computes and returns :math:`F` as
|
||
|
|
||
|
.. math::
|
||
|
F(X, Y) = || \mu_X - \mu_Y ||_2^2
|
||
|
+ \text{Tr}\left( \Sigma_X + \Sigma_Y - 2 \sqrt{\Sigma_X \Sigma_Y} \right)
|
||
|
|
||
|
Args:
|
||
|
mu_x (torch.Tensor): mean :math:`\mu_X` of multivariate Gaussian :math:`X`, with shape `(N,)`.
|
||
|
sigma_x (torch.Tensor): covariance matrix :math:`\Sigma_X` of :math:`X`, with shape `(N, N)`.
|
||
|
mu_y (torch.Tensor): mean :math:`\mu_Y` of multivariate Gaussian :math:`Y`, with shape `(N,)`.
|
||
|
sigma_y (torch.Tensor): covariance matrix :math:`\Sigma_Y` of :math:`Y`, with shape `(N, N)`.
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: the Fréchet distance between :math:`X` and :math:`Y`.
|
||
|
"""
|
||
|
if len(mu_x.size()) != 1:
|
||
|
raise ValueError(f"Input mu_x must be one-dimensional; got dimension {len(mu_x.size())}.")
|
||
|
if len(sigma_x.size()) != 2:
|
||
|
raise ValueError(f"Input sigma_x must be two-dimensional; got dimension {len(sigma_x.size())}.")
|
||
|
if sigma_x.size(0) != sigma_x.size(1) != mu_x.size(0):
|
||
|
raise ValueError("Each of sigma_x's dimensions must match mu_x's size.")
|
||
|
if mu_x.size() != mu_y.size():
|
||
|
raise ValueError(f"Inputs mu_x and mu_y must have the same shape; got {mu_x.size()} and {mu_y.size()}.")
|
||
|
if sigma_x.size() != sigma_y.size():
|
||
|
raise ValueError(
|
||
|
f"Inputs sigma_x and sigma_y must have the same shape; got {sigma_x.size()} and {sigma_y.size()}."
|
||
|
)
|
||
|
|
||
|
a = (mu_x - mu_y).square().sum()
|
||
|
b = sigma_x.trace() + sigma_y.trace()
|
||
|
c = torch.linalg.eigvals(sigma_x @ sigma_y).sqrt().real.sum()
|
||
|
return a + b - 2 * c
|