381 lines
11 KiB
Python
381 lines
11 KiB
Python
|
from fontTools.ttLib.ttGlyphSet import LerpGlyphSet
|
||
|
from fontTools.pens.basePen import AbstractPen, BasePen, DecomposingPen
|
||
|
from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen
|
||
|
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
|
||
|
from fontTools.misc.transform import Transform
|
||
|
from collections import defaultdict, deque
|
||
|
from math import sqrt, copysign, atan2, pi
|
||
|
from enum import Enum
|
||
|
import itertools
|
||
|
|
||
|
import logging
|
||
|
|
||
|
log = logging.getLogger("fontTools.varLib.interpolatable")
|
||
|
|
||
|
|
||
|
class InterpolatableProblem:
|
||
|
NOTHING = "nothing"
|
||
|
MISSING = "missing"
|
||
|
OPEN_PATH = "open_path"
|
||
|
PATH_COUNT = "path_count"
|
||
|
NODE_COUNT = "node_count"
|
||
|
NODE_INCOMPATIBILITY = "node_incompatibility"
|
||
|
CONTOUR_ORDER = "contour_order"
|
||
|
WRONG_START_POINT = "wrong_start_point"
|
||
|
KINK = "kink"
|
||
|
UNDERWEIGHT = "underweight"
|
||
|
OVERWEIGHT = "overweight"
|
||
|
|
||
|
severity = {
|
||
|
MISSING: 1,
|
||
|
OPEN_PATH: 2,
|
||
|
PATH_COUNT: 3,
|
||
|
NODE_COUNT: 4,
|
||
|
NODE_INCOMPATIBILITY: 5,
|
||
|
CONTOUR_ORDER: 6,
|
||
|
WRONG_START_POINT: 7,
|
||
|
KINK: 8,
|
||
|
UNDERWEIGHT: 9,
|
||
|
OVERWEIGHT: 10,
|
||
|
NOTHING: 11,
|
||
|
}
|
||
|
|
||
|
|
||
|
def sort_problems(problems):
|
||
|
"""Sort problems by severity, then by glyph name, then by problem message."""
|
||
|
return dict(
|
||
|
sorted(
|
||
|
problems.items(),
|
||
|
key=lambda _: -min(
|
||
|
(
|
||
|
(InterpolatableProblem.severity[p["type"]] + p.get("tolerance", 0))
|
||
|
for p in _[1]
|
||
|
),
|
||
|
),
|
||
|
reverse=True,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
def rot_list(l, k):
|
||
|
"""Rotate list by k items forward. Ie. item at position 0 will be
|
||
|
at position k in returned list. Negative k is allowed."""
|
||
|
return l[-k:] + l[:-k]
|
||
|
|
||
|
|
||
|
class PerContourPen(BasePen):
|
||
|
def __init__(self, Pen, glyphset=None):
|
||
|
BasePen.__init__(self, glyphset)
|
||
|
self._glyphset = glyphset
|
||
|
self._Pen = Pen
|
||
|
self._pen = None
|
||
|
self.value = []
|
||
|
|
||
|
def _moveTo(self, p0):
|
||
|
self._newItem()
|
||
|
self._pen.moveTo(p0)
|
||
|
|
||
|
def _lineTo(self, p1):
|
||
|
self._pen.lineTo(p1)
|
||
|
|
||
|
def _qCurveToOne(self, p1, p2):
|
||
|
self._pen.qCurveTo(p1, p2)
|
||
|
|
||
|
def _curveToOne(self, p1, p2, p3):
|
||
|
self._pen.curveTo(p1, p2, p3)
|
||
|
|
||
|
def _closePath(self):
|
||
|
self._pen.closePath()
|
||
|
self._pen = None
|
||
|
|
||
|
def _endPath(self):
|
||
|
self._pen.endPath()
|
||
|
self._pen = None
|
||
|
|
||
|
def _newItem(self):
|
||
|
self._pen = pen = self._Pen()
|
||
|
self.value.append(pen)
|
||
|
|
||
|
|
||
|
class PerContourOrComponentPen(PerContourPen):
|
||
|
def addComponent(self, glyphName, transformation):
|
||
|
self._newItem()
|
||
|
self.value[-1].addComponent(glyphName, transformation)
|
||
|
|
||
|
|
||
|
class SimpleRecordingPointPen(AbstractPointPen):
|
||
|
def __init__(self):
|
||
|
self.value = []
|
||
|
|
||
|
def beginPath(self, identifier=None, **kwargs):
|
||
|
pass
|
||
|
|
||
|
def endPath(self) -> None:
|
||
|
pass
|
||
|
|
||
|
def addPoint(self, pt, segmentType=None):
|
||
|
self.value.append((pt, False if segmentType is None else True))
|
||
|
|
||
|
|
||
|
def vdiff_hypot2(v0, v1):
|
||
|
s = 0
|
||
|
for x0, x1 in zip(v0, v1):
|
||
|
d = x1 - x0
|
||
|
s += d * d
|
||
|
return s
|
||
|
|
||
|
|
||
|
def vdiff_hypot2_complex(v0, v1):
|
||
|
s = 0
|
||
|
for x0, x1 in zip(v0, v1):
|
||
|
d = x1 - x0
|
||
|
s += d.real * d.real + d.imag * d.imag
|
||
|
# This does the same but seems to be slower:
|
||
|
# s += (d * d.conjugate()).real
|
||
|
return s
|
||
|
|
||
|
|
||
|
def matching_cost(G, matching):
|
||
|
return sum(G[i][j] for i, j in enumerate(matching))
|
||
|
|
||
|
|
||
|
def min_cost_perfect_bipartite_matching_scipy(G):
|
||
|
n = len(G)
|
||
|
rows, cols = linear_sum_assignment(G)
|
||
|
assert (rows == list(range(n))).all()
|
||
|
return list(cols), matching_cost(G, cols)
|
||
|
|
||
|
|
||
|
def min_cost_perfect_bipartite_matching_munkres(G):
|
||
|
n = len(G)
|
||
|
cols = [None] * n
|
||
|
for row, col in Munkres().compute(G):
|
||
|
cols[row] = col
|
||
|
return cols, matching_cost(G, cols)
|
||
|
|
||
|
|
||
|
def min_cost_perfect_bipartite_matching_bruteforce(G):
|
||
|
n = len(G)
|
||
|
|
||
|
if n > 6:
|
||
|
raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'")
|
||
|
|
||
|
# Otherwise just brute-force
|
||
|
permutations = itertools.permutations(range(n))
|
||
|
best = list(next(permutations))
|
||
|
best_cost = matching_cost(G, best)
|
||
|
for p in permutations:
|
||
|
cost = matching_cost(G, p)
|
||
|
if cost < best_cost:
|
||
|
best, best_cost = list(p), cost
|
||
|
return best, best_cost
|
||
|
|
||
|
|
||
|
try:
|
||
|
from scipy.optimize import linear_sum_assignment
|
||
|
|
||
|
min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy
|
||
|
except ImportError:
|
||
|
try:
|
||
|
from munkres import Munkres
|
||
|
|
||
|
min_cost_perfect_bipartite_matching = (
|
||
|
min_cost_perfect_bipartite_matching_munkres
|
||
|
)
|
||
|
except ImportError:
|
||
|
min_cost_perfect_bipartite_matching = (
|
||
|
min_cost_perfect_bipartite_matching_bruteforce
|
||
|
)
|
||
|
|
||
|
|
||
|
def contour_vector_from_stats(stats):
|
||
|
# Don't change the order of items here.
|
||
|
# It's okay to add to the end, but otherwise, other
|
||
|
# code depends on it. Search for "covariance".
|
||
|
size = sqrt(abs(stats.area))
|
||
|
return (
|
||
|
copysign((size), stats.area),
|
||
|
stats.meanX,
|
||
|
stats.meanY,
|
||
|
stats.stddevX * 2,
|
||
|
stats.stddevY * 2,
|
||
|
stats.correlation * size,
|
||
|
)
|
||
|
|
||
|
|
||
|
def matching_for_vectors(m0, m1):
|
||
|
n = len(m0)
|
||
|
|
||
|
identity_matching = list(range(n))
|
||
|
|
||
|
costs = [[vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0]
|
||
|
(
|
||
|
matching,
|
||
|
matching_cost,
|
||
|
) = min_cost_perfect_bipartite_matching(costs)
|
||
|
identity_cost = sum(costs[i][i] for i in range(n))
|
||
|
return matching, matching_cost, identity_cost
|
||
|
|
||
|
|
||
|
def points_characteristic_bits(points):
|
||
|
bits = 0
|
||
|
for pt, b in reversed(points):
|
||
|
bits = (bits << 1) | b
|
||
|
return bits
|
||
|
|
||
|
|
||
|
_NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR = 4
|
||
|
|
||
|
|
||
|
def points_complex_vector(points):
|
||
|
vector = []
|
||
|
if not points:
|
||
|
return vector
|
||
|
points = [complex(*pt) for pt, _ in points]
|
||
|
n = len(points)
|
||
|
assert _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR == 4
|
||
|
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
|
||
|
while len(points) < _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR:
|
||
|
points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
|
||
|
for i in range(n):
|
||
|
# The weights are magic numbers.
|
||
|
|
||
|
# The point itself
|
||
|
p0 = points[i]
|
||
|
vector.append(p0)
|
||
|
|
||
|
# The vector to the next point
|
||
|
p1 = points[i + 1]
|
||
|
d0 = p1 - p0
|
||
|
vector.append(d0 * 3)
|
||
|
|
||
|
# The turn vector
|
||
|
p2 = points[i + 2]
|
||
|
d1 = p2 - p1
|
||
|
vector.append(d1 - d0)
|
||
|
|
||
|
# The angle to the next point, as a cross product;
|
||
|
# Square root of, to match dimentionality of distance.
|
||
|
cross = d0.real * d1.imag - d0.imag * d1.real
|
||
|
cross = copysign(sqrt(abs(cross)), cross)
|
||
|
vector.append(cross * 4)
|
||
|
|
||
|
return vector
|
||
|
|
||
|
|
||
|
def add_isomorphisms(points, isomorphisms, reverse):
|
||
|
reference_bits = points_characteristic_bits(points)
|
||
|
n = len(points)
|
||
|
|
||
|
# if points[0][0] == points[-1][0]:
|
||
|
# abort
|
||
|
|
||
|
if reverse:
|
||
|
points = points[::-1]
|
||
|
bits = points_characteristic_bits(points)
|
||
|
else:
|
||
|
bits = reference_bits
|
||
|
|
||
|
vector = points_complex_vector(points)
|
||
|
|
||
|
assert len(vector) % n == 0
|
||
|
mult = len(vector) // n
|
||
|
mask = (1 << n) - 1
|
||
|
|
||
|
for i in range(n):
|
||
|
b = ((bits << (n - i)) & mask) | (bits >> i)
|
||
|
if b == reference_bits:
|
||
|
isomorphisms.append(
|
||
|
(rot_list(vector, -i * mult), n - 1 - i if reverse else i, reverse)
|
||
|
)
|
||
|
|
||
|
|
||
|
def find_parents_and_order(glyphsets, locations):
|
||
|
parents = [None] + list(range(len(glyphsets) - 1))
|
||
|
order = list(range(len(glyphsets)))
|
||
|
if locations:
|
||
|
# Order base master first
|
||
|
bases = (i for i, l in enumerate(locations) if all(v == 0 for v in l.values()))
|
||
|
if bases:
|
||
|
base = next(bases)
|
||
|
logging.info("Base master index %s, location %s", base, locations[base])
|
||
|
else:
|
||
|
base = 0
|
||
|
logging.warning("No base master location found")
|
||
|
|
||
|
# Form a minimum spanning tree of the locations
|
||
|
try:
|
||
|
from scipy.sparse.csgraph import minimum_spanning_tree
|
||
|
|
||
|
graph = [[0] * len(locations) for _ in range(len(locations))]
|
||
|
axes = set()
|
||
|
for l in locations:
|
||
|
axes.update(l.keys())
|
||
|
axes = sorted(axes)
|
||
|
vectors = [tuple(l.get(k, 0) for k in axes) for l in locations]
|
||
|
for i, j in itertools.combinations(range(len(locations)), 2):
|
||
|
graph[i][j] = vdiff_hypot2(vectors[i], vectors[j])
|
||
|
|
||
|
tree = minimum_spanning_tree(graph)
|
||
|
rows, cols = tree.nonzero()
|
||
|
graph = defaultdict(set)
|
||
|
for row, col in zip(rows, cols):
|
||
|
graph[row].add(col)
|
||
|
graph[col].add(row)
|
||
|
|
||
|
# Traverse graph from the base and assign parents
|
||
|
parents = [None] * len(locations)
|
||
|
order = []
|
||
|
visited = set()
|
||
|
queue = deque([base])
|
||
|
while queue:
|
||
|
i = queue.popleft()
|
||
|
visited.add(i)
|
||
|
order.append(i)
|
||
|
for j in sorted(graph[i]):
|
||
|
if j not in visited:
|
||
|
parents[j] = i
|
||
|
queue.append(j)
|
||
|
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
log.info("Parents: %s", parents)
|
||
|
log.info("Order: %s", order)
|
||
|
return parents, order
|
||
|
|
||
|
|
||
|
def transform_from_stats(stats, inverse=False):
|
||
|
# https://cookierobotics.com/007/
|
||
|
a = stats.varianceX
|
||
|
b = stats.covariance
|
||
|
c = stats.varianceY
|
||
|
|
||
|
delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5
|
||
|
lambda1 = (a + c) * 0.5 + delta # Major eigenvalue
|
||
|
lambda2 = (a + c) * 0.5 - delta # Minor eigenvalue
|
||
|
theta = atan2(lambda1 - a, b) if b != 0 else (pi * 0.5 if a < c else 0)
|
||
|
trans = Transform()
|
||
|
|
||
|
if lambda2 < 0:
|
||
|
# XXX This is a hack.
|
||
|
# The problem is that the covariance matrix is singular.
|
||
|
# This happens when the contour is a line, or a circle.
|
||
|
# In that case, the covariance matrix is not a good
|
||
|
# representation of the contour.
|
||
|
# We should probably detect this earlier and avoid
|
||
|
# computing the covariance matrix in the first place.
|
||
|
# But for now, we just avoid the division by zero.
|
||
|
lambda2 = 0
|
||
|
|
||
|
if inverse:
|
||
|
trans = trans.translate(-stats.meanX, -stats.meanY)
|
||
|
trans = trans.rotate(-theta)
|
||
|
trans = trans.scale(1 / sqrt(lambda1), 1 / sqrt(lambda2))
|
||
|
else:
|
||
|
trans = trans.scale(sqrt(lambda1), sqrt(lambda2))
|
||
|
trans = trans.rotate(theta)
|
||
|
trans = trans.translate(stats.meanX, stats.meanY)
|
||
|
|
||
|
return trans
|