221 lines
7.5 KiB
Python
221 lines
7.5 KiB
Python
|
# Represents all kernels used by an Executorch model.
|
||
|
# It maintains a Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]] structure.
|
||
|
|
||
|
import itertools
|
||
|
from collections import defaultdict, namedtuple
|
||
|
from dataclasses import dataclass
|
||
|
from enum import IntEnum
|
||
|
from typing import Dict, List, Tuple, Union
|
||
|
|
||
|
from torchgen.model import (
|
||
|
BackendIndex,
|
||
|
BackendMetadata,
|
||
|
DispatchKey,
|
||
|
NativeFunction,
|
||
|
NativeFunctionsGroup,
|
||
|
OperatorName,
|
||
|
)
|
||
|
from torchgen.utils import assert_never
|
||
|
|
||
|
KERNEL_KEY_VERSION = 1
|
||
|
|
||
|
|
||
|
# TODO: Duplicated Subset from codegen.tool.gen_oplist, remove declaration in codegen
|
||
|
class ScalarType(IntEnum):
|
||
|
Byte = 0
|
||
|
Char = 1
|
||
|
Short = 2
|
||
|
Int = 3
|
||
|
Long = 4
|
||
|
Float = 6
|
||
|
Double = 7
|
||
|
Bool = 11
|
||
|
|
||
|
|
||
|
ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "kernel_index"])
|
||
|
|
||
|
|
||
|
@dataclass(frozen=True)
|
||
|
class ETKernelKeyOpArgMeta:
|
||
|
arg_name: str
|
||
|
dtype: str
|
||
|
# The order of the dimensions if entry is a Tensor
|
||
|
dim_order: Tuple[int, ...]
|
||
|
|
||
|
def to_native_string(self) -> str:
|
||
|
dtype_str = ScalarType[self.dtype].value
|
||
|
dim_str = str(self.dim_order)[1:-1].replace(" ", "")
|
||
|
return f"{dtype_str};{dim_str}"
|
||
|
|
||
|
|
||
|
@dataclass(frozen=True)
|
||
|
class ETKernelKey:
|
||
|
# Field undefined is default = True
|
||
|
arg_meta: Tuple[ETKernelKeyOpArgMeta, ...] = ()
|
||
|
|
||
|
# Indicator for this kernel being used as a catch all
|
||
|
default: bool = False
|
||
|
|
||
|
version: int = KERNEL_KEY_VERSION
|
||
|
|
||
|
@staticmethod
|
||
|
def gen_from_yaml(
|
||
|
args: Dict[str, Tuple[str, str]],
|
||
|
type_alias_map: Dict[str, List[str]], # TODO: Support unwrapped str val
|
||
|
dim_order_alias_map: Dict[str, List[int]],
|
||
|
) -> List["ETKernelKey"]:
|
||
|
"""Generate ETKernelKeys from arg kernel specs
|
||
|
Multiple ETKernelKeys are returned due to dtype permutations from utilizing
|
||
|
type_alias_map (actualizing each potential type permutation as a KernelKey)
|
||
|
|
||
|
Args:
|
||
|
args: Mapping from argument name to kernel specs
|
||
|
Kernel specs are a tuple of (dtype, dim_order).
|
||
|
Currently tuple entries must be aliased via the alias map arguments
|
||
|
type_alias_map: Mapping from type alias to potential type enums
|
||
|
i.e { T0 : [Double, Int] } means T0 can be either Double or Int
|
||
|
Used for lookup by args
|
||
|
dim_order_alias_map: Mapping from alias to a list of dimension orders
|
||
|
Used for lookup by args
|
||
|
"""
|
||
|
# Cast to dim order to int
|
||
|
dim_order_alias_map = {
|
||
|
k: [int(alias) for alias in v] for k, v in dim_order_alias_map.items()
|
||
|
}
|
||
|
kernel_keys = []
|
||
|
|
||
|
# Get all used Dtype Alias
|
||
|
dtype_alias_used = set()
|
||
|
for type_alias, dim_order in args.values():
|
||
|
# Enforce usage of alias initially
|
||
|
# TODO: Support inlined arguments
|
||
|
assert type_alias in type_alias_map, "Undefined type alias: " + str(
|
||
|
type_alias
|
||
|
)
|
||
|
assert (
|
||
|
dim_order in dim_order_alias_map
|
||
|
), "Undefined dim_order alias: " + str(dim_order)
|
||
|
dtype_alias_used.add(type_alias)
|
||
|
|
||
|
# Generate all permutations of dtype alias values
|
||
|
alias_dtypes = [
|
||
|
[(alias, dtype) for dtype in type_alias_map[alias]]
|
||
|
for alias in dtype_alias_used
|
||
|
]
|
||
|
alias_permutations = [
|
||
|
dict(permutation) for permutation in list(itertools.product(*alias_dtypes))
|
||
|
]
|
||
|
|
||
|
# Using each alias value permutation, generate kernel keys
|
||
|
op_arg_cache = {}
|
||
|
for permutation in alias_permutations:
|
||
|
arg_list = []
|
||
|
for arg_name, arg_spec in args.items():
|
||
|
dtype = permutation[arg_spec[0]]
|
||
|
dim_order = dim_order_alias_map[arg_spec[1]] # type: ignore[assignment]
|
||
|
if (
|
||
|
cache_key := (arg_name, dtype, tuple(dim_order))
|
||
|
) not in op_arg_cache:
|
||
|
op_arg_cache[cache_key] = ETKernelKeyOpArgMeta(*cache_key) # type: ignore[arg-type]
|
||
|
|
||
|
arg_list.append(op_arg_cache[cache_key])
|
||
|
kernel_keys.append(ETKernelKey(tuple(arg_list)))
|
||
|
|
||
|
return kernel_keys
|
||
|
|
||
|
def to_native_string(self) -> str:
|
||
|
if self.default:
|
||
|
return "default"
|
||
|
return (
|
||
|
"v"
|
||
|
+ str(KERNEL_KEY_VERSION)
|
||
|
+ "/"
|
||
|
+ "|".join([arg.to_native_string() for arg in self.arg_meta])
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass(frozen=True)
|
||
|
class ETKernelIndex:
|
||
|
index: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]]
|
||
|
|
||
|
def has_kernels(self, g: Union[NativeFunction, NativeFunctionsGroup]) -> bool:
|
||
|
m = self.get_kernels(g)
|
||
|
return m is not None
|
||
|
|
||
|
def get_kernels(
|
||
|
self, g: Union[NativeFunction, NativeFunctionsGroup]
|
||
|
) -> Dict[ETKernelKey, BackendMetadata]:
|
||
|
if isinstance(g, NativeFunction):
|
||
|
f = g
|
||
|
elif isinstance(g, NativeFunctionsGroup):
|
||
|
f = g.functional
|
||
|
else:
|
||
|
assert_never(g)
|
||
|
if f.func.name not in self.index:
|
||
|
return {}
|
||
|
return self.index[f.func.name]
|
||
|
|
||
|
@staticmethod
|
||
|
def grow_from_backend_indices(
|
||
|
kernel_index: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]],
|
||
|
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
|
||
|
) -> None:
|
||
|
for dk in backend_indices:
|
||
|
index = backend_indices[dk]
|
||
|
for op, backend_metadata in index.items():
|
||
|
if op in kernel_index:
|
||
|
kernel_index[op][ETKernelKey(default=True)] = backend_metadata
|
||
|
else:
|
||
|
kernel_index[op] = {ETKernelKey(default=True): backend_metadata}
|
||
|
|
||
|
@staticmethod
|
||
|
def from_backend_indices(
|
||
|
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
|
||
|
) -> "ETKernelIndex":
|
||
|
kernel_index: Dict[
|
||
|
OperatorName, Dict[ETKernelKey, BackendMetadata]
|
||
|
] = defaultdict(dict)
|
||
|
ETKernelIndex.grow_from_backend_indices(kernel_index, backend_indices)
|
||
|
return ETKernelIndex(kernel_index)
|
||
|
|
||
|
def grow(
|
||
|
self, backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
|
||
|
) -> "ETKernelIndex":
|
||
|
ETKernelIndex.grow_from_backend_indices(self.index, backend_indices)
|
||
|
return self
|
||
|
|
||
|
def _to_backend_index(self) -> BackendIndex:
|
||
|
"""
|
||
|
WARNING: this will be deprecated once all the codegen places know how to handle ETKernelIndex.
|
||
|
"""
|
||
|
index: Dict[OperatorName, BackendMetadata] = {}
|
||
|
for op in self.index:
|
||
|
kernel_dict = self.index[op]
|
||
|
assert (
|
||
|
len(kernel_dict.values()) == 1
|
||
|
), f"Can't convert ETKernelIndex to BackendIndex because {op} has more than one kernels. Got {kernel_dict}"
|
||
|
index[op] = kernel_dict.get(
|
||
|
ETKernelKey(default=True),
|
||
|
BackendMetadata(kernel="", structured=False, cpp_namespace=""),
|
||
|
)
|
||
|
return BackendIndex(
|
||
|
dispatch_key=DispatchKey.CPU,
|
||
|
use_out_as_primary=False,
|
||
|
device_guard=False,
|
||
|
external=False,
|
||
|
index=index,
|
||
|
)
|
||
|
|
||
|
# Note duplicate ETKernelKey from index_b will clobber the metadata from index_a
|
||
|
@staticmethod
|
||
|
def merge_indices(
|
||
|
index_a: "ETKernelIndex", index_b: "ETKernelIndex"
|
||
|
) -> "ETKernelIndex":
|
||
|
combined = defaultdict(dict, index_a.index.copy())
|
||
|
|
||
|
for op, entry in index_b.index.items():
|
||
|
for key, metadata in entry.items():
|
||
|
combined[op][key] = metadata
|
||
|
|
||
|
return ETKernelIndex(combined)
|