158 lines
6.0 KiB
Python
158 lines
6.0 KiB
Python
|
from typing import List, Union
|
||
|
|
||
|
from torchgen.api import cpp
|
||
|
|
||
|
from torchgen.api.types import (
|
||
|
ArgName,
|
||
|
ArrayRefCType,
|
||
|
BaseCType,
|
||
|
Binding,
|
||
|
ConstRefCType,
|
||
|
dimnameListT,
|
||
|
intArrayRefT,
|
||
|
iOptTensorListRefT,
|
||
|
iTensorListRefT,
|
||
|
NamedCType,
|
||
|
OptionalCType,
|
||
|
optionalIntArrayRefT,
|
||
|
optionalScalarRefT,
|
||
|
optionalTensorRefT,
|
||
|
scalarT,
|
||
|
tensorT,
|
||
|
)
|
||
|
from torchgen.model import (
|
||
|
Argument,
|
||
|
BaseTy,
|
||
|
BaseType,
|
||
|
ListType,
|
||
|
NativeFunctionsGroup,
|
||
|
OptionalType,
|
||
|
SelfArgument,
|
||
|
TensorOptionsArguments,
|
||
|
Type,
|
||
|
)
|
||
|
from torchgen.utils import assert_never
|
||
|
|
||
|
# This file describes the translation of JIT schema to the structured functions API.
|
||
|
# This is similar to native API, but a number of historical problems with native
|
||
|
# API have been fixed.
|
||
|
|
||
|
|
||
|
# Translation of types occurring in JIT arguments to a C++ argument type.
|
||
|
# NB: For now, mutable doesn't do anything; but it could if we make
|
||
|
# some more nominal types
|
||
|
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
|
||
|
# If it's a value type, do the value type translation
|
||
|
# NB: structured kernels ALWAYS have symint off, since they involve actual
|
||
|
# kernels that require real ints. The one exception is the
|
||
|
# CompositeExplicitAutograd and the meta function (which could
|
||
|
# hypothetically be SymInt), but for simplicity we plan for these to just
|
||
|
# be handled in Python
|
||
|
r = cpp.valuetype_type(t, symint=False, binds=binds)
|
||
|
if r is not None:
|
||
|
return r
|
||
|
|
||
|
if isinstance(t, BaseType):
|
||
|
if t.name == BaseTy.Tensor:
|
||
|
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
|
||
|
elif t.name == BaseTy.Scalar:
|
||
|
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
||
|
else:
|
||
|
raise AssertionError(f"base type should have been value type {t}")
|
||
|
elif isinstance(t, OptionalType):
|
||
|
if t.elem == BaseType(BaseTy.Tensor):
|
||
|
return NamedCType(binds, BaseCType(optionalTensorRefT))
|
||
|
elif t.elem == BaseType(BaseTy.Scalar):
|
||
|
return NamedCType(binds, BaseCType(optionalScalarRefT))
|
||
|
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
|
||
|
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
|
||
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
||
|
return NamedCType(binds, OptionalCType(elem.type))
|
||
|
elif isinstance(t, ListType):
|
||
|
if t.elem == BaseType(BaseTy.Tensor):
|
||
|
return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT)))
|
||
|
elif t.elem == OptionalType(BaseType(BaseTy.Tensor)):
|
||
|
return NamedCType(binds, BaseCType(iOptTensorListRefT))
|
||
|
# TODO: delete these special cases; see torchgen.api.cpp--these
|
||
|
# must be changed in tandem, but there are problems; see
|
||
|
# https://github.com/pytorch/pytorch/pull/51485
|
||
|
elif str(t.elem) == "int":
|
||
|
return NamedCType(binds, BaseCType(intArrayRefT))
|
||
|
elif str(t.elem) == "Dimname":
|
||
|
return NamedCType(binds, BaseCType(dimnameListT))
|
||
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
||
|
return NamedCType(binds, ArrayRefCType(elem.type))
|
||
|
else:
|
||
|
raise AssertionError(f"unrecognized type {repr(t)}")
|
||
|
|
||
|
|
||
|
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
|
||
|
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
|
||
|
|
||
|
|
||
|
# returns_type intentionally omitted, because structured kernels never "return";
|
||
|
# instead, they always indirectly report their outputs (in the case of a meta
|
||
|
# function, by calling set_output; in the case of an impl function, by writing
|
||
|
# directly into the provided out argument).
|
||
|
|
||
|
|
||
|
# Structured kernels are never defaulted
|
||
|
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments]) -> List[Binding]:
|
||
|
if isinstance(a, Argument):
|
||
|
return [
|
||
|
Binding(
|
||
|
nctype=argument_type(a, binds=a.name),
|
||
|
name=a.name,
|
||
|
default=None,
|
||
|
argument=a,
|
||
|
)
|
||
|
]
|
||
|
elif isinstance(a, SelfArgument):
|
||
|
return argument(a.argument)
|
||
|
elif isinstance(a, TensorOptionsArguments):
|
||
|
raise AssertionError("structured kernels don't support TensorOptions yet")
|
||
|
else:
|
||
|
assert_never(a)
|
||
|
|
||
|
|
||
|
def impl_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
||
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
||
|
|
||
|
if g.out.precomputed:
|
||
|
# A list of parameters for the impl function with
|
||
|
# certain parameters replaced with precomputed counterparts
|
||
|
# as specified in native_functions.yaml.
|
||
|
non_out_args_replaced: List[
|
||
|
Union[Argument, TensorOptionsArguments, SelfArgument]
|
||
|
] = []
|
||
|
for a in g.out.func.arguments.non_out:
|
||
|
if isinstance(a, Argument) and a.name in g.out.precomputed.replace:
|
||
|
# If a is in precompute.replace, append the parameters
|
||
|
# that should replace it onto non_out_args_replaced.
|
||
|
non_out_args_replaced.extend(g.out.precomputed.replace[a.name])
|
||
|
else:
|
||
|
# If not, push a as it is.
|
||
|
non_out_args_replaced.append(a)
|
||
|
|
||
|
args.extend(non_out_args_replaced)
|
||
|
# g.out.precomputed.add is the list of parameters that are added
|
||
|
# without replacement after the non out args and just before the out args
|
||
|
args.extend(g.out.precomputed.add)
|
||
|
else:
|
||
|
args.extend(g.out.func.arguments.non_out)
|
||
|
|
||
|
args.extend(g.out.func.arguments.out)
|
||
|
return [r for arg in args for r in argument(arg)]
|
||
|
|
||
|
|
||
|
def meta_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
||
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
||
|
args.extend(g.functional.func.arguments.non_out)
|
||
|
return [r for arg in args for r in argument(arg)]
|
||
|
|
||
|
|
||
|
def out_arguments(g: NativeFunctionsGroup) -> List[Binding]:
|
||
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
||
|
args.extend(g.out.func.arguments.out)
|
||
|
return [r for arg in args for r in argument(arg)]
|