8635 lines
334 KiB
Python
8635 lines
334 KiB
Python
|
import functools
|
||
|
import itertools
|
||
|
import logging
|
||
|
import math
|
||
|
from numbers import Integral, Number, Real
|
||
|
|
||
|
import re
|
||
|
import numpy as np
|
||
|
from numpy import ma
|
||
|
|
||
|
import matplotlib as mpl
|
||
|
import matplotlib.category # Register category unit converter as side effect.
|
||
|
import matplotlib.cbook as cbook
|
||
|
import matplotlib.collections as mcoll
|
||
|
import matplotlib.colors as mcolors
|
||
|
import matplotlib.contour as mcontour
|
||
|
import matplotlib.dates # noqa # Register date unit converter as side effect.
|
||
|
import matplotlib.image as mimage
|
||
|
import matplotlib.legend as mlegend
|
||
|
import matplotlib.lines as mlines
|
||
|
import matplotlib.markers as mmarkers
|
||
|
import matplotlib.mlab as mlab
|
||
|
import matplotlib.patches as mpatches
|
||
|
import matplotlib.path as mpath
|
||
|
import matplotlib.quiver as mquiver
|
||
|
import matplotlib.stackplot as mstack
|
||
|
import matplotlib.streamplot as mstream
|
||
|
import matplotlib.table as mtable
|
||
|
import matplotlib.text as mtext
|
||
|
import matplotlib.ticker as mticker
|
||
|
import matplotlib.transforms as mtransforms
|
||
|
import matplotlib.tri as mtri
|
||
|
import matplotlib.units as munits
|
||
|
from matplotlib import _api, _docstring, _preprocess_data
|
||
|
from matplotlib.axes._base import (
|
||
|
_AxesBase, _TransformedBoundsLocator, _process_plot_format)
|
||
|
from matplotlib.axes._secondary_axes import SecondaryAxis
|
||
|
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
|
||
|
|
||
|
_log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
# The axes module contains all the wrappers to plotting functions.
|
||
|
# All the other methods should go in the _AxesBase class.
|
||
|
|
||
|
|
||
|
def _make_axes_method(func):
|
||
|
"""
|
||
|
Patch the qualname for functions that are directly added to Axes.
|
||
|
|
||
|
Some Axes functionality is defined in functions in other submodules.
|
||
|
These are simply added as attributes to Axes. As a result, their
|
||
|
``__qualname__`` is e.g. only "table" and not "Axes.table". This
|
||
|
function fixes that.
|
||
|
|
||
|
Note that the function itself is patched, so that
|
||
|
``matplotlib.table.table.__qualname__` will also show "Axes.table".
|
||
|
However, since these functions are not intended to be standalone,
|
||
|
this is bearable.
|
||
|
"""
|
||
|
func.__qualname__ = f"Axes.{func.__name__}"
|
||
|
return func
|
||
|
|
||
|
|
||
|
@_docstring.interpd
|
||
|
class Axes(_AxesBase):
|
||
|
"""
|
||
|
An Axes object encapsulates all the elements of an individual (sub-)plot in
|
||
|
a figure.
|
||
|
|
||
|
It contains most of the (sub-)plot elements: `~.axis.Axis`,
|
||
|
`~.axis.Tick`, `~.lines.Line2D`, `~.text.Text`, `~.patches.Polygon`, etc.,
|
||
|
and sets the coordinate system.
|
||
|
|
||
|
Like all visible elements in a figure, Axes is an `.Artist` subclass.
|
||
|
|
||
|
The `Axes` instance supports callbacks through a callbacks attribute which
|
||
|
is a `~.cbook.CallbackRegistry` instance. The events you can connect to
|
||
|
are 'xlim_changed' and 'ylim_changed' and the callback will be called with
|
||
|
func(*ax*) where *ax* is the `Axes` instance.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
As a user, you do not instantiate Axes directly, but use Axes creation
|
||
|
methods instead; e.g. from `.pyplot` or `.Figure`:
|
||
|
`~.pyplot.subplots`, `~.pyplot.subplot_mosaic` or `.Figure.add_axes`.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
dataLim : `.Bbox`
|
||
|
The bounding box enclosing all data displayed in the Axes.
|
||
|
viewLim : `.Bbox`
|
||
|
The view limits in data coordinates.
|
||
|
|
||
|
"""
|
||
|
### Labelling, legend and texts
|
||
|
|
||
|
def get_title(self, loc="center"):
|
||
|
"""
|
||
|
Get an Axes title.
|
||
|
|
||
|
Get one of the three available Axes titles. The available titles
|
||
|
are positioned above the Axes in the center, flush with the left
|
||
|
edge, and flush with the right edge.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
loc : {'center', 'left', 'right'}, str, default: 'center'
|
||
|
Which title to return.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str
|
||
|
The title text string.
|
||
|
|
||
|
"""
|
||
|
titles = {'left': self._left_title,
|
||
|
'center': self.title,
|
||
|
'right': self._right_title}
|
||
|
title = _api.check_getitem(titles, loc=loc.lower())
|
||
|
return title.get_text()
|
||
|
|
||
|
def set_title(self, label, fontdict=None, loc=None, pad=None, *, y=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Set a title for the Axes.
|
||
|
|
||
|
Set one of the three available Axes titles. The available titles
|
||
|
are positioned above the Axes in the center, flush with the left
|
||
|
edge, and flush with the right edge.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
label : str
|
||
|
Text to use for the title
|
||
|
|
||
|
fontdict : dict
|
||
|
|
||
|
.. admonition:: Discouraged
|
||
|
|
||
|
The use of *fontdict* is discouraged. Parameters should be passed as
|
||
|
individual keyword arguments or using dictionary-unpacking
|
||
|
``set_title(..., **fontdict)``.
|
||
|
|
||
|
A dictionary controlling the appearance of the title text,
|
||
|
the default *fontdict* is::
|
||
|
|
||
|
{'fontsize': rcParams['axes.titlesize'],
|
||
|
'fontweight': rcParams['axes.titleweight'],
|
||
|
'color': rcParams['axes.titlecolor'],
|
||
|
'verticalalignment': 'baseline',
|
||
|
'horizontalalignment': loc}
|
||
|
|
||
|
loc : {'center', 'left', 'right'}, default: :rc:`axes.titlelocation`
|
||
|
Which title to set.
|
||
|
|
||
|
y : float, default: :rc:`axes.titley`
|
||
|
Vertical Axes location for the title (1.0 is the top). If
|
||
|
None (the default) and :rc:`axes.titley` is also None, y is
|
||
|
determined automatically to avoid decorators on the Axes.
|
||
|
|
||
|
pad : float, default: :rc:`axes.titlepad`
|
||
|
The offset of the title from the top of the Axes, in points.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.Text`
|
||
|
The matplotlib text instance representing the title
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.text.Text` properties
|
||
|
Other keyword arguments are text properties, see `.Text` for a list
|
||
|
of valid text properties.
|
||
|
"""
|
||
|
if loc is None:
|
||
|
loc = mpl.rcParams['axes.titlelocation']
|
||
|
|
||
|
if y is None:
|
||
|
y = mpl.rcParams['axes.titley']
|
||
|
if y is None:
|
||
|
y = 1.0
|
||
|
else:
|
||
|
self._autotitlepos = False
|
||
|
kwargs['y'] = y
|
||
|
|
||
|
titles = {'left': self._left_title,
|
||
|
'center': self.title,
|
||
|
'right': self._right_title}
|
||
|
title = _api.check_getitem(titles, loc=loc.lower())
|
||
|
default = {
|
||
|
'fontsize': mpl.rcParams['axes.titlesize'],
|
||
|
'fontweight': mpl.rcParams['axes.titleweight'],
|
||
|
'verticalalignment': 'baseline',
|
||
|
'horizontalalignment': loc.lower()}
|
||
|
titlecolor = mpl.rcParams['axes.titlecolor']
|
||
|
if not cbook._str_lower_equal(titlecolor, 'auto'):
|
||
|
default["color"] = titlecolor
|
||
|
if pad is None:
|
||
|
pad = mpl.rcParams['axes.titlepad']
|
||
|
self._set_title_offset_trans(float(pad))
|
||
|
title.set_text(label)
|
||
|
title.update(default)
|
||
|
if fontdict is not None:
|
||
|
title.update(fontdict)
|
||
|
title._internal_update(kwargs)
|
||
|
return title
|
||
|
|
||
|
def get_legend_handles_labels(self, legend_handler_map=None):
|
||
|
"""
|
||
|
Return handles and labels for legend
|
||
|
|
||
|
``ax.legend()`` is equivalent to ::
|
||
|
|
||
|
h, l = ax.get_legend_handles_labels()
|
||
|
ax.legend(h, l)
|
||
|
"""
|
||
|
# pass through to legend.
|
||
|
handles, labels = mlegend._get_legend_handles_labels(
|
||
|
[self], legend_handler_map)
|
||
|
return handles, labels
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def legend(self, *args, **kwargs):
|
||
|
"""
|
||
|
Place a legend on the Axes.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
legend()
|
||
|
legend(handles, labels)
|
||
|
legend(handles=handles)
|
||
|
legend(labels)
|
||
|
|
||
|
The call signatures correspond to the following different ways to use
|
||
|
this method:
|
||
|
|
||
|
**1. Automatic detection of elements to be shown in the legend**
|
||
|
|
||
|
The elements to be added to the legend are automatically determined,
|
||
|
when you do not pass in any extra arguments.
|
||
|
|
||
|
In this case, the labels are taken from the artist. You can specify
|
||
|
them either at artist creation or by calling the
|
||
|
:meth:`~.Artist.set_label` method on the artist::
|
||
|
|
||
|
ax.plot([1, 2, 3], label='Inline label')
|
||
|
ax.legend()
|
||
|
|
||
|
or::
|
||
|
|
||
|
line, = ax.plot([1, 2, 3])
|
||
|
line.set_label('Label via method')
|
||
|
ax.legend()
|
||
|
|
||
|
.. note::
|
||
|
Specific artists can be excluded from the automatic legend element
|
||
|
selection by using a label starting with an underscore, "_".
|
||
|
A string starting with an underscore is the default label for all
|
||
|
artists, so calling `.Axes.legend` without any arguments and
|
||
|
without setting the labels manually will result in a ``UserWarning``
|
||
|
and an empty legend being drawn.
|
||
|
|
||
|
|
||
|
**2. Explicitly listing the artists and labels in the legend**
|
||
|
|
||
|
For full control of which artists have a legend entry, it is possible
|
||
|
to pass an iterable of legend artists followed by an iterable of
|
||
|
legend labels respectively::
|
||
|
|
||
|
ax.legend([line1, line2, line3], ['label1', 'label2', 'label3'])
|
||
|
|
||
|
|
||
|
**3. Explicitly listing the artists in the legend**
|
||
|
|
||
|
This is similar to 2, but the labels are taken from the artists'
|
||
|
label properties. Example::
|
||
|
|
||
|
line1, = ax.plot([1, 2, 3], label='label1')
|
||
|
line2, = ax.plot([1, 2, 3], label='label2')
|
||
|
ax.legend(handles=[line1, line2])
|
||
|
|
||
|
|
||
|
**4. Labeling existing plot elements**
|
||
|
|
||
|
.. admonition:: Discouraged
|
||
|
|
||
|
This call signature is discouraged, because the relation between
|
||
|
plot elements and labels is only implicit by their order and can
|
||
|
easily be mixed up.
|
||
|
|
||
|
To make a legend for all artists on an Axes, call this function with
|
||
|
an iterable of strings, one for each legend item. For example::
|
||
|
|
||
|
ax.plot([1, 2, 3])
|
||
|
ax.plot([5, 6, 7])
|
||
|
ax.legend(['First line', 'Second line'])
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
handles : list of (`.Artist` or tuple of `.Artist`), optional
|
||
|
A list of Artists (lines, patches) to be added to the legend.
|
||
|
Use this together with *labels*, if you need full control on what
|
||
|
is shown in the legend and the automatic mechanism described above
|
||
|
is not sufficient.
|
||
|
|
||
|
The length of handles and labels should be the same in this
|
||
|
case. If they are not, they are truncated to the smaller length.
|
||
|
|
||
|
If an entry contains a tuple, then the legend handler for all Artists in the
|
||
|
tuple will be placed alongside a single label.
|
||
|
|
||
|
labels : list of str, optional
|
||
|
A list of labels to show next to the artists.
|
||
|
Use this together with *handles*, if you need full control on what
|
||
|
is shown in the legend and the automatic mechanism described above
|
||
|
is not sufficient.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.legend.Legend`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
%(_legend_kw_axes)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.Figure.legend
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Some artists are not supported by this function. See
|
||
|
:ref:`legend_guide` for details.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/text_labels_and_annotations/legend.py
|
||
|
"""
|
||
|
handles, labels, kwargs = mlegend._parse_legend_args([self], *args, **kwargs)
|
||
|
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
|
||
|
self.legend_._remove_method = self._remove_legend
|
||
|
return self.legend_
|
||
|
|
||
|
def _remove_legend(self, legend):
|
||
|
self.legend_ = None
|
||
|
|
||
|
def inset_axes(self, bounds, *, transform=None, zorder=5, **kwargs):
|
||
|
"""
|
||
|
Add a child inset Axes to this existing Axes.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bounds : [x0, y0, width, height]
|
||
|
Lower-left corner of inset Axes, and its width and height.
|
||
|
|
||
|
transform : `.Transform`
|
||
|
Defaults to `ax.transAxes`, i.e. the units of *rect* are in
|
||
|
Axes-relative coordinates.
|
||
|
|
||
|
projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \
|
||
|
'polar', 'rectilinear', str}, optional
|
||
|
The projection type of the inset `~.axes.Axes`. *str* is the name
|
||
|
of a custom projection, see `~matplotlib.projections`. The default
|
||
|
None results in a 'rectilinear' projection.
|
||
|
|
||
|
polar : bool, default: False
|
||
|
If True, equivalent to projection='polar'.
|
||
|
|
||
|
axes_class : subclass type of `~.axes.Axes`, optional
|
||
|
The `.axes.Axes` subclass that is instantiated. This parameter
|
||
|
is incompatible with *projection* and *polar*. See
|
||
|
:ref:`axisartist_users-guide-index` for examples.
|
||
|
|
||
|
zorder : number
|
||
|
Defaults to 5 (same as `.Axes.legend`). Adjust higher or lower
|
||
|
to change whether it is above or below data plotted on the
|
||
|
parent Axes.
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are passed on to the inset Axes class.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ax
|
||
|
The created `~.axes.Axes` instance.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This example makes two inset Axes, the first is in Axes-relative
|
||
|
coordinates, and the second in data-coordinates::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(range(10))
|
||
|
axin1 = ax.inset_axes([0.8, 0.1, 0.15, 0.15])
|
||
|
axin2 = ax.inset_axes(
|
||
|
[5, 7, 2.3, 2.3], transform=ax.transData)
|
||
|
|
||
|
"""
|
||
|
if transform is None:
|
||
|
transform = self.transAxes
|
||
|
kwargs.setdefault('label', 'inset_axes')
|
||
|
|
||
|
# This puts the rectangle into figure-relative coordinates.
|
||
|
inset_locator = _TransformedBoundsLocator(bounds, transform)
|
||
|
bounds = inset_locator(self, None).bounds
|
||
|
projection_class, pkw = self.figure._process_projection_requirements(**kwargs)
|
||
|
inset_ax = projection_class(self.figure, bounds, zorder=zorder, **pkw)
|
||
|
|
||
|
# this locator lets the axes move if in data coordinates.
|
||
|
# it gets called in `ax.apply_aspect() (of all places)
|
||
|
inset_ax.set_axes_locator(inset_locator)
|
||
|
|
||
|
self.add_child_axes(inset_ax)
|
||
|
|
||
|
return inset_ax
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def indicate_inset(self, bounds, inset_ax=None, *, transform=None,
|
||
|
facecolor='none', edgecolor='0.5', alpha=0.5,
|
||
|
zorder=4.99, **kwargs):
|
||
|
"""
|
||
|
Add an inset indicator to the Axes. This is a rectangle on the plot
|
||
|
at the position indicated by *bounds* that optionally has lines that
|
||
|
connect the rectangle to an inset Axes (`.Axes.inset_axes`).
|
||
|
|
||
|
Warnings
|
||
|
--------
|
||
|
This method is experimental as of 3.0, and the API may change.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bounds : [x0, y0, width, height]
|
||
|
Lower-left corner of rectangle to be marked, and its width
|
||
|
and height.
|
||
|
|
||
|
inset_ax : `.Axes`
|
||
|
An optional inset Axes to draw connecting lines to. Two lines are
|
||
|
drawn connecting the indicator box to the inset Axes on corners
|
||
|
chosen so as to not overlap with the indicator box.
|
||
|
|
||
|
transform : `.Transform`
|
||
|
Transform for the rectangle coordinates. Defaults to
|
||
|
`ax.transAxes`, i.e. the units of *rect* are in Axes-relative
|
||
|
coordinates.
|
||
|
|
||
|
facecolor : :mpltype:`color`, default: 'none'
|
||
|
Facecolor of the rectangle.
|
||
|
|
||
|
edgecolor : :mpltype:`color`, default: '0.5'
|
||
|
Color of the rectangle and color of the connecting lines.
|
||
|
|
||
|
alpha : float, default: 0.5
|
||
|
Transparency of the rectangle and connector lines.
|
||
|
|
||
|
zorder : float, default: 4.99
|
||
|
Drawing order of the rectangle and connector lines. The default,
|
||
|
4.99, is just below the default level of inset Axes.
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are passed on to the `.Rectangle` patch:
|
||
|
|
||
|
%(Rectangle:kwdoc)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rectangle_patch : `.patches.Rectangle`
|
||
|
The indicator frame.
|
||
|
|
||
|
connector_lines : 4-tuple of `.patches.ConnectionPatch`
|
||
|
The four connector lines connecting to (lower_left, upper_left,
|
||
|
lower_right upper_right) corners of *inset_ax*. Two lines are
|
||
|
set with visibility to *False*, but the user can set the
|
||
|
visibility to True if the automatic choice is not deemed correct.
|
||
|
|
||
|
"""
|
||
|
# to make the Axes connectors work, we need to apply the aspect to
|
||
|
# the parent Axes.
|
||
|
self.apply_aspect()
|
||
|
|
||
|
if transform is None:
|
||
|
transform = self.transData
|
||
|
kwargs.setdefault('label', '_indicate_inset')
|
||
|
|
||
|
x, y, width, height = bounds
|
||
|
rectangle_patch = mpatches.Rectangle(
|
||
|
(x, y), width, height,
|
||
|
facecolor=facecolor, edgecolor=edgecolor, alpha=alpha,
|
||
|
zorder=zorder, transform=transform, **kwargs)
|
||
|
self.add_patch(rectangle_patch)
|
||
|
|
||
|
connects = []
|
||
|
|
||
|
if inset_ax is not None:
|
||
|
# connect the inset_axes to the rectangle
|
||
|
for xy_inset_ax in [(0, 0), (0, 1), (1, 0), (1, 1)]:
|
||
|
# inset_ax positions are in axes coordinates
|
||
|
# The 0, 1 values define the four edges if the inset_ax
|
||
|
# lower_left, upper_left, lower_right upper_right.
|
||
|
ex, ey = xy_inset_ax
|
||
|
if self.xaxis.get_inverted():
|
||
|
ex = 1 - ex
|
||
|
if self.yaxis.get_inverted():
|
||
|
ey = 1 - ey
|
||
|
xy_data = x + ex * width, y + ey * height
|
||
|
p = mpatches.ConnectionPatch(
|
||
|
xyA=xy_inset_ax, coordsA=inset_ax.transAxes,
|
||
|
xyB=xy_data, coordsB=self.transData,
|
||
|
arrowstyle="-", zorder=zorder,
|
||
|
edgecolor=edgecolor, alpha=alpha)
|
||
|
connects.append(p)
|
||
|
self.add_patch(p)
|
||
|
|
||
|
# decide which two of the lines to keep visible....
|
||
|
pos = inset_ax.get_position()
|
||
|
bboxins = pos.transformed(self.figure.transSubfigure)
|
||
|
rectbbox = mtransforms.Bbox.from_bounds(
|
||
|
*bounds
|
||
|
).transformed(transform)
|
||
|
x0 = rectbbox.x0 < bboxins.x0
|
||
|
x1 = rectbbox.x1 < bboxins.x1
|
||
|
y0 = rectbbox.y0 < bboxins.y0
|
||
|
y1 = rectbbox.y1 < bboxins.y1
|
||
|
connects[0].set_visible(x0 ^ y0)
|
||
|
connects[1].set_visible(x0 == y1)
|
||
|
connects[2].set_visible(x1 == y0)
|
||
|
connects[3].set_visible(x1 ^ y1)
|
||
|
|
||
|
return rectangle_patch, tuple(connects) if connects else None
|
||
|
|
||
|
def indicate_inset_zoom(self, inset_ax, **kwargs):
|
||
|
"""
|
||
|
Add an inset indicator rectangle to the Axes based on the axis
|
||
|
limits for an *inset_ax* and draw connectors between *inset_ax*
|
||
|
and the rectangle.
|
||
|
|
||
|
Warnings
|
||
|
--------
|
||
|
This method is experimental as of 3.0, and the API may change.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
inset_ax : `.Axes`
|
||
|
Inset Axes to draw connecting lines to. Two lines are
|
||
|
drawn connecting the indicator box to the inset Axes on corners
|
||
|
chosen so as to not overlap with the indicator box.
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are passed on to `.Axes.indicate_inset`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rectangle_patch : `.patches.Rectangle`
|
||
|
Rectangle artist.
|
||
|
|
||
|
connector_lines : 4-tuple of `.patches.ConnectionPatch`
|
||
|
Each of four connector lines coming from the rectangle drawn on
|
||
|
this axis, in the order lower left, upper left, lower right,
|
||
|
upper right.
|
||
|
Two are set with visibility to *False*, but the user can
|
||
|
set the visibility to *True* if the automatic choice is not deemed
|
||
|
correct.
|
||
|
"""
|
||
|
|
||
|
xlim = inset_ax.get_xlim()
|
||
|
ylim = inset_ax.get_ylim()
|
||
|
rect = (xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0])
|
||
|
return self.indicate_inset(rect, inset_ax, **kwargs)
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def secondary_xaxis(self, location, *, functions=None, transform=None, **kwargs):
|
||
|
"""
|
||
|
Add a second x-axis to this `~.axes.Axes`.
|
||
|
|
||
|
For example if we want to have a second scale for the data plotted on
|
||
|
the xaxis.
|
||
|
|
||
|
%(_secax_docstring)s
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The main axis shows frequency, and the secondary axis shows period.
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.loglog(range(1, 360, 5), range(1, 360, 5))
|
||
|
ax.set_xlabel('frequency [Hz]')
|
||
|
|
||
|
def invert(x):
|
||
|
# 1/x with special treatment of x == 0
|
||
|
x = np.array(x).astype(float)
|
||
|
near_zero = np.isclose(x, 0)
|
||
|
x[near_zero] = np.inf
|
||
|
x[~near_zero] = 1 / x[~near_zero]
|
||
|
return x
|
||
|
|
||
|
# the inverse of 1/x is itself
|
||
|
secax = ax.secondary_xaxis('top', functions=(invert, invert))
|
||
|
secax.set_xlabel('Period [s]')
|
||
|
plt.show()
|
||
|
|
||
|
To add a secondary axis relative to your data, you can pass a transform
|
||
|
to the new axis.
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(range(0, 5), range(-1, 4))
|
||
|
|
||
|
# Pass 'ax.transData' as a transform to place the axis
|
||
|
# relative to your data at y=0
|
||
|
secax = ax.secondary_xaxis(0, transform=ax.transData)
|
||
|
"""
|
||
|
if not (location in ['top', 'bottom'] or isinstance(location, Real)):
|
||
|
raise ValueError('secondary_xaxis location must be either '
|
||
|
'a float or "top"/"bottom"')
|
||
|
|
||
|
secondary_ax = SecondaryAxis(self, 'x', location, functions,
|
||
|
transform, **kwargs)
|
||
|
self.add_child_axes(secondary_ax)
|
||
|
return secondary_ax
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def secondary_yaxis(self, location, *, functions=None, transform=None, **kwargs):
|
||
|
"""
|
||
|
Add a second y-axis to this `~.axes.Axes`.
|
||
|
|
||
|
For example if we want to have a second scale for the data plotted on
|
||
|
the yaxis.
|
||
|
|
||
|
%(_secax_docstring)s
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Add a secondary Axes that converts from radians to degrees
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(range(1, 360, 5), range(1, 360, 5))
|
||
|
ax.set_ylabel('degrees')
|
||
|
secax = ax.secondary_yaxis('right', functions=(np.deg2rad,
|
||
|
np.rad2deg))
|
||
|
secax.set_ylabel('radians')
|
||
|
|
||
|
To add a secondary axis relative to your data, you can pass a transform
|
||
|
to the new axis.
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(range(0, 5), range(-1, 4))
|
||
|
|
||
|
# Pass 'ax.transData' as a transform to place the axis
|
||
|
# relative to your data at x=3
|
||
|
secax = ax.secondary_yaxis(3, transform=ax.transData)
|
||
|
"""
|
||
|
if not (location in ['left', 'right'] or isinstance(location, Real)):
|
||
|
raise ValueError('secondary_yaxis location must be either '
|
||
|
'a float or "left"/"right"')
|
||
|
|
||
|
secondary_ax = SecondaryAxis(self, 'y', location, functions,
|
||
|
transform, **kwargs)
|
||
|
self.add_child_axes(secondary_ax)
|
||
|
return secondary_ax
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def text(self, x, y, s, fontdict=None, **kwargs):
|
||
|
"""
|
||
|
Add text to the Axes.
|
||
|
|
||
|
Add the text *s* to the Axes at location *x*, *y* in data coordinates,
|
||
|
with a default ``horizontalalignment`` on the ``left`` and
|
||
|
``verticalalignment`` at the ``baseline``. See
|
||
|
:doc:`/gallery/text_labels_and_annotations/text_alignment`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : float
|
||
|
The position to place the text. By default, this is in data
|
||
|
coordinates. The coordinate system can be changed using the
|
||
|
*transform* parameter.
|
||
|
|
||
|
s : str
|
||
|
The text.
|
||
|
|
||
|
fontdict : dict, default: None
|
||
|
|
||
|
.. admonition:: Discouraged
|
||
|
|
||
|
The use of *fontdict* is discouraged. Parameters should be passed as
|
||
|
individual keyword arguments or using dictionary-unpacking
|
||
|
``text(..., **fontdict)``.
|
||
|
|
||
|
A dictionary to override the default text properties. If fontdict
|
||
|
is None, the defaults are determined by `.rcParams`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.Text`
|
||
|
The created `.Text` instance.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.text.Text` properties.
|
||
|
Other miscellaneous text parameters.
|
||
|
|
||
|
%(Text:kwdoc)s
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Individual keyword arguments can be used to override any given
|
||
|
parameter::
|
||
|
|
||
|
>>> text(x, y, s, fontsize=12)
|
||
|
|
||
|
The default transform specifies that text is in data coords,
|
||
|
alternatively, you can specify text in axis coords ((0, 0) is
|
||
|
lower-left and (1, 1) is upper-right). The example below places
|
||
|
text in the center of the Axes::
|
||
|
|
||
|
>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
|
||
|
... verticalalignment='center', transform=ax.transAxes)
|
||
|
|
||
|
You can put a rectangular box around the text instance (e.g., to
|
||
|
set a background color) by using the keyword *bbox*. *bbox* is
|
||
|
a dictionary of `~matplotlib.patches.Rectangle`
|
||
|
properties. For example::
|
||
|
|
||
|
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
|
||
|
"""
|
||
|
effective_kwargs = {
|
||
|
'verticalalignment': 'baseline',
|
||
|
'horizontalalignment': 'left',
|
||
|
'transform': self.transData,
|
||
|
'clip_on': False,
|
||
|
**(fontdict if fontdict is not None else {}),
|
||
|
**kwargs,
|
||
|
}
|
||
|
t = mtext.Text(x, y, text=s, **effective_kwargs)
|
||
|
if t.get_clip_path() is None:
|
||
|
t.set_clip_path(self.patch)
|
||
|
self._add_text(t)
|
||
|
return t
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def annotate(self, text, xy, xytext=None, xycoords='data', textcoords=None,
|
||
|
arrowprops=None, annotation_clip=None, **kwargs):
|
||
|
# Signature must match Annotation. This is verified in
|
||
|
# test_annotate_signature().
|
||
|
a = mtext.Annotation(text, xy, xytext=xytext, xycoords=xycoords,
|
||
|
textcoords=textcoords, arrowprops=arrowprops,
|
||
|
annotation_clip=annotation_clip, **kwargs)
|
||
|
a.set_transform(mtransforms.IdentityTransform())
|
||
|
if kwargs.get('clip_on', False) and a.get_clip_path() is None:
|
||
|
a.set_clip_path(self.patch)
|
||
|
self._add_text(a)
|
||
|
return a
|
||
|
annotate.__doc__ = mtext.Annotation.__init__.__doc__
|
||
|
#### Lines and spans
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
|
||
|
"""
|
||
|
Add a horizontal line across the Axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : float, default: 0
|
||
|
y position in data coordinates of the horizontal line.
|
||
|
|
||
|
xmin : float, default: 0
|
||
|
Should be between 0 and 1, 0 being the far left of the plot, 1 the
|
||
|
far right of the plot.
|
||
|
|
||
|
xmax : float, default: 1
|
||
|
Should be between 0 and 1, 0 being the far left of the plot, 1 the
|
||
|
far right of the plot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.lines.Line2D`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Valid keyword arguments are `.Line2D` properties, except for
|
||
|
'transform':
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hlines : Add horizontal lines in data coordinates.
|
||
|
axhspan : Add a horizontal span (rectangle) across the axis.
|
||
|
axline : Add a line with an arbitrary slope.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
* draw a thick red hline at 'y' = 0 that spans the xrange::
|
||
|
|
||
|
>>> axhline(linewidth=4, color='r')
|
||
|
|
||
|
* draw a default hline at 'y' = 1 that spans the xrange::
|
||
|
|
||
|
>>> axhline(y=1)
|
||
|
|
||
|
* draw a default hline at 'y' = .5 that spans the middle half of
|
||
|
the xrange::
|
||
|
|
||
|
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
|
||
|
"""
|
||
|
self._check_no_units([xmin, xmax], ['xmin', 'xmax'])
|
||
|
if "transform" in kwargs:
|
||
|
raise ValueError("'transform' is not allowed as a keyword "
|
||
|
"argument; axhline generates its own transform.")
|
||
|
ymin, ymax = self.get_ybound()
|
||
|
|
||
|
# Strip away the units for comparison with non-unitized bounds.
|
||
|
yy, = self._process_unit_info([("y", y)], kwargs)
|
||
|
scaley = (yy < ymin) or (yy > ymax)
|
||
|
|
||
|
trans = self.get_yaxis_transform(which='grid')
|
||
|
l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
|
||
|
self.add_line(l)
|
||
|
l.get_path()._interpolation_steps = mpl.axis.GRIDLINE_INTERPOLATION_STEPS
|
||
|
if scaley:
|
||
|
self._request_autoscale_view("y")
|
||
|
return l
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
|
||
|
"""
|
||
|
Add a vertical line across the Axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : float, default: 0
|
||
|
x position in data coordinates of the vertical line.
|
||
|
|
||
|
ymin : float, default: 0
|
||
|
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
|
||
|
top of the plot.
|
||
|
|
||
|
ymax : float, default: 1
|
||
|
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
|
||
|
top of the plot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.lines.Line2D`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Valid keyword arguments are `.Line2D` properties, except for
|
||
|
'transform':
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
vlines : Add vertical lines in data coordinates.
|
||
|
axvspan : Add a vertical span (rectangle) across the axis.
|
||
|
axline : Add a line with an arbitrary slope.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
* draw a thick red vline at *x* = 0 that spans the yrange::
|
||
|
|
||
|
>>> axvline(linewidth=4, color='r')
|
||
|
|
||
|
* draw a default vline at *x* = 1 that spans the yrange::
|
||
|
|
||
|
>>> axvline(x=1)
|
||
|
|
||
|
* draw a default vline at *x* = .5 that spans the middle half of
|
||
|
the yrange::
|
||
|
|
||
|
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
|
||
|
"""
|
||
|
self._check_no_units([ymin, ymax], ['ymin', 'ymax'])
|
||
|
if "transform" in kwargs:
|
||
|
raise ValueError("'transform' is not allowed as a keyword "
|
||
|
"argument; axvline generates its own transform.")
|
||
|
xmin, xmax = self.get_xbound()
|
||
|
|
||
|
# Strip away the units for comparison with non-unitized bounds.
|
||
|
xx, = self._process_unit_info([("x", x)], kwargs)
|
||
|
scalex = (xx < xmin) or (xx > xmax)
|
||
|
|
||
|
trans = self.get_xaxis_transform(which='grid')
|
||
|
l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
|
||
|
self.add_line(l)
|
||
|
l.get_path()._interpolation_steps = mpl.axis.GRIDLINE_INTERPOLATION_STEPS
|
||
|
if scalex:
|
||
|
self._request_autoscale_view("x")
|
||
|
return l
|
||
|
|
||
|
@staticmethod
|
||
|
def _check_no_units(vals, names):
|
||
|
# Helper method to check that vals are not unitized
|
||
|
for val, name in zip(vals, names):
|
||
|
if not munits._is_natively_supported(val):
|
||
|
raise ValueError(f"{name} must be a single scalar value, "
|
||
|
f"but got {val}")
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def axline(self, xy1, xy2=None, *, slope=None, **kwargs):
|
||
|
"""
|
||
|
Add an infinitely long straight line.
|
||
|
|
||
|
The line can be defined either by two points *xy1* and *xy2*, or
|
||
|
by one point *xy1* and a *slope*.
|
||
|
|
||
|
This draws a straight line "on the screen", regardless of the x and y
|
||
|
scales, and is thus also suitable for drawing exponential decays in
|
||
|
semilog plots, power laws in loglog plots, etc. However, *slope*
|
||
|
should only be used with linear scales; It has no clear meaning for
|
||
|
all other scales, and thus the behavior is undefined. Please specify
|
||
|
the line using the points *xy1*, *xy2* for non-linear scales.
|
||
|
|
||
|
The *transform* keyword argument only applies to the points *xy1*,
|
||
|
*xy2*. The *slope* (if given) is always in data coordinates. This can
|
||
|
be used e.g. with ``ax.transAxes`` for drawing grid lines with a fixed
|
||
|
slope.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xy1, xy2 : (float, float)
|
||
|
Points for the line to pass through.
|
||
|
Either *xy2* or *slope* has to be given.
|
||
|
slope : float, optional
|
||
|
The slope of the line. Either *xy2* or *slope* has to be given.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.AxLine`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
Valid kwargs are `.Line2D` properties
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
axhline : for horizontal lines
|
||
|
axvline : for vertical lines
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Draw a thick red line passing through (0, 0) and (1, 1)::
|
||
|
|
||
|
>>> axline((0, 0), (1, 1), linewidth=4, color='r')
|
||
|
"""
|
||
|
if slope is not None and (self.get_xscale() != 'linear' or
|
||
|
self.get_yscale() != 'linear'):
|
||
|
raise TypeError("'slope' cannot be used with non-linear scales")
|
||
|
|
||
|
datalim = [xy1] if xy2 is None else [xy1, xy2]
|
||
|
if "transform" in kwargs:
|
||
|
# if a transform is passed (i.e. line points not in data space),
|
||
|
# data limits should not be adjusted.
|
||
|
datalim = []
|
||
|
|
||
|
line = mlines.AxLine(xy1, xy2, slope, **kwargs)
|
||
|
# Like add_line, but correctly handling data limits.
|
||
|
self._set_artist_props(line)
|
||
|
if line.get_clip_path() is None:
|
||
|
line.set_clip_path(self.patch)
|
||
|
if not line.get_label():
|
||
|
line.set_label(f"_child{len(self._children)}")
|
||
|
self._children.append(line)
|
||
|
line._remove_method = self._children.remove
|
||
|
self.update_datalim(datalim)
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
return line
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
|
||
|
"""
|
||
|
Add a horizontal span (rectangle) across the Axes.
|
||
|
|
||
|
The rectangle spans from *ymin* to *ymax* vertically, and, by default,
|
||
|
the whole x-axis horizontally. The x-span can be set using *xmin*
|
||
|
(default: 0) and *xmax* (default: 1) which are in axis units; e.g.
|
||
|
``xmin = 0.5`` always refers to the middle of the x-axis regardless of
|
||
|
the limits set by `~.Axes.set_xlim`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ymin : float
|
||
|
Lower y-coordinate of the span, in data units.
|
||
|
ymax : float
|
||
|
Upper y-coordinate of the span, in data units.
|
||
|
xmin : float, default: 0
|
||
|
Lower x-coordinate of the span, in x-axis (0-1) units.
|
||
|
xmax : float, default: 1
|
||
|
Upper x-coordinate of the span, in x-axis (0-1) units.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.patches.Polygon`
|
||
|
Horizontal span (rectangle) from (xmin, ymin) to (xmax, ymax).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.patches.Polygon` properties
|
||
|
|
||
|
%(Polygon:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
axvspan : Add a vertical span across the Axes.
|
||
|
"""
|
||
|
# Strip units away.
|
||
|
self._check_no_units([xmin, xmax], ['xmin', 'xmax'])
|
||
|
(ymin, ymax), = self._process_unit_info([("y", [ymin, ymax])], kwargs)
|
||
|
|
||
|
p = mpatches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, **kwargs)
|
||
|
p.set_transform(self.get_yaxis_transform(which="grid"))
|
||
|
# For Rectangles and non-separable transforms, add_patch can be buggy
|
||
|
# and update the x limits even though it shouldn't do so for an
|
||
|
# yaxis_transformed patch, so undo that update.
|
||
|
ix = self.dataLim.intervalx
|
||
|
mx = self.dataLim.minposx
|
||
|
self.add_patch(p)
|
||
|
self.dataLim.intervalx = ix
|
||
|
self.dataLim.minposx = mx
|
||
|
p.get_path()._interpolation_steps = mpl.axis.GRIDLINE_INTERPOLATION_STEPS
|
||
|
self._request_autoscale_view("y")
|
||
|
return p
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
|
||
|
"""
|
||
|
Add a vertical span (rectangle) across the Axes.
|
||
|
|
||
|
The rectangle spans from *xmin* to *xmax* horizontally, and, by
|
||
|
default, the whole y-axis vertically. The y-span can be set using
|
||
|
*ymin* (default: 0) and *ymax* (default: 1) which are in axis units;
|
||
|
e.g. ``ymin = 0.5`` always refers to the middle of the y-axis
|
||
|
regardless of the limits set by `~.Axes.set_ylim`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xmin : float
|
||
|
Lower x-coordinate of the span, in data units.
|
||
|
xmax : float
|
||
|
Upper x-coordinate of the span, in data units.
|
||
|
ymin : float, default: 0
|
||
|
Lower y-coordinate of the span, in y-axis units (0-1).
|
||
|
ymax : float, default: 1
|
||
|
Upper y-coordinate of the span, in y-axis units (0-1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.patches.Polygon`
|
||
|
Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.patches.Polygon` properties
|
||
|
|
||
|
%(Polygon:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
axhspan : Add a horizontal span across the Axes.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Draw a vertical, green, translucent rectangle from x = 1.25 to
|
||
|
x = 1.55 that spans the yrange of the Axes.
|
||
|
|
||
|
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
|
||
|
|
||
|
"""
|
||
|
# Strip units away.
|
||
|
self._check_no_units([ymin, ymax], ['ymin', 'ymax'])
|
||
|
(xmin, xmax), = self._process_unit_info([("x", [xmin, xmax])], kwargs)
|
||
|
|
||
|
p = mpatches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, **kwargs)
|
||
|
p.set_transform(self.get_xaxis_transform(which="grid"))
|
||
|
# For Rectangles and non-separable transforms, add_patch can be buggy
|
||
|
# and update the y limits even though it shouldn't do so for an
|
||
|
# xaxis_transformed patch, so undo that update.
|
||
|
iy = self.dataLim.intervaly.copy()
|
||
|
my = self.dataLim.minposy
|
||
|
self.add_patch(p)
|
||
|
self.dataLim.intervaly = iy
|
||
|
self.dataLim.minposy = my
|
||
|
p.get_path()._interpolation_steps = mpl.axis.GRIDLINE_INTERPOLATION_STEPS
|
||
|
self._request_autoscale_view("x")
|
||
|
return p
|
||
|
|
||
|
@_preprocess_data(replace_names=["y", "xmin", "xmax", "colors"],
|
||
|
label_namer="y")
|
||
|
def hlines(self, y, xmin, xmax, colors=None, linestyles='solid',
|
||
|
label='', **kwargs):
|
||
|
"""
|
||
|
Plot horizontal lines at each *y* from *xmin* to *xmax*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : float or array-like
|
||
|
y-indexes where to plot the lines.
|
||
|
|
||
|
xmin, xmax : float or array-like
|
||
|
Respective beginning and end of each line. If scalars are
|
||
|
provided, all lines will have the same length.
|
||
|
|
||
|
colors : :mpltype:`color` or list of color , default: :rc:`lines.color`
|
||
|
|
||
|
linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, default: 'solid'
|
||
|
|
||
|
label : str, default: ''
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.collections.LineCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
**kwargs : `~matplotlib.collections.LineCollection` properties.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
vlines : vertical lines
|
||
|
axhline : horizontal line across the Axes
|
||
|
"""
|
||
|
|
||
|
# We do the conversion first since not all unitized data is uniform
|
||
|
xmin, xmax, y = self._process_unit_info(
|
||
|
[("x", xmin), ("x", xmax), ("y", y)], kwargs)
|
||
|
|
||
|
if not np.iterable(y):
|
||
|
y = [y]
|
||
|
if not np.iterable(xmin):
|
||
|
xmin = [xmin]
|
||
|
if not np.iterable(xmax):
|
||
|
xmax = [xmax]
|
||
|
|
||
|
# Create and combine masked_arrays from input
|
||
|
y, xmin, xmax = cbook._combine_masks(y, xmin, xmax)
|
||
|
y = np.ravel(y)
|
||
|
xmin = np.ravel(xmin)
|
||
|
xmax = np.ravel(xmax)
|
||
|
|
||
|
masked_verts = np.ma.empty((len(y), 2, 2))
|
||
|
masked_verts[:, 0, 0] = xmin
|
||
|
masked_verts[:, 0, 1] = y
|
||
|
masked_verts[:, 1, 0] = xmax
|
||
|
masked_verts[:, 1, 1] = y
|
||
|
|
||
|
lines = mcoll.LineCollection(masked_verts, colors=colors,
|
||
|
linestyles=linestyles, label=label)
|
||
|
self.add_collection(lines, autolim=False)
|
||
|
lines._internal_update(kwargs)
|
||
|
|
||
|
if len(y) > 0:
|
||
|
# Extreme values of xmin/xmax/y. Using masked_verts here handles
|
||
|
# the case of y being a masked *object* array (as can be generated
|
||
|
# e.g. by errorbar()), which would make nanmin/nanmax stumble.
|
||
|
updatex = True
|
||
|
updatey = True
|
||
|
if self.name == "rectilinear":
|
||
|
datalim = lines.get_datalim(self.transData)
|
||
|
t = lines.get_transform()
|
||
|
updatex, updatey = t.contains_branch_seperately(self.transData)
|
||
|
minx = np.nanmin(datalim.xmin)
|
||
|
maxx = np.nanmax(datalim.xmax)
|
||
|
miny = np.nanmin(datalim.ymin)
|
||
|
maxy = np.nanmax(datalim.ymax)
|
||
|
else:
|
||
|
minx = np.nanmin(masked_verts[..., 0])
|
||
|
maxx = np.nanmax(masked_verts[..., 0])
|
||
|
miny = np.nanmin(masked_verts[..., 1])
|
||
|
maxy = np.nanmax(masked_verts[..., 1])
|
||
|
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners, updatex, updatey)
|
||
|
self._request_autoscale_view()
|
||
|
return lines
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "ymin", "ymax", "colors"],
|
||
|
label_namer="x")
|
||
|
def vlines(self, x, ymin, ymax, colors=None, linestyles='solid',
|
||
|
label='', **kwargs):
|
||
|
"""
|
||
|
Plot vertical lines at each *x* from *ymin* to *ymax*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : float or array-like
|
||
|
x-indexes where to plot the lines.
|
||
|
|
||
|
ymin, ymax : float or array-like
|
||
|
Respective beginning and end of each line. If scalars are
|
||
|
provided, all lines will have the same length.
|
||
|
|
||
|
colors : :mpltype:`color` or list of color, default: :rc:`lines.color`
|
||
|
|
||
|
linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, default: 'solid'
|
||
|
|
||
|
label : str, default: ''
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.collections.LineCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
**kwargs : `~matplotlib.collections.LineCollection` properties.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hlines : horizontal lines
|
||
|
axvline : vertical line across the Axes
|
||
|
"""
|
||
|
|
||
|
# We do the conversion first since not all unitized data is uniform
|
||
|
x, ymin, ymax = self._process_unit_info(
|
||
|
[("x", x), ("y", ymin), ("y", ymax)], kwargs)
|
||
|
|
||
|
if not np.iterable(x):
|
||
|
x = [x]
|
||
|
if not np.iterable(ymin):
|
||
|
ymin = [ymin]
|
||
|
if not np.iterable(ymax):
|
||
|
ymax = [ymax]
|
||
|
|
||
|
# Create and combine masked_arrays from input
|
||
|
x, ymin, ymax = cbook._combine_masks(x, ymin, ymax)
|
||
|
x = np.ravel(x)
|
||
|
ymin = np.ravel(ymin)
|
||
|
ymax = np.ravel(ymax)
|
||
|
|
||
|
masked_verts = np.ma.empty((len(x), 2, 2))
|
||
|
masked_verts[:, 0, 0] = x
|
||
|
masked_verts[:, 0, 1] = ymin
|
||
|
masked_verts[:, 1, 0] = x
|
||
|
masked_verts[:, 1, 1] = ymax
|
||
|
|
||
|
lines = mcoll.LineCollection(masked_verts, colors=colors,
|
||
|
linestyles=linestyles, label=label)
|
||
|
self.add_collection(lines, autolim=False)
|
||
|
lines._internal_update(kwargs)
|
||
|
|
||
|
if len(x) > 0:
|
||
|
# Extreme values of x/ymin/ymax. Using masked_verts here handles
|
||
|
# the case of x being a masked *object* array (as can be generated
|
||
|
# e.g. by errorbar()), which would make nanmin/nanmax stumble.
|
||
|
updatex = True
|
||
|
updatey = True
|
||
|
if self.name == "rectilinear":
|
||
|
datalim = lines.get_datalim(self.transData)
|
||
|
t = lines.get_transform()
|
||
|
updatex, updatey = t.contains_branch_seperately(self.transData)
|
||
|
minx = np.nanmin(datalim.xmin)
|
||
|
maxx = np.nanmax(datalim.xmax)
|
||
|
miny = np.nanmin(datalim.ymin)
|
||
|
maxy = np.nanmax(datalim.ymax)
|
||
|
else:
|
||
|
minx = np.nanmin(masked_verts[..., 0])
|
||
|
maxx = np.nanmax(masked_verts[..., 0])
|
||
|
miny = np.nanmin(masked_verts[..., 1])
|
||
|
maxy = np.nanmax(masked_verts[..., 1])
|
||
|
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners, updatex, updatey)
|
||
|
self._request_autoscale_view()
|
||
|
return lines
|
||
|
|
||
|
@_preprocess_data(replace_names=["positions", "lineoffsets",
|
||
|
"linelengths", "linewidths",
|
||
|
"colors", "linestyles"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
|
||
|
linelengths=1, linewidths=None, colors=None, alpha=None,
|
||
|
linestyles='solid', **kwargs):
|
||
|
"""
|
||
|
Plot identical parallel lines at the given positions.
|
||
|
|
||
|
This type of plot is commonly used in neuroscience for representing
|
||
|
neural events, where it is usually called a spike raster, dot raster,
|
||
|
or raster plot.
|
||
|
|
||
|
However, it is useful in any situation where you wish to show the
|
||
|
timing or position of multiple sets of discrete events, such as the
|
||
|
arrival times of people to a business on each day of the month or the
|
||
|
date of hurricanes each year of the last century.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
positions : array-like or list of array-like
|
||
|
A 1D array-like defines the positions of one sequence of events.
|
||
|
|
||
|
Multiple groups of events may be passed as a list of array-likes.
|
||
|
Each group can be styled independently by passing lists of values
|
||
|
to *lineoffsets*, *linelengths*, *linewidths*, *colors* and
|
||
|
*linestyles*.
|
||
|
|
||
|
Note that *positions* can be a 2D array, but in practice different
|
||
|
event groups usually have different counts so that one will use a
|
||
|
list of different-length arrays rather than a 2D array.
|
||
|
|
||
|
orientation : {'horizontal', 'vertical'}, default: 'horizontal'
|
||
|
The direction of the event sequence:
|
||
|
|
||
|
- 'horizontal': the events are arranged horizontally.
|
||
|
The indicator lines are vertical.
|
||
|
- 'vertical': the events are arranged vertically.
|
||
|
The indicator lines are horizontal.
|
||
|
|
||
|
lineoffsets : float or array-like, default: 1
|
||
|
The offset of the center of the lines from the origin, in the
|
||
|
direction orthogonal to *orientation*.
|
||
|
|
||
|
If *positions* is 2D, this can be a sequence with length matching
|
||
|
the length of *positions*.
|
||
|
|
||
|
linelengths : float or array-like, default: 1
|
||
|
The total height of the lines (i.e. the lines stretches from
|
||
|
``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).
|
||
|
|
||
|
If *positions* is 2D, this can be a sequence with length matching
|
||
|
the length of *positions*.
|
||
|
|
||
|
linewidths : float or array-like, default: :rc:`lines.linewidth`
|
||
|
The line width(s) of the event lines, in points.
|
||
|
|
||
|
If *positions* is 2D, this can be a sequence with length matching
|
||
|
the length of *positions*.
|
||
|
|
||
|
colors : :mpltype:`color` or list of color, default: :rc:`lines.color`
|
||
|
The color(s) of the event lines.
|
||
|
|
||
|
If *positions* is 2D, this can be a sequence with length matching
|
||
|
the length of *positions*.
|
||
|
|
||
|
alpha : float or array-like, default: 1
|
||
|
The alpha blending value(s), between 0 (transparent) and 1
|
||
|
(opaque).
|
||
|
|
||
|
If *positions* is 2D, this can be a sequence with length matching
|
||
|
the length of *positions*.
|
||
|
|
||
|
linestyles : str or tuple or list of such values, default: 'solid'
|
||
|
Default is 'solid'. Valid strings are ['solid', 'dashed',
|
||
|
'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
|
||
|
should be of the form::
|
||
|
|
||
|
(offset, onoffseq),
|
||
|
|
||
|
where *onoffseq* is an even length tuple of on and off ink
|
||
|
in points.
|
||
|
|
||
|
If *positions* is 2D, this can be a sequence with length matching
|
||
|
the length of *positions*.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Other keyword arguments are line collection properties. See
|
||
|
`.LineCollection` for a list of the valid properties.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.EventCollection`
|
||
|
The `.EventCollection` that were added.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For *linelengths*, *linewidths*, *colors*, *alpha* and *linestyles*, if
|
||
|
only a single value is given, that value is applied to all lines. If an
|
||
|
array-like is given, it must have the same length as *positions*, and
|
||
|
each value will be applied to the corresponding row of the array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
.. plot:: gallery/lines_bars_and_markers/eventplot_demo.py
|
||
|
"""
|
||
|
|
||
|
lineoffsets, linelengths = self._process_unit_info(
|
||
|
[("y", lineoffsets), ("y", linelengths)], kwargs)
|
||
|
|
||
|
# fix positions, noting that it can be a list of lists:
|
||
|
if not np.iterable(positions):
|
||
|
positions = [positions]
|
||
|
elif any(np.iterable(position) for position in positions):
|
||
|
positions = [np.asanyarray(position) for position in positions]
|
||
|
else:
|
||
|
positions = [np.asanyarray(positions)]
|
||
|
|
||
|
poss = []
|
||
|
for position in positions:
|
||
|
poss += self._process_unit_info([("x", position)], kwargs)
|
||
|
positions = poss
|
||
|
|
||
|
# prevent 'singular' keys from **kwargs dict from overriding the effect
|
||
|
# of 'plural' keyword arguments (e.g. 'color' overriding 'colors')
|
||
|
colors = cbook._local_over_kwdict(colors, kwargs, 'color')
|
||
|
linewidths = cbook._local_over_kwdict(linewidths, kwargs, 'linewidth')
|
||
|
linestyles = cbook._local_over_kwdict(linestyles, kwargs, 'linestyle')
|
||
|
|
||
|
if not np.iterable(lineoffsets):
|
||
|
lineoffsets = [lineoffsets]
|
||
|
if not np.iterable(linelengths):
|
||
|
linelengths = [linelengths]
|
||
|
if not np.iterable(linewidths):
|
||
|
linewidths = [linewidths]
|
||
|
if not np.iterable(colors):
|
||
|
colors = [colors]
|
||
|
if not np.iterable(alpha):
|
||
|
alpha = [alpha]
|
||
|
if hasattr(linestyles, 'lower') or not np.iterable(linestyles):
|
||
|
linestyles = [linestyles]
|
||
|
|
||
|
lineoffsets = np.asarray(lineoffsets)
|
||
|
linelengths = np.asarray(linelengths)
|
||
|
linewidths = np.asarray(linewidths)
|
||
|
|
||
|
if len(lineoffsets) == 0:
|
||
|
raise ValueError('lineoffsets cannot be empty')
|
||
|
if len(linelengths) == 0:
|
||
|
raise ValueError('linelengths cannot be empty')
|
||
|
if len(linestyles) == 0:
|
||
|
raise ValueError('linestyles cannot be empty')
|
||
|
if len(linewidths) == 0:
|
||
|
raise ValueError('linewidths cannot be empty')
|
||
|
if len(alpha) == 0:
|
||
|
raise ValueError('alpha cannot be empty')
|
||
|
if len(colors) == 0:
|
||
|
colors = [None]
|
||
|
try:
|
||
|
# Early conversion of the colors into RGBA values to take care
|
||
|
# of cases like colors='0.5' or colors='C1'. (Issue #8193)
|
||
|
colors = mcolors.to_rgba_array(colors)
|
||
|
except ValueError:
|
||
|
# Will fail if any element of *colors* is None. But as long
|
||
|
# as len(colors) == 1 or len(positions), the rest of the
|
||
|
# code should process *colors* properly.
|
||
|
pass
|
||
|
|
||
|
if len(lineoffsets) == 1 and len(positions) != 1:
|
||
|
lineoffsets = np.tile(lineoffsets, len(positions))
|
||
|
lineoffsets[0] = 0
|
||
|
lineoffsets = np.cumsum(lineoffsets)
|
||
|
if len(linelengths) == 1:
|
||
|
linelengths = np.tile(linelengths, len(positions))
|
||
|
if len(linewidths) == 1:
|
||
|
linewidths = np.tile(linewidths, len(positions))
|
||
|
if len(colors) == 1:
|
||
|
colors = list(colors) * len(positions)
|
||
|
if len(alpha) == 1:
|
||
|
alpha = list(alpha) * len(positions)
|
||
|
if len(linestyles) == 1:
|
||
|
linestyles = [linestyles] * len(positions)
|
||
|
|
||
|
if len(lineoffsets) != len(positions):
|
||
|
raise ValueError('lineoffsets and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(linelengths) != len(positions):
|
||
|
raise ValueError('linelengths and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(linewidths) != len(positions):
|
||
|
raise ValueError('linewidths and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(colors) != len(positions):
|
||
|
raise ValueError('colors and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(alpha) != len(positions):
|
||
|
raise ValueError('alpha and positions are unequal sized '
|
||
|
'sequences')
|
||
|
if len(linestyles) != len(positions):
|
||
|
raise ValueError('linestyles and positions are unequal sized '
|
||
|
'sequences')
|
||
|
|
||
|
colls = []
|
||
|
for position, lineoffset, linelength, linewidth, color, alpha_, \
|
||
|
linestyle in \
|
||
|
zip(positions, lineoffsets, linelengths, linewidths,
|
||
|
colors, alpha, linestyles):
|
||
|
coll = mcoll.EventCollection(position,
|
||
|
orientation=orientation,
|
||
|
lineoffset=lineoffset,
|
||
|
linelength=linelength,
|
||
|
linewidth=linewidth,
|
||
|
color=color,
|
||
|
alpha=alpha_,
|
||
|
linestyle=linestyle)
|
||
|
self.add_collection(coll, autolim=False)
|
||
|
coll._internal_update(kwargs)
|
||
|
colls.append(coll)
|
||
|
|
||
|
if len(positions) > 0:
|
||
|
# try to get min/max
|
||
|
min_max = [(np.min(_p), np.max(_p)) for _p in positions
|
||
|
if len(_p) > 0]
|
||
|
# if we have any non-empty positions, try to autoscale
|
||
|
if len(min_max) > 0:
|
||
|
mins, maxes = zip(*min_max)
|
||
|
minpos = np.min(mins)
|
||
|
maxpos = np.max(maxes)
|
||
|
|
||
|
minline = (lineoffsets - linelengths).min()
|
||
|
maxline = (lineoffsets + linelengths).max()
|
||
|
|
||
|
if orientation == "vertical":
|
||
|
corners = (minline, minpos), (maxline, maxpos)
|
||
|
else: # "horizontal"
|
||
|
corners = (minpos, minline), (maxpos, maxline)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return colls
|
||
|
|
||
|
#### Basic plotting
|
||
|
|
||
|
# Uses a custom implementation of data-kwarg handling in
|
||
|
# _process_plot_var_args.
|
||
|
@_docstring.dedent_interpd
|
||
|
def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs):
|
||
|
"""
|
||
|
Plot y versus x as lines and/or markers.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
plot([x], y, [fmt], *, data=None, **kwargs)
|
||
|
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
The coordinates of the points or line nodes are given by *x*, *y*.
|
||
|
|
||
|
The optional parameter *fmt* is a convenient way for defining basic
|
||
|
formatting like color, marker and linestyle. It's a shortcut string
|
||
|
notation described in the *Notes* section below.
|
||
|
|
||
|
>>> plot(x, y) # plot x and y using default line style and color
|
||
|
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
|
||
|
>>> plot(y) # plot y using x as index array 0..N-1
|
||
|
>>> plot(y, 'r+') # ditto, but with red plusses
|
||
|
|
||
|
You can use `.Line2D` properties as keyword arguments for more
|
||
|
control on the appearance. Line properties and *fmt* can be mixed.
|
||
|
The following two calls yield identical results:
|
||
|
|
||
|
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
|
||
|
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
|
||
|
... linewidth=2, markersize=12)
|
||
|
|
||
|
When conflicting with *fmt*, keyword arguments take precedence.
|
||
|
|
||
|
|
||
|
**Plotting labelled data**
|
||
|
|
||
|
There's a convenient way for plotting objects with labelled data (i.e.
|
||
|
data that can be accessed by index ``obj['y']``). Instead of giving
|
||
|
the data in *x* and *y*, you can provide the object in the *data*
|
||
|
parameter and just give the labels for *x* and *y*::
|
||
|
|
||
|
>>> plot('xlabel', 'ylabel', data=obj)
|
||
|
|
||
|
All indexable objects are supported. This could e.g. be a `dict`, a
|
||
|
`pandas.DataFrame` or a structured numpy array.
|
||
|
|
||
|
|
||
|
**Plotting multiple sets of data**
|
||
|
|
||
|
There are various ways to plot multiple sets of data.
|
||
|
|
||
|
- The most straight forward way is just to call `plot` multiple times.
|
||
|
Example:
|
||
|
|
||
|
>>> plot(x1, y1, 'bo')
|
||
|
>>> plot(x2, y2, 'go')
|
||
|
|
||
|
- If *x* and/or *y* are 2D arrays a separate data set will be drawn
|
||
|
for every column. If both *x* and *y* are 2D, they must have the
|
||
|
same shape. If only one of them is 2D with shape (N, m) the other
|
||
|
must have length N and will be used for every data set m.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> x = [1, 2, 3]
|
||
|
>>> y = np.array([[1, 2], [3, 4], [5, 6]])
|
||
|
>>> plot(x, y)
|
||
|
|
||
|
is equivalent to:
|
||
|
|
||
|
>>> for col in range(y.shape[1]):
|
||
|
... plot(x, y[:, col])
|
||
|
|
||
|
- The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
|
||
|
groups::
|
||
|
|
||
|
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
|
||
|
|
||
|
In this case, any additional keyword argument applies to all
|
||
|
datasets. Also, this syntax cannot be combined with the *data*
|
||
|
parameter.
|
||
|
|
||
|
By default, each line is assigned a different style specified by a
|
||
|
'style cycle'. The *fmt* and line property parameters are only
|
||
|
necessary if you want explicit deviations from these defaults.
|
||
|
Alternatively, you can also change the style cycle using
|
||
|
:rc:`axes.prop_cycle`.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like or scalar
|
||
|
The horizontal / vertical coordinates of the data points.
|
||
|
*x* values are optional and default to ``range(len(y))``.
|
||
|
|
||
|
Commonly, these parameters are 1D arrays.
|
||
|
|
||
|
They can also be scalars, or two-dimensional (in that case, the
|
||
|
columns represent separate data sets).
|
||
|
|
||
|
These arguments cannot be passed as keywords.
|
||
|
|
||
|
fmt : str, optional
|
||
|
A format string, e.g. 'ro' for red circles. See the *Notes*
|
||
|
section for a full description of the format strings.
|
||
|
|
||
|
Format strings are just an abbreviation for quickly setting
|
||
|
basic line properties. All of these and more can also be
|
||
|
controlled by keyword arguments.
|
||
|
|
||
|
This argument cannot be passed as keyword.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
An object with labelled data. If given, provide the label names to
|
||
|
plot in *x* and *y*.
|
||
|
|
||
|
.. note::
|
||
|
Technically there's a slight ambiguity in calls where the
|
||
|
second label is a valid *fmt*. ``plot('n', 'o', data=obj)``
|
||
|
could be ``plt(x, y)`` or ``plt(y, fmt)``. In such cases,
|
||
|
the former interpretation is chosen, but a warning is issued.
|
||
|
You may suppress the warning by adding an empty format string
|
||
|
``plot('n', 'o', '', data=obj)``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Line2D`
|
||
|
A list of lines representing the plotted data.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
scalex, scaley : bool, default: True
|
||
|
These parameters determine if the view limits are adapted to the
|
||
|
data limits. The values are passed on to
|
||
|
`~.axes.Axes.autoscale_view`.
|
||
|
|
||
|
**kwargs : `~matplotlib.lines.Line2D` properties, optional
|
||
|
*kwargs* are used to specify properties like a line label (for
|
||
|
auto legends), linewidth, antialiasing, marker face color.
|
||
|
Example::
|
||
|
|
||
|
>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
|
||
|
>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')
|
||
|
|
||
|
If you specify multiple lines with one plot call, the kwargs apply
|
||
|
to all those lines. In case the label object is iterable, each
|
||
|
element is used as labels for each set of data.
|
||
|
|
||
|
Here is a list of available `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scatter : XY scatter plot with markers of varying size and/or color (
|
||
|
sometimes also called bubble chart).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Format Strings**
|
||
|
|
||
|
A format string consists of a part for color, marker and line::
|
||
|
|
||
|
fmt = '[marker][line][color]'
|
||
|
|
||
|
Each of them is optional. If not provided, the value from the style
|
||
|
cycle is used. Exception: If ``line`` is given, but no ``marker``,
|
||
|
the data will be a line without markers.
|
||
|
|
||
|
Other combinations such as ``[color][marker][line]`` are also
|
||
|
supported, but note that their parsing may be ambiguous.
|
||
|
|
||
|
**Markers**
|
||
|
|
||
|
============= ===============================
|
||
|
character description
|
||
|
============= ===============================
|
||
|
``'.'`` point marker
|
||
|
``','`` pixel marker
|
||
|
``'o'`` circle marker
|
||
|
``'v'`` triangle_down marker
|
||
|
``'^'`` triangle_up marker
|
||
|
``'<'`` triangle_left marker
|
||
|
``'>'`` triangle_right marker
|
||
|
``'1'`` tri_down marker
|
||
|
``'2'`` tri_up marker
|
||
|
``'3'`` tri_left marker
|
||
|
``'4'`` tri_right marker
|
||
|
``'8'`` octagon marker
|
||
|
``'s'`` square marker
|
||
|
``'p'`` pentagon marker
|
||
|
``'P'`` plus (filled) marker
|
||
|
``'*'`` star marker
|
||
|
``'h'`` hexagon1 marker
|
||
|
``'H'`` hexagon2 marker
|
||
|
``'+'`` plus marker
|
||
|
``'x'`` x marker
|
||
|
``'X'`` x (filled) marker
|
||
|
``'D'`` diamond marker
|
||
|
``'d'`` thin_diamond marker
|
||
|
``'|'`` vline marker
|
||
|
``'_'`` hline marker
|
||
|
============= ===============================
|
||
|
|
||
|
**Line Styles**
|
||
|
|
||
|
============= ===============================
|
||
|
character description
|
||
|
============= ===============================
|
||
|
``'-'`` solid line style
|
||
|
``'--'`` dashed line style
|
||
|
``'-.'`` dash-dot line style
|
||
|
``':'`` dotted line style
|
||
|
============= ===============================
|
||
|
|
||
|
Example format strings::
|
||
|
|
||
|
'b' # blue markers with default shape
|
||
|
'or' # red circles
|
||
|
'-g' # green solid line
|
||
|
'--' # dashed line with default color
|
||
|
'^k:' # black triangle_up markers connected by a dotted line
|
||
|
|
||
|
**Colors**
|
||
|
|
||
|
The supported color abbreviations are the single letter codes
|
||
|
|
||
|
============= ===============================
|
||
|
character color
|
||
|
============= ===============================
|
||
|
``'b'`` blue
|
||
|
``'g'`` green
|
||
|
``'r'`` red
|
||
|
``'c'`` cyan
|
||
|
``'m'`` magenta
|
||
|
``'y'`` yellow
|
||
|
``'k'`` black
|
||
|
``'w'`` white
|
||
|
============= ===============================
|
||
|
|
||
|
and the ``'CN'`` colors that index into the default property cycle.
|
||
|
|
||
|
If the color is the only part of the format string, you can
|
||
|
additionally use any `matplotlib.colors` spec, e.g. full names
|
||
|
(``'green'``) or hex strings (``'#008000'``).
|
||
|
"""
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
|
||
|
lines = [*self._get_lines(self, *args, data=data, **kwargs)]
|
||
|
for line in lines:
|
||
|
self.add_line(line)
|
||
|
if scalex:
|
||
|
self._request_autoscale_view("x")
|
||
|
if scaley:
|
||
|
self._request_autoscale_view("y")
|
||
|
return lines
|
||
|
|
||
|
@_api.deprecated("3.9", alternative="plot")
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
@_docstring.dedent_interpd
|
||
|
def plot_date(self, x, y, fmt='o', tz=None, xdate=True, ydate=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Plot coercing the axis to treat floats as dates.
|
||
|
|
||
|
.. deprecated:: 3.9
|
||
|
|
||
|
This method exists for historic reasons and will be removed in version 3.11.
|
||
|
|
||
|
- ``datetime``-like data should directly be plotted using
|
||
|
`~.Axes.plot`.
|
||
|
- If you need to plot plain numeric data as :ref:`date-format` or
|
||
|
need to set a timezone, call ``ax.xaxis.axis_date`` /
|
||
|
``ax.yaxis.axis_date`` before `~.Axes.plot`. See
|
||
|
`.Axis.axis_date`.
|
||
|
|
||
|
Similar to `.plot`, this plots *y* vs. *x* as lines or markers.
|
||
|
However, the axis labels are formatted as dates depending on *xdate*
|
||
|
and *ydate*. Note that `.plot` will work with `datetime` and
|
||
|
`numpy.datetime64` objects without resorting to this method.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like
|
||
|
The coordinates of the data points. If *xdate* or *ydate* is
|
||
|
*True*, the respective values *x* or *y* are interpreted as
|
||
|
:ref:`Matplotlib dates <date-format>`.
|
||
|
|
||
|
fmt : str, optional
|
||
|
The plot format string. For details, see the corresponding
|
||
|
parameter in `.plot`.
|
||
|
|
||
|
tz : timezone string or `datetime.tzinfo`, default: :rc:`timezone`
|
||
|
The time zone to use in labeling dates.
|
||
|
|
||
|
xdate : bool, default: True
|
||
|
If *True*, the *x*-axis will be interpreted as Matplotlib dates.
|
||
|
|
||
|
ydate : bool, default: False
|
||
|
If *True*, the *y*-axis will be interpreted as Matplotlib dates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Line2D`
|
||
|
Objects representing the plotted data.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
matplotlib.dates : Helper functions on dates.
|
||
|
matplotlib.dates.date2num : Convert dates to num.
|
||
|
matplotlib.dates.num2date : Convert num to dates.
|
||
|
matplotlib.dates.drange : Create an equally spaced sequence of dates.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If you are using custom date tickers and formatters, it may be
|
||
|
necessary to set the formatters/locators after the call to
|
||
|
`.plot_date`. `.plot_date` will set the default tick locator to
|
||
|
`.AutoDateLocator` (if the tick locator is not already set to a
|
||
|
`.DateLocator` instance) and the default tick formatter to
|
||
|
`.AutoDateFormatter` (if the tick formatter is not already set to a
|
||
|
`.DateFormatter` instance).
|
||
|
"""
|
||
|
if xdate:
|
||
|
self.xaxis_date(tz)
|
||
|
if ydate:
|
||
|
self.yaxis_date(tz)
|
||
|
return self.plot(x, y, fmt, **kwargs)
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
@_docstring.dedent_interpd
|
||
|
def loglog(self, *args, **kwargs):
|
||
|
"""
|
||
|
Make a plot with log scaling on both the x- and y-axis.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
loglog([x], y, [fmt], data=None, **kwargs)
|
||
|
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which additionally changes
|
||
|
both the x-axis and the y-axis to log scaling. All the concepts and
|
||
|
parameters of plot can be used here as well.
|
||
|
|
||
|
The additional parameters *base*, *subs* and *nonpositive* control the
|
||
|
x/y-axis properties. They are just forwarded to `.Axes.set_xscale` and
|
||
|
`.Axes.set_yscale`. To use different properties on the x-axis and the
|
||
|
y-axis, use e.g.
|
||
|
``ax.set_xscale("log", base=10); ax.set_yscale("log", base=2)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base : float, default: 10
|
||
|
Base of the logarithm.
|
||
|
|
||
|
subs : sequence, optional
|
||
|
The location of the minor ticks. If *None*, reasonable locations
|
||
|
are automatically chosen depending on the number of decades in the
|
||
|
plot. See `.Axes.set_xscale`/`.Axes.set_yscale` for details.
|
||
|
|
||
|
nonpositive : {'mask', 'clip'}, default: 'clip'
|
||
|
Non-positive values can be masked as invalid, or clipped to a very
|
||
|
small positive number.
|
||
|
|
||
|
**kwargs
|
||
|
All parameters supported by `.plot`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Line2D`
|
||
|
Objects representing the plotted data.
|
||
|
"""
|
||
|
dx = {k: v for k, v in kwargs.items()
|
||
|
if k in ['base', 'subs', 'nonpositive',
|
||
|
'basex', 'subsx', 'nonposx']}
|
||
|
self.set_xscale('log', **dx)
|
||
|
dy = {k: v for k, v in kwargs.items()
|
||
|
if k in ['base', 'subs', 'nonpositive',
|
||
|
'basey', 'subsy', 'nonposy']}
|
||
|
self.set_yscale('log', **dy)
|
||
|
return self.plot(
|
||
|
*args, **{k: v for k, v in kwargs.items() if k not in {*dx, *dy}})
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
@_docstring.dedent_interpd
|
||
|
def semilogx(self, *args, **kwargs):
|
||
|
"""
|
||
|
Make a plot with log scaling on the x-axis.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
semilogx([x], y, [fmt], data=None, **kwargs)
|
||
|
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which additionally changes
|
||
|
the x-axis to log scaling. All the concepts and parameters of plot can
|
||
|
be used here as well.
|
||
|
|
||
|
The additional parameters *base*, *subs*, and *nonpositive* control the
|
||
|
x-axis properties. They are just forwarded to `.Axes.set_xscale`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base : float, default: 10
|
||
|
Base of the x logarithm.
|
||
|
|
||
|
subs : array-like, optional
|
||
|
The location of the minor xticks. If *None*, reasonable locations
|
||
|
are automatically chosen depending on the number of decades in the
|
||
|
plot. See `.Axes.set_xscale` for details.
|
||
|
|
||
|
nonpositive : {'mask', 'clip'}, default: 'clip'
|
||
|
Non-positive values in x can be masked as invalid, or clipped to a
|
||
|
very small positive number.
|
||
|
|
||
|
**kwargs
|
||
|
All parameters supported by `.plot`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Line2D`
|
||
|
Objects representing the plotted data.
|
||
|
"""
|
||
|
d = {k: v for k, v in kwargs.items()
|
||
|
if k in ['base', 'subs', 'nonpositive',
|
||
|
'basex', 'subsx', 'nonposx']}
|
||
|
self.set_xscale('log', **d)
|
||
|
return self.plot(
|
||
|
*args, **{k: v for k, v in kwargs.items() if k not in d})
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
@_docstring.dedent_interpd
|
||
|
def semilogy(self, *args, **kwargs):
|
||
|
"""
|
||
|
Make a plot with log scaling on the y-axis.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
semilogy([x], y, [fmt], data=None, **kwargs)
|
||
|
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which additionally changes
|
||
|
the y-axis to log scaling. All the concepts and parameters of plot can
|
||
|
be used here as well.
|
||
|
|
||
|
The additional parameters *base*, *subs*, and *nonpositive* control the
|
||
|
y-axis properties. They are just forwarded to `.Axes.set_yscale`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
base : float, default: 10
|
||
|
Base of the y logarithm.
|
||
|
|
||
|
subs : array-like, optional
|
||
|
The location of the minor yticks. If *None*, reasonable locations
|
||
|
are automatically chosen depending on the number of decades in the
|
||
|
plot. See `.Axes.set_yscale` for details.
|
||
|
|
||
|
nonpositive : {'mask', 'clip'}, default: 'clip'
|
||
|
Non-positive values in y can be masked as invalid, or clipped to a
|
||
|
very small positive number.
|
||
|
|
||
|
**kwargs
|
||
|
All parameters supported by `.plot`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Line2D`
|
||
|
Objects representing the plotted data.
|
||
|
"""
|
||
|
d = {k: v for k, v in kwargs.items()
|
||
|
if k in ['base', 'subs', 'nonpositive',
|
||
|
'basey', 'subsy', 'nonposy']}
|
||
|
self.set_yscale('log', **d)
|
||
|
return self.plot(
|
||
|
*args, **{k: v for k, v in kwargs.items() if k not in d})
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"], label_namer="x")
|
||
|
def acorr(self, x, **kwargs):
|
||
|
"""
|
||
|
Plot the autocorrelation of *x*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like
|
||
|
Not run through Matplotlib's unit conversion, so this should
|
||
|
be a unit-less array.
|
||
|
|
||
|
detrend : callable, default: `.mlab.detrend_none` (no detrending)
|
||
|
A detrending function applied to *x*. It must have the
|
||
|
signature ::
|
||
|
|
||
|
detrend(x: np.ndarray) -> np.ndarray
|
||
|
|
||
|
normed : bool, default: True
|
||
|
If ``True``, input vectors are normalised to unit length.
|
||
|
|
||
|
usevlines : bool, default: True
|
||
|
Determines the plot style.
|
||
|
|
||
|
If ``True``, vertical lines are plotted from 0 to the acorr value
|
||
|
using `.Axes.vlines`. Additionally, a horizontal line is plotted
|
||
|
at y=0 using `.Axes.axhline`.
|
||
|
|
||
|
If ``False``, markers are plotted at the acorr values using
|
||
|
`.Axes.plot`.
|
||
|
|
||
|
maxlags : int, default: 10
|
||
|
Number of lags to show. If ``None``, will return all
|
||
|
``2 * len(x) - 1`` lags.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lags : array (length ``2*maxlags+1``)
|
||
|
The lag vector.
|
||
|
c : array (length ``2*maxlags+1``)
|
||
|
The auto correlation vector.
|
||
|
line : `.LineCollection` or `.Line2D`
|
||
|
`.Artist` added to the Axes of the correlation:
|
||
|
|
||
|
- `.LineCollection` if *usevlines* is True.
|
||
|
- `.Line2D` if *usevlines* is False.
|
||
|
b : `~matplotlib.lines.Line2D` or None
|
||
|
Horizontal line at 0 if *usevlines* is True
|
||
|
None *usevlines* is False.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
linestyle : `~matplotlib.lines.Line2D` property, optional
|
||
|
The linestyle for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
marker : str, default: 'o'
|
||
|
The marker for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Additional parameters are passed to `.Axes.vlines` and
|
||
|
`.Axes.axhline` if *usevlines* is ``True``; otherwise they are
|
||
|
passed to `.Axes.plot`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The cross correlation is performed with `numpy.correlate` with
|
||
|
``mode = "full"``.
|
||
|
"""
|
||
|
return self.xcorr(x, x, **kwargs)
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
|
||
|
usevlines=True, maxlags=10, **kwargs):
|
||
|
r"""
|
||
|
Plot the cross correlation between *x* and *y*.
|
||
|
|
||
|
The correlation with lag k is defined as
|
||
|
:math:`\sum_n x[n+k] \cdot y^*[n]`, where :math:`y^*` is the complex
|
||
|
conjugate of :math:`y`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like of length n
|
||
|
Neither *x* nor *y* are run through Matplotlib's unit conversion, so
|
||
|
these should be unit-less arrays.
|
||
|
|
||
|
detrend : callable, default: `.mlab.detrend_none` (no detrending)
|
||
|
A detrending function applied to *x* and *y*. It must have the
|
||
|
signature ::
|
||
|
|
||
|
detrend(x: np.ndarray) -> np.ndarray
|
||
|
|
||
|
normed : bool, default: True
|
||
|
If ``True``, input vectors are normalised to unit length.
|
||
|
|
||
|
usevlines : bool, default: True
|
||
|
Determines the plot style.
|
||
|
|
||
|
If ``True``, vertical lines are plotted from 0 to the xcorr value
|
||
|
using `.Axes.vlines`. Additionally, a horizontal line is plotted
|
||
|
at y=0 using `.Axes.axhline`.
|
||
|
|
||
|
If ``False``, markers are plotted at the xcorr values using
|
||
|
`.Axes.plot`.
|
||
|
|
||
|
maxlags : int, default: 10
|
||
|
Number of lags to show. If None, will return all ``2 * len(x) - 1``
|
||
|
lags.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lags : array (length ``2*maxlags+1``)
|
||
|
The lag vector.
|
||
|
c : array (length ``2*maxlags+1``)
|
||
|
The auto correlation vector.
|
||
|
line : `.LineCollection` or `.Line2D`
|
||
|
`.Artist` added to the Axes of the correlation:
|
||
|
|
||
|
- `.LineCollection` if *usevlines* is True.
|
||
|
- `.Line2D` if *usevlines* is False.
|
||
|
b : `~matplotlib.lines.Line2D` or None
|
||
|
Horizontal line at 0 if *usevlines* is True
|
||
|
None *usevlines* is False.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
linestyle : `~matplotlib.lines.Line2D` property, optional
|
||
|
The linestyle for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
marker : str, default: 'o'
|
||
|
The marker for plotting the data points.
|
||
|
Only used if *usevlines* is ``False``.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Additional parameters are passed to `.Axes.vlines` and
|
||
|
`.Axes.axhline` if *usevlines* is ``True``; otherwise they are
|
||
|
passed to `.Axes.plot`.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The cross correlation is performed with `numpy.correlate` with
|
||
|
``mode = "full"``.
|
||
|
"""
|
||
|
Nx = len(x)
|
||
|
if Nx != len(y):
|
||
|
raise ValueError('x and y must be equal length')
|
||
|
|
||
|
x = detrend(np.asarray(x))
|
||
|
y = detrend(np.asarray(y))
|
||
|
|
||
|
correls = np.correlate(x, y, mode="full")
|
||
|
|
||
|
if normed:
|
||
|
correls = correls / np.sqrt(np.dot(x, x) * np.dot(y, y))
|
||
|
|
||
|
if maxlags is None:
|
||
|
maxlags = Nx - 1
|
||
|
|
||
|
if maxlags >= Nx or maxlags < 1:
|
||
|
raise ValueError('maxlags must be None or strictly '
|
||
|
'positive < %d' % Nx)
|
||
|
|
||
|
lags = np.arange(-maxlags, maxlags + 1)
|
||
|
correls = correls[Nx - 1 - maxlags:Nx + maxlags]
|
||
|
|
||
|
if usevlines:
|
||
|
a = self.vlines(lags, [0], correls, **kwargs)
|
||
|
# Make label empty so only vertical lines get a legend entry
|
||
|
kwargs.pop('label', '')
|
||
|
b = self.axhline(**kwargs)
|
||
|
else:
|
||
|
kwargs.setdefault('marker', 'o')
|
||
|
kwargs.setdefault('linestyle', 'None')
|
||
|
a, = self.plot(lags, correls, **kwargs)
|
||
|
b = None
|
||
|
return lags, correls, a, b
|
||
|
|
||
|
#### Specialized plotting
|
||
|
|
||
|
# @_preprocess_data() # let 'plot' do the unpacking..
|
||
|
def step(self, x, y, *args, where='pre', data=None, **kwargs):
|
||
|
"""
|
||
|
Make a step plot.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
step(x, y, [fmt], *, data=None, where='pre', **kwargs)
|
||
|
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)
|
||
|
|
||
|
This is just a thin wrapper around `.plot` which changes some
|
||
|
formatting options. Most of the concepts and parameters of plot can be
|
||
|
used here as well.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This method uses a standard plot with a step drawstyle: The *x*
|
||
|
values are the reference positions and steps extend left/right/both
|
||
|
directions depending on *where*.
|
||
|
|
||
|
For the common case where you know the values and edges of the
|
||
|
steps, use `~.Axes.stairs` instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array-like
|
||
|
1D sequence of x positions. It is assumed, but not checked, that
|
||
|
it is uniformly increasing.
|
||
|
|
||
|
y : array-like
|
||
|
1D sequence of y levels.
|
||
|
|
||
|
fmt : str, optional
|
||
|
A format string, e.g. 'g' for a green line. See `.plot` for a more
|
||
|
detailed description.
|
||
|
|
||
|
Note: While full format strings are accepted, it is recommended to
|
||
|
only specify the color. Line styles are currently ignored (use
|
||
|
the keyword argument *linestyle* instead). Markers are accepted
|
||
|
and plotted on the given positions, however, this is a rarely
|
||
|
needed feature for step plots.
|
||
|
|
||
|
where : {'pre', 'post', 'mid'}, default: 'pre'
|
||
|
Define where the steps should be placed:
|
||
|
|
||
|
- 'pre': The y value is continued constantly to the left from
|
||
|
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'post': The y value is continued constantly to the right from
|
||
|
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'mid': Steps occur half-way between the *x* positions.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
An object with labelled data. If given, provide the label names to
|
||
|
plot in *x* and *y*.
|
||
|
|
||
|
**kwargs
|
||
|
Additional parameters are the same as those for `.plot`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Line2D`
|
||
|
Objects representing the plotted data.
|
||
|
"""
|
||
|
_api.check_in_list(('pre', 'post', 'mid'), where=where)
|
||
|
kwargs['drawstyle'] = 'steps-' + where
|
||
|
return self.plot(x, y, *args, data=data, **kwargs)
|
||
|
|
||
|
@staticmethod
|
||
|
def _convert_dx(dx, x0, xconv, convert):
|
||
|
"""
|
||
|
Small helper to do logic of width conversion flexibly.
|
||
|
|
||
|
*dx* and *x0* have units, but *xconv* has already been converted
|
||
|
to unitless (and is an ndarray). This allows the *dx* to have units
|
||
|
that are different from *x0*, but are still accepted by the
|
||
|
``__add__`` operator of *x0*.
|
||
|
"""
|
||
|
|
||
|
# x should be an array...
|
||
|
assert type(xconv) is np.ndarray
|
||
|
|
||
|
if xconv.size == 0:
|
||
|
# xconv has already been converted, but maybe empty...
|
||
|
return convert(dx)
|
||
|
|
||
|
try:
|
||
|
# attempt to add the width to x0; this works for
|
||
|
# datetime+timedelta, for instance
|
||
|
|
||
|
# only use the first element of x and x0. This saves
|
||
|
# having to be sure addition works across the whole
|
||
|
# vector. This is particularly an issue if
|
||
|
# x0 and dx are lists so x0 + dx just concatenates the lists.
|
||
|
# We can't just cast x0 and dx to numpy arrays because that
|
||
|
# removes the units from unit packages like `pint` that
|
||
|
# wrap numpy arrays.
|
||
|
try:
|
||
|
x0 = cbook._safe_first_finite(x0)
|
||
|
except (TypeError, IndexError, KeyError):
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
x = cbook._safe_first_finite(xconv)
|
||
|
except (TypeError, IndexError, KeyError):
|
||
|
x = xconv
|
||
|
|
||
|
delist = False
|
||
|
if not np.iterable(dx):
|
||
|
dx = [dx]
|
||
|
delist = True
|
||
|
dx = [convert(x0 + ddx) - x for ddx in dx]
|
||
|
if delist:
|
||
|
dx = dx[0]
|
||
|
except (ValueError, TypeError, AttributeError):
|
||
|
# if the above fails (for any reason) just fallback to what
|
||
|
# we do by default and convert dx by itself.
|
||
|
dx = convert(dx)
|
||
|
return dx
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def bar(self, x, height, width=0.8, bottom=None, *, align="center",
|
||
|
**kwargs):
|
||
|
r"""
|
||
|
Make a bar plot.
|
||
|
|
||
|
The bars are positioned at *x* with the given *align*\ment. Their
|
||
|
dimensions are given by *height* and *width*. The vertical baseline
|
||
|
is *bottom* (default 0).
|
||
|
|
||
|
Many parameters can take either a single value applying to all bars
|
||
|
or a sequence of values, one for each bar.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : float or array-like
|
||
|
The x coordinates of the bars. See also *align* for the
|
||
|
alignment of the bars to the coordinates.
|
||
|
|
||
|
height : float or array-like
|
||
|
The height(s) of the bars.
|
||
|
|
||
|
Note that if *bottom* has units (e.g. datetime), *height* should be in
|
||
|
units that are a difference from the value of *bottom* (e.g. timedelta).
|
||
|
|
||
|
width : float or array-like, default: 0.8
|
||
|
The width(s) of the bars.
|
||
|
|
||
|
Note that if *x* has units (e.g. datetime), then *width* should be in
|
||
|
units that are a difference (e.g. timedelta) around the *x* values.
|
||
|
|
||
|
bottom : float or array-like, default: 0
|
||
|
The y coordinate(s) of the bottom side(s) of the bars.
|
||
|
|
||
|
Note that if *bottom* has units, then the y-axis will get a Locator and
|
||
|
Formatter appropriate for the units (e.g. dates, or categorical).
|
||
|
|
||
|
align : {'center', 'edge'}, default: 'center'
|
||
|
Alignment of the bars to the *x* coordinates:
|
||
|
|
||
|
- 'center': Center the base on the *x* positions.
|
||
|
- 'edge': Align the left edges of the bars with the *x* positions.
|
||
|
|
||
|
To align the bars on the right edge pass a negative *width* and
|
||
|
``align='edge'``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.BarContainer`
|
||
|
Container with all the bars and optionally errorbars.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
color : :mpltype:`color` or list of :mpltype:`color`, optional
|
||
|
The colors of the bar faces.
|
||
|
|
||
|
edgecolor : :mpltype:`color` or list of :mpltype:`color`, optional
|
||
|
The colors of the bar edges.
|
||
|
|
||
|
linewidth : float or array-like, optional
|
||
|
Width of the bar edge(s). If 0, don't draw edges.
|
||
|
|
||
|
tick_label : str or list of str, optional
|
||
|
The tick labels of the bars.
|
||
|
Default: None (Use default numeric labels.)
|
||
|
|
||
|
label : str or list of str, optional
|
||
|
A single label is attached to the resulting `.BarContainer` as a
|
||
|
label for the whole dataset.
|
||
|
If a list is provided, it must be the same length as *x* and
|
||
|
labels the individual bars. Repeated labels are not de-duplicated
|
||
|
and will cause repeated label entries, so this is best used when
|
||
|
bars also differ in style (e.g., by passing a list to *color*.)
|
||
|
|
||
|
xerr, yerr : float or array-like of shape(N,) or shape(2, N), optional
|
||
|
If not *None*, add horizontal / vertical errorbars to the bar tips.
|
||
|
The values are +/- sizes relative to the data:
|
||
|
|
||
|
- scalar: symmetric +/- values for all bars
|
||
|
- shape(N,): symmetric +/- values for each bar
|
||
|
- shape(2, N): Separate - and + values for each bar. First row
|
||
|
contains the lower errors, the second row contains the upper
|
||
|
errors.
|
||
|
- *None*: No errorbar. (Default)
|
||
|
|
||
|
See :doc:`/gallery/statistics/errorbar_features` for an example on
|
||
|
the usage of *xerr* and *yerr*.
|
||
|
|
||
|
ecolor : :mpltype:`color` or list of :mpltype:`color`, default: 'black'
|
||
|
The line color of the errorbars.
|
||
|
|
||
|
capsize : float, default: :rc:`errorbar.capsize`
|
||
|
The length of the error bar caps in points.
|
||
|
|
||
|
error_kw : dict, optional
|
||
|
Dictionary of keyword arguments to be passed to the
|
||
|
`~.Axes.errorbar` method. Values of *ecolor* or *capsize* defined
|
||
|
here take precedence over the independent keyword arguments.
|
||
|
|
||
|
log : bool, default: False
|
||
|
If *True*, set the y-axis to be log scale.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs : `.Rectangle` properties
|
||
|
|
||
|
%(Rectangle:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
barh : Plot a horizontal bar plot.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Stacked bars can be achieved by passing individual *bottom* values per
|
||
|
bar. See :doc:`/gallery/lines_bars_and_markers/bar_stacked`.
|
||
|
"""
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mpatches.Patch)
|
||
|
color = kwargs.pop('color', None)
|
||
|
if color is None:
|
||
|
color = self._get_patches_for_fill.get_next_color()
|
||
|
edgecolor = kwargs.pop('edgecolor', None)
|
||
|
linewidth = kwargs.pop('linewidth', None)
|
||
|
hatch = kwargs.pop('hatch', None)
|
||
|
|
||
|
# Because xerr and yerr will be passed to errorbar, most dimension
|
||
|
# checking and processing will be left to the errorbar method.
|
||
|
xerr = kwargs.pop('xerr', None)
|
||
|
yerr = kwargs.pop('yerr', None)
|
||
|
error_kw = kwargs.pop('error_kw', None)
|
||
|
error_kw = {} if error_kw is None else error_kw.copy()
|
||
|
ezorder = error_kw.pop('zorder', None)
|
||
|
if ezorder is None:
|
||
|
ezorder = kwargs.get('zorder', None)
|
||
|
if ezorder is not None:
|
||
|
# If using the bar zorder, increment slightly to make sure
|
||
|
# errorbars are drawn on top of bars
|
||
|
ezorder += 0.01
|
||
|
error_kw.setdefault('zorder', ezorder)
|
||
|
ecolor = kwargs.pop('ecolor', 'k')
|
||
|
capsize = kwargs.pop('capsize', mpl.rcParams["errorbar.capsize"])
|
||
|
error_kw.setdefault('ecolor', ecolor)
|
||
|
error_kw.setdefault('capsize', capsize)
|
||
|
|
||
|
# The keyword argument *orientation* is used by barh() to defer all
|
||
|
# logic and drawing to bar(). It is considered internal and is
|
||
|
# intentionally not mentioned in the docstring.
|
||
|
orientation = kwargs.pop('orientation', 'vertical')
|
||
|
_api.check_in_list(['vertical', 'horizontal'], orientation=orientation)
|
||
|
log = kwargs.pop('log', False)
|
||
|
label = kwargs.pop('label', '')
|
||
|
tick_labels = kwargs.pop('tick_label', None)
|
||
|
|
||
|
y = bottom # Matches barh call signature.
|
||
|
if orientation == 'vertical':
|
||
|
if y is None:
|
||
|
y = 0
|
||
|
else: # horizontal
|
||
|
if x is None:
|
||
|
x = 0
|
||
|
|
||
|
if orientation == 'vertical':
|
||
|
# It is possible for y (bottom) to contain unit information.
|
||
|
# However, it is also possible for y=0 for the default and height
|
||
|
# to contain unit information. This will prioritize the units of y.
|
||
|
self._process_unit_info(
|
||
|
[("x", x), ("y", y), ("y", height)], kwargs, convert=False)
|
||
|
if log:
|
||
|
self.set_yscale('log', nonpositive='clip')
|
||
|
else: # horizontal
|
||
|
# It is possible for x (left) to contain unit information.
|
||
|
# However, it is also possible for x=0 for the default and width
|
||
|
# to contain unit information. This will prioritize the units of x.
|
||
|
self._process_unit_info(
|
||
|
[("x", x), ("x", width), ("y", y)], kwargs, convert=False)
|
||
|
if log:
|
||
|
self.set_xscale('log', nonpositive='clip')
|
||
|
|
||
|
# lets do some conversions now since some types cannot be
|
||
|
# subtracted uniformly
|
||
|
if self.xaxis is not None:
|
||
|
x0 = x
|
||
|
x = np.asarray(self.convert_xunits(x))
|
||
|
width = self._convert_dx(width, x0, x, self.convert_xunits)
|
||
|
if xerr is not None:
|
||
|
xerr = self._convert_dx(xerr, x0, x, self.convert_xunits)
|
||
|
if self.yaxis is not None:
|
||
|
y0 = y
|
||
|
y = np.asarray(self.convert_yunits(y))
|
||
|
height = self._convert_dx(height, y0, y, self.convert_yunits)
|
||
|
if yerr is not None:
|
||
|
yerr = self._convert_dx(yerr, y0, y, self.convert_yunits)
|
||
|
|
||
|
x, height, width, y, linewidth, hatch = np.broadcast_arrays(
|
||
|
# Make args iterable too.
|
||
|
np.atleast_1d(x), height, width, y, linewidth, hatch)
|
||
|
|
||
|
# Now that units have been converted, set the tick locations.
|
||
|
if orientation == 'vertical':
|
||
|
tick_label_axis = self.xaxis
|
||
|
tick_label_position = x
|
||
|
else: # horizontal
|
||
|
tick_label_axis = self.yaxis
|
||
|
tick_label_position = y
|
||
|
|
||
|
if not isinstance(label, str) and np.iterable(label):
|
||
|
bar_container_label = '_nolegend_'
|
||
|
patch_labels = label
|
||
|
else:
|
||
|
bar_container_label = label
|
||
|
patch_labels = ['_nolegend_'] * len(x)
|
||
|
if len(patch_labels) != len(x):
|
||
|
raise ValueError(f'number of labels ({len(patch_labels)}) '
|
||
|
f'does not match number of bars ({len(x)}).')
|
||
|
|
||
|
linewidth = itertools.cycle(np.atleast_1d(linewidth))
|
||
|
hatch = itertools.cycle(np.atleast_1d(hatch))
|
||
|
color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)),
|
||
|
# Fallback if color == "none".
|
||
|
itertools.repeat('none'))
|
||
|
if edgecolor is None:
|
||
|
edgecolor = itertools.repeat(None)
|
||
|
else:
|
||
|
edgecolor = itertools.chain(
|
||
|
itertools.cycle(mcolors.to_rgba_array(edgecolor)),
|
||
|
# Fallback if edgecolor == "none".
|
||
|
itertools.repeat('none'))
|
||
|
|
||
|
# We will now resolve the alignment and really have
|
||
|
# left, bottom, width, height vectors
|
||
|
_api.check_in_list(['center', 'edge'], align=align)
|
||
|
if align == 'center':
|
||
|
if orientation == 'vertical':
|
||
|
try:
|
||
|
left = x - width / 2
|
||
|
except TypeError as e:
|
||
|
raise TypeError(f'the dtypes of parameters x ({x.dtype}) '
|
||
|
f'and width ({width.dtype}) '
|
||
|
f'are incompatible') from e
|
||
|
bottom = y
|
||
|
else: # horizontal
|
||
|
try:
|
||
|
bottom = y - height / 2
|
||
|
except TypeError as e:
|
||
|
raise TypeError(f'the dtypes of parameters y ({y.dtype}) '
|
||
|
f'and height ({height.dtype}) '
|
||
|
f'are incompatible') from e
|
||
|
left = x
|
||
|
else: # edge
|
||
|
left = x
|
||
|
bottom = y
|
||
|
|
||
|
patches = []
|
||
|
args = zip(left, bottom, width, height, color, edgecolor, linewidth,
|
||
|
hatch, patch_labels)
|
||
|
for l, b, w, h, c, e, lw, htch, lbl in args:
|
||
|
r = mpatches.Rectangle(
|
||
|
xy=(l, b), width=w, height=h,
|
||
|
facecolor=c,
|
||
|
edgecolor=e,
|
||
|
linewidth=lw,
|
||
|
label=lbl,
|
||
|
hatch=htch,
|
||
|
)
|
||
|
r._internal_update(kwargs)
|
||
|
r.get_path()._interpolation_steps = 100
|
||
|
if orientation == 'vertical':
|
||
|
r.sticky_edges.y.append(b)
|
||
|
else: # horizontal
|
||
|
r.sticky_edges.x.append(l)
|
||
|
self.add_patch(r)
|
||
|
patches.append(r)
|
||
|
|
||
|
if xerr is not None or yerr is not None:
|
||
|
if orientation == 'vertical':
|
||
|
# using list comps rather than arrays to preserve unit info
|
||
|
ex = [l + 0.5 * w for l, w in zip(left, width)]
|
||
|
ey = [b + h for b, h in zip(bottom, height)]
|
||
|
|
||
|
else: # horizontal
|
||
|
# using list comps rather than arrays to preserve unit info
|
||
|
ex = [l + w for l, w in zip(left, width)]
|
||
|
ey = [b + 0.5 * h for b, h in zip(bottom, height)]
|
||
|
|
||
|
error_kw.setdefault("label", '_nolegend_')
|
||
|
|
||
|
errorbar = self.errorbar(ex, ey, yerr=yerr, xerr=xerr, fmt='none',
|
||
|
**error_kw)
|
||
|
else:
|
||
|
errorbar = None
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
if orientation == 'vertical':
|
||
|
datavalues = height
|
||
|
else: # horizontal
|
||
|
datavalues = width
|
||
|
|
||
|
bar_container = BarContainer(patches, errorbar, datavalues=datavalues,
|
||
|
orientation=orientation,
|
||
|
label=bar_container_label)
|
||
|
self.add_container(bar_container)
|
||
|
|
||
|
if tick_labels is not None:
|
||
|
tick_labels = np.broadcast_to(tick_labels, len(patches))
|
||
|
tick_label_axis.set_ticks(tick_label_position)
|
||
|
tick_label_axis.set_ticklabels(tick_labels)
|
||
|
|
||
|
return bar_container
|
||
|
|
||
|
# @_preprocess_data() # let 'bar' do the unpacking..
|
||
|
@_docstring.dedent_interpd
|
||
|
def barh(self, y, width, height=0.8, left=None, *, align="center",
|
||
|
data=None, **kwargs):
|
||
|
r"""
|
||
|
Make a horizontal bar plot.
|
||
|
|
||
|
The bars are positioned at *y* with the given *align*\ment. Their
|
||
|
dimensions are given by *width* and *height*. The horizontal baseline
|
||
|
is *left* (default 0).
|
||
|
|
||
|
Many parameters can take either a single value applying to all bars
|
||
|
or a sequence of values, one for each bar.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : float or array-like
|
||
|
The y coordinates of the bars. See also *align* for the
|
||
|
alignment of the bars to the coordinates.
|
||
|
|
||
|
width : float or array-like
|
||
|
The width(s) of the bars.
|
||
|
|
||
|
Note that if *left* has units (e.g. datetime), *width* should be in
|
||
|
units that are a difference from the value of *left* (e.g. timedelta).
|
||
|
|
||
|
height : float or array-like, default: 0.8
|
||
|
The heights of the bars.
|
||
|
|
||
|
Note that if *y* has units (e.g. datetime), then *height* should be in
|
||
|
units that are a difference (e.g. timedelta) around the *y* values.
|
||
|
|
||
|
left : float or array-like, default: 0
|
||
|
The x coordinates of the left side(s) of the bars.
|
||
|
|
||
|
Note that if *left* has units, then the x-axis will get a Locator and
|
||
|
Formatter appropriate for the units (e.g. dates, or categorical).
|
||
|
|
||
|
align : {'center', 'edge'}, default: 'center'
|
||
|
Alignment of the base to the *y* coordinates*:
|
||
|
|
||
|
- 'center': Center the bars on the *y* positions.
|
||
|
- 'edge': Align the bottom edges of the bars with the *y*
|
||
|
positions.
|
||
|
|
||
|
To align the bars on the top edge pass a negative *height* and
|
||
|
``align='edge'``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.BarContainer`
|
||
|
Container with all the bars and optionally errorbars.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
color : :mpltype:`color` or list of :mpltype:`color`, optional
|
||
|
The colors of the bar faces.
|
||
|
|
||
|
edgecolor : :mpltype:`color` or list of :mpltype:`color`, optional
|
||
|
The colors of the bar edges.
|
||
|
|
||
|
linewidth : float or array-like, optional
|
||
|
Width of the bar edge(s). If 0, don't draw edges.
|
||
|
|
||
|
tick_label : str or list of str, optional
|
||
|
The tick labels of the bars.
|
||
|
Default: None (Use default numeric labels.)
|
||
|
|
||
|
label : str or list of str, optional
|
||
|
A single label is attached to the resulting `.BarContainer` as a
|
||
|
label for the whole dataset.
|
||
|
If a list is provided, it must be the same length as *y* and
|
||
|
labels the individual bars. Repeated labels are not de-duplicated
|
||
|
and will cause repeated label entries, so this is best used when
|
||
|
bars also differ in style (e.g., by passing a list to *color*.)
|
||
|
|
||
|
xerr, yerr : float or array-like of shape(N,) or shape(2, N), optional
|
||
|
If not *None*, add horizontal / vertical errorbars to the bar tips.
|
||
|
The values are +/- sizes relative to the data:
|
||
|
|
||
|
- scalar: symmetric +/- values for all bars
|
||
|
- shape(N,): symmetric +/- values for each bar
|
||
|
- shape(2, N): Separate - and + values for each bar. First row
|
||
|
contains the lower errors, the second row contains the upper
|
||
|
errors.
|
||
|
- *None*: No errorbar. (default)
|
||
|
|
||
|
See :doc:`/gallery/statistics/errorbar_features` for an example on
|
||
|
the usage of *xerr* and *yerr*.
|
||
|
|
||
|
ecolor : :mpltype:`color` or list of :mpltype:`color`, default: 'black'
|
||
|
The line color of the errorbars.
|
||
|
|
||
|
capsize : float, default: :rc:`errorbar.capsize`
|
||
|
The length of the error bar caps in points.
|
||
|
|
||
|
error_kw : dict, optional
|
||
|
Dictionary of keyword arguments to be passed to the
|
||
|
`~.Axes.errorbar` method. Values of *ecolor* or *capsize* defined
|
||
|
here take precedence over the independent keyword arguments.
|
||
|
|
||
|
log : bool, default: False
|
||
|
If ``True``, set the x-axis to be log scale.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
If given, all parameters also accept a string ``s``, which is
|
||
|
interpreted as ``data[s]`` (unless this raises an exception).
|
||
|
|
||
|
**kwargs : `.Rectangle` properties
|
||
|
|
||
|
%(Rectangle:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bar : Plot a vertical bar plot.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Stacked bars can be achieved by passing individual *left* values per
|
||
|
bar. See
|
||
|
:doc:`/gallery/lines_bars_and_markers/horizontal_barchart_distribution`.
|
||
|
"""
|
||
|
kwargs.setdefault('orientation', 'horizontal')
|
||
|
patches = self.bar(x=left, height=height, width=width, bottom=y,
|
||
|
align=align, data=data, **kwargs)
|
||
|
return patches
|
||
|
|
||
|
def bar_label(self, container, labels=None, *, fmt="%g", label_type="edge",
|
||
|
padding=0, **kwargs):
|
||
|
"""
|
||
|
Label a bar plot.
|
||
|
|
||
|
Adds labels to bars in the given `.BarContainer`.
|
||
|
You may need to adjust the axis limits to fit the labels.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
container : `.BarContainer`
|
||
|
Container with all the bars and optionally errorbars, likely
|
||
|
returned from `.bar` or `.barh`.
|
||
|
|
||
|
labels : array-like, optional
|
||
|
A list of label texts, that should be displayed. If not given, the
|
||
|
label texts will be the data values formatted with *fmt*.
|
||
|
|
||
|
fmt : str or callable, default: '%g'
|
||
|
An unnamed %-style or {}-style format string for the label or a
|
||
|
function to call with the value as the first argument.
|
||
|
When *fmt* is a string and can be interpreted in both formats,
|
||
|
%-style takes precedence over {}-style.
|
||
|
|
||
|
.. versionadded:: 3.7
|
||
|
Support for {}-style format string and callables.
|
||
|
|
||
|
label_type : {'edge', 'center'}, default: 'edge'
|
||
|
The label type. Possible values:
|
||
|
|
||
|
- 'edge': label placed at the end-point of the bar segment, and the
|
||
|
value displayed will be the position of that end-point.
|
||
|
- 'center': label placed in the center of the bar segment, and the
|
||
|
value displayed will be the length of that segment.
|
||
|
(useful for stacked bars, i.e.,
|
||
|
:doc:`/gallery/lines_bars_and_markers/bar_label_demo`)
|
||
|
|
||
|
padding : float, default: 0
|
||
|
Distance of label from the end of the bar, in points.
|
||
|
|
||
|
**kwargs
|
||
|
Any remaining keyword arguments are passed through to
|
||
|
`.Axes.annotate`. The alignment parameters (
|
||
|
*horizontalalignment* / *ha*, *verticalalignment* / *va*) are
|
||
|
not supported because the labels are automatically aligned to
|
||
|
the bars.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `.Annotation`
|
||
|
A list of `.Annotation` instances for the labels.
|
||
|
"""
|
||
|
for key in ['horizontalalignment', 'ha', 'verticalalignment', 'va']:
|
||
|
if key in kwargs:
|
||
|
raise ValueError(
|
||
|
f"Passing {key!r} to bar_label() is not supported.")
|
||
|
|
||
|
a, b = self.yaxis.get_view_interval()
|
||
|
y_inverted = a > b
|
||
|
c, d = self.xaxis.get_view_interval()
|
||
|
x_inverted = c > d
|
||
|
|
||
|
# want to know whether to put label on positive or negative direction
|
||
|
# cannot use np.sign here because it will return 0 if x == 0
|
||
|
def sign(x):
|
||
|
return 1 if x >= 0 else -1
|
||
|
|
||
|
_api.check_in_list(['edge', 'center'], label_type=label_type)
|
||
|
|
||
|
bars = container.patches
|
||
|
errorbar = container.errorbar
|
||
|
datavalues = container.datavalues
|
||
|
orientation = container.orientation
|
||
|
|
||
|
if errorbar:
|
||
|
# check "ErrorbarContainer" for the definition of these elements
|
||
|
lines = errorbar.lines # attribute of "ErrorbarContainer" (tuple)
|
||
|
barlinecols = lines[2] # 0: data_line, 1: caplines, 2: barlinecols
|
||
|
barlinecol = barlinecols[0] # the "LineCollection" of error bars
|
||
|
errs = barlinecol.get_segments()
|
||
|
else:
|
||
|
errs = []
|
||
|
|
||
|
if labels is None:
|
||
|
labels = []
|
||
|
|
||
|
annotations = []
|
||
|
|
||
|
for bar, err, dat, lbl in itertools.zip_longest(
|
||
|
bars, errs, datavalues, labels
|
||
|
):
|
||
|
(x0, y0), (x1, y1) = bar.get_bbox().get_points()
|
||
|
xc, yc = (x0 + x1) / 2, (y0 + y1) / 2
|
||
|
|
||
|
if orientation == "vertical":
|
||
|
extrema = max(y0, y1) if dat >= 0 else min(y0, y1)
|
||
|
length = abs(y0 - y1)
|
||
|
else: # horizontal
|
||
|
extrema = max(x0, x1) if dat >= 0 else min(x0, x1)
|
||
|
length = abs(x0 - x1)
|
||
|
|
||
|
if err is None or np.size(err) == 0:
|
||
|
endpt = extrema
|
||
|
elif orientation == "vertical":
|
||
|
endpt = err[:, 1].max() if dat >= 0 else err[:, 1].min()
|
||
|
else: # horizontal
|
||
|
endpt = err[:, 0].max() if dat >= 0 else err[:, 0].min()
|
||
|
|
||
|
if label_type == "center":
|
||
|
value = sign(dat) * length
|
||
|
else: # edge
|
||
|
value = extrema
|
||
|
|
||
|
if label_type == "center":
|
||
|
xy = (0.5, 0.5)
|
||
|
kwargs["xycoords"] = (
|
||
|
lambda r, b=bar:
|
||
|
mtransforms.Bbox.intersection(
|
||
|
b.get_window_extent(r), b.get_clip_box()
|
||
|
) or mtransforms.Bbox.null()
|
||
|
)
|
||
|
else: # edge
|
||
|
if orientation == "vertical":
|
||
|
xy = xc, endpt
|
||
|
else: # horizontal
|
||
|
xy = endpt, yc
|
||
|
|
||
|
if orientation == "vertical":
|
||
|
y_direction = -1 if y_inverted else 1
|
||
|
xytext = 0, y_direction * sign(dat) * padding
|
||
|
else: # horizontal
|
||
|
x_direction = -1 if x_inverted else 1
|
||
|
xytext = x_direction * sign(dat) * padding, 0
|
||
|
|
||
|
if label_type == "center":
|
||
|
ha, va = "center", "center"
|
||
|
else: # edge
|
||
|
if orientation == "vertical":
|
||
|
ha = 'center'
|
||
|
if y_inverted:
|
||
|
va = 'top' if dat > 0 else 'bottom' # also handles NaN
|
||
|
else:
|
||
|
va = 'top' if dat < 0 else 'bottom' # also handles NaN
|
||
|
else: # horizontal
|
||
|
if x_inverted:
|
||
|
ha = 'right' if dat > 0 else 'left' # also handles NaN
|
||
|
else:
|
||
|
ha = 'right' if dat < 0 else 'left' # also handles NaN
|
||
|
va = 'center'
|
||
|
|
||
|
if np.isnan(dat):
|
||
|
lbl = ''
|
||
|
|
||
|
if lbl is None:
|
||
|
if isinstance(fmt, str):
|
||
|
lbl = cbook._auto_format_str(fmt, value)
|
||
|
elif callable(fmt):
|
||
|
lbl = fmt(value)
|
||
|
else:
|
||
|
raise TypeError("fmt must be a str or callable")
|
||
|
annotation = self.annotate(lbl,
|
||
|
xy, xytext, textcoords="offset points",
|
||
|
ha=ha, va=va, **kwargs)
|
||
|
annotations.append(annotation)
|
||
|
|
||
|
return annotations
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def broken_barh(self, xranges, yrange, **kwargs):
|
||
|
"""
|
||
|
Plot a horizontal sequence of rectangles.
|
||
|
|
||
|
A rectangle is drawn for each element of *xranges*. All rectangles
|
||
|
have the same vertical position and size defined by *yrange*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xranges : sequence of tuples (*xmin*, *xwidth*)
|
||
|
The x-positions and extents of the rectangles. For each tuple
|
||
|
(*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
|
||
|
*xwidth*.
|
||
|
yrange : (*ymin*, *yheight*)
|
||
|
The y-position and extent for all the rectangles.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~.collections.PolyCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
**kwargs : `.PolyCollection` properties
|
||
|
|
||
|
Each *kwarg* can be either a single argument applying to all
|
||
|
rectangles, e.g.::
|
||
|
|
||
|
facecolors='black'
|
||
|
|
||
|
or a sequence of arguments over which is cycled, e.g.::
|
||
|
|
||
|
facecolors=('black', 'blue')
|
||
|
|
||
|
would create interleaving black and blue rectangles.
|
||
|
|
||
|
Supported keywords:
|
||
|
|
||
|
%(PolyCollection:kwdoc)s
|
||
|
"""
|
||
|
# process the unit information
|
||
|
xdata = cbook._safe_first_finite(xranges) if len(xranges) else None
|
||
|
ydata = cbook._safe_first_finite(yrange) if len(yrange) else None
|
||
|
self._process_unit_info(
|
||
|
[("x", xdata), ("y", ydata)], kwargs, convert=False)
|
||
|
|
||
|
vertices = []
|
||
|
y0, dy = yrange
|
||
|
y0, y1 = self.convert_yunits((y0, y0 + dy))
|
||
|
for xr in xranges: # convert the absolute values, not the x and dx
|
||
|
try:
|
||
|
x0, dx = xr
|
||
|
except Exception:
|
||
|
raise ValueError(
|
||
|
"each range in xrange must be a sequence with two "
|
||
|
"elements (i.e. xrange must be an (N, 2) array)") from None
|
||
|
x0, x1 = self.convert_xunits((x0, x0 + dx))
|
||
|
vertices.append([(x0, y0), (x0, y1), (x1, y1), (x1, y0)])
|
||
|
|
||
|
col = mcoll.PolyCollection(np.array(vertices), **kwargs)
|
||
|
self.add_collection(col, autolim=True)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return col
|
||
|
|
||
|
@_preprocess_data()
|
||
|
def stem(self, *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0,
|
||
|
label=None, orientation='vertical'):
|
||
|
"""
|
||
|
Create a stem plot.
|
||
|
|
||
|
A stem plot draws lines perpendicular to a baseline at each location
|
||
|
*locs* from the baseline to *heads*, and places a marker there. For
|
||
|
vertical stem plots (the default), the *locs* are *x* positions, and
|
||
|
the *heads* are *y* values. For horizontal stem plots, the *locs* are
|
||
|
*y* positions, and the *heads* are *x* values.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
stem([locs,] heads, linefmt=None, markerfmt=None, basefmt=None)
|
||
|
|
||
|
The *locs*-positions are optional. *linefmt* may be provided as
|
||
|
positional, but all other formats must be provided as keyword
|
||
|
arguments.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
locs : array-like, default: (0, 1, ..., len(heads) - 1)
|
||
|
For vertical stem plots, the x-positions of the stems.
|
||
|
For horizontal stem plots, the y-positions of the stems.
|
||
|
|
||
|
heads : array-like
|
||
|
For vertical stem plots, the y-values of the stem heads.
|
||
|
For horizontal stem plots, the x-values of the stem heads.
|
||
|
|
||
|
linefmt : str, optional
|
||
|
A string defining the color and/or linestyle of the vertical lines:
|
||
|
|
||
|
========= =============
|
||
|
Character Line Style
|
||
|
========= =============
|
||
|
``'-'`` solid line
|
||
|
``'--'`` dashed line
|
||
|
``'-.'`` dash-dot line
|
||
|
``':'`` dotted line
|
||
|
========= =============
|
||
|
|
||
|
Default: 'C0-', i.e. solid line with the first color of the color
|
||
|
cycle.
|
||
|
|
||
|
Note: Markers specified through this parameter (e.g. 'x') will be
|
||
|
silently ignored. Instead, markers should be specified using
|
||
|
*markerfmt*.
|
||
|
|
||
|
markerfmt : str, optional
|
||
|
A string defining the color and/or shape of the markers at the stem
|
||
|
heads. If the marker is not given, use the marker 'o', i.e. filled
|
||
|
circles. If the color is not given, use the color from *linefmt*.
|
||
|
|
||
|
basefmt : str, default: 'C3-' ('C2-' in classic mode)
|
||
|
A format string defining the properties of the baseline.
|
||
|
|
||
|
orientation : {'vertical', 'horizontal'}, default: 'vertical'
|
||
|
The orientation of the stems.
|
||
|
|
||
|
bottom : float, default: 0
|
||
|
The y/x-position of the baseline (depending on *orientation*).
|
||
|
|
||
|
label : str, optional
|
||
|
The label to use for the stems in legends.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.StemContainer`
|
||
|
The container may be treated like a tuple
|
||
|
(*markerline*, *stemlines*, *baseline*)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. seealso::
|
||
|
The MATLAB function
|
||
|
`stem <https://www.mathworks.com/help/matlab/ref/stem.html>`_
|
||
|
which inspired this method.
|
||
|
"""
|
||
|
if not 1 <= len(args) <= 3:
|
||
|
raise _api.nargs_error('stem', '1-3', len(args))
|
||
|
_api.check_in_list(['horizontal', 'vertical'], orientation=orientation)
|
||
|
|
||
|
if len(args) == 1:
|
||
|
heads, = args
|
||
|
locs = np.arange(len(heads))
|
||
|
args = ()
|
||
|
elif isinstance(args[1], str):
|
||
|
heads, *args = args
|
||
|
locs = np.arange(len(heads))
|
||
|
else:
|
||
|
locs, heads, *args = args
|
||
|
|
||
|
if orientation == 'vertical':
|
||
|
locs, heads = self._process_unit_info([("x", locs), ("y", heads)])
|
||
|
else: # horizontal
|
||
|
heads, locs = self._process_unit_info([("x", heads), ("y", locs)])
|
||
|
|
||
|
# resolve line format
|
||
|
if linefmt is None:
|
||
|
linefmt = args[0] if len(args) > 0 else "C0-"
|
||
|
linestyle, linemarker, linecolor = _process_plot_format(linefmt)
|
||
|
|
||
|
# resolve marker format
|
||
|
if markerfmt is None:
|
||
|
# if not given as kwarg, fall back to 'o'
|
||
|
markerfmt = "o"
|
||
|
if markerfmt == '':
|
||
|
markerfmt = ' ' # = empty line style; '' would resolve rcParams
|
||
|
markerstyle, markermarker, markercolor = \
|
||
|
_process_plot_format(markerfmt)
|
||
|
if markermarker is None:
|
||
|
markermarker = 'o'
|
||
|
if markerstyle is None:
|
||
|
markerstyle = 'None'
|
||
|
if markercolor is None:
|
||
|
markercolor = linecolor
|
||
|
|
||
|
# resolve baseline format
|
||
|
if basefmt is None:
|
||
|
basefmt = ("C2-" if mpl.rcParams["_internal.classic_mode"] else
|
||
|
"C3-")
|
||
|
basestyle, basemarker, basecolor = _process_plot_format(basefmt)
|
||
|
|
||
|
# New behaviour in 3.1 is to use a LineCollection for the stemlines
|
||
|
if linestyle is None:
|
||
|
linestyle = mpl.rcParams['lines.linestyle']
|
||
|
xlines = self.vlines if orientation == "vertical" else self.hlines
|
||
|
stemlines = xlines(
|
||
|
locs, bottom, heads,
|
||
|
colors=linecolor, linestyles=linestyle, label="_nolegend_")
|
||
|
|
||
|
if orientation == 'horizontal':
|
||
|
marker_x = heads
|
||
|
marker_y = locs
|
||
|
baseline_x = [bottom, bottom]
|
||
|
baseline_y = [np.min(locs), np.max(locs)]
|
||
|
else:
|
||
|
marker_x = locs
|
||
|
marker_y = heads
|
||
|
baseline_x = [np.min(locs), np.max(locs)]
|
||
|
baseline_y = [bottom, bottom]
|
||
|
|
||
|
markerline, = self.plot(marker_x, marker_y,
|
||
|
color=markercolor, linestyle=markerstyle,
|
||
|
marker=markermarker, label="_nolegend_")
|
||
|
|
||
|
baseline, = self.plot(baseline_x, baseline_y,
|
||
|
color=basecolor, linestyle=basestyle,
|
||
|
marker=basemarker, label="_nolegend_")
|
||
|
|
||
|
stem_container = StemContainer((markerline, stemlines, baseline),
|
||
|
label=label)
|
||
|
self.add_container(stem_container)
|
||
|
return stem_container
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "explode", "labels", "colors"])
|
||
|
def pie(self, x, explode=None, labels=None, colors=None,
|
||
|
autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1,
|
||
|
startangle=0, radius=1, counterclock=True,
|
||
|
wedgeprops=None, textprops=None, center=(0, 0),
|
||
|
frame=False, rotatelabels=False, *, normalize=True, hatch=None):
|
||
|
"""
|
||
|
Plot a pie chart.
|
||
|
|
||
|
Make a pie chart of array *x*. The fractional area of each wedge is
|
||
|
given by ``x/sum(x)``.
|
||
|
|
||
|
The wedges are plotted counterclockwise, by default starting from the
|
||
|
x-axis.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1D array-like
|
||
|
The wedge sizes.
|
||
|
|
||
|
explode : array-like, default: None
|
||
|
If not *None*, is a ``len(x)`` array which specifies the fraction
|
||
|
of the radius with which to offset each wedge.
|
||
|
|
||
|
labels : list, default: None
|
||
|
A sequence of strings providing the labels for each wedge
|
||
|
|
||
|
colors : :mpltype:`color` or list of :mpltype:`color`, default: None
|
||
|
A sequence of colors through which the pie chart will cycle. If
|
||
|
*None*, will use the colors in the currently active cycle.
|
||
|
|
||
|
hatch : str or list, default: None
|
||
|
Hatching pattern applied to all pie wedges or sequence of patterns
|
||
|
through which the chart will cycle. For a list of valid patterns,
|
||
|
see :doc:`/gallery/shapes_and_collections/hatch_style_reference`.
|
||
|
|
||
|
.. versionadded:: 3.7
|
||
|
|
||
|
autopct : None or str or callable, default: None
|
||
|
If not *None*, *autopct* is a string or function used to label the
|
||
|
wedges with their numeric value. The label will be placed inside
|
||
|
the wedge. If *autopct* is a format string, the label will be
|
||
|
``fmt % pct``. If *autopct* is a function, then it will be called.
|
||
|
|
||
|
pctdistance : float, default: 0.6
|
||
|
The relative distance along the radius at which the text
|
||
|
generated by *autopct* is drawn. To draw the text outside the pie,
|
||
|
set *pctdistance* > 1. This parameter is ignored if *autopct* is
|
||
|
``None``.
|
||
|
|
||
|
labeldistance : float or None, default: 1.1
|
||
|
The relative distance along the radius at which the labels are
|
||
|
drawn. To draw the labels inside the pie, set *labeldistance* < 1.
|
||
|
If set to ``None``, labels are not drawn but are still stored for
|
||
|
use in `.legend`.
|
||
|
|
||
|
shadow : bool or dict, default: False
|
||
|
If bool, whether to draw a shadow beneath the pie. If dict, draw a shadow
|
||
|
passing the properties in the dict to `.Shadow`.
|
||
|
|
||
|
.. versionadded:: 3.8
|
||
|
*shadow* can be a dict.
|
||
|
|
||
|
startangle : float, default: 0 degrees
|
||
|
The angle by which the start of the pie is rotated,
|
||
|
counterclockwise from the x-axis.
|
||
|
|
||
|
radius : float, default: 1
|
||
|
The radius of the pie.
|
||
|
|
||
|
counterclock : bool, default: True
|
||
|
Specify fractions direction, clockwise or counterclockwise.
|
||
|
|
||
|
wedgeprops : dict, default: None
|
||
|
Dict of arguments passed to each `.patches.Wedge` of the pie.
|
||
|
For example, ``wedgeprops = {'linewidth': 3}`` sets the width of
|
||
|
the wedge border lines equal to 3. By default, ``clip_on=False``.
|
||
|
When there is a conflict between these properties and other
|
||
|
keywords, properties passed to *wedgeprops* take precedence.
|
||
|
|
||
|
textprops : dict, default: None
|
||
|
Dict of arguments to pass to the text objects.
|
||
|
|
||
|
center : (float, float), default: (0, 0)
|
||
|
The coordinates of the center of the chart.
|
||
|
|
||
|
frame : bool, default: False
|
||
|
Plot Axes frame with the chart if true.
|
||
|
|
||
|
rotatelabels : bool, default: False
|
||
|
Rotate each label to the angle of the corresponding slice if true.
|
||
|
|
||
|
normalize : bool, default: True
|
||
|
When *True*, always make a full pie by normalizing x so that
|
||
|
``sum(x) == 1``. *False* makes a partial pie if ``sum(x) <= 1``
|
||
|
and raises a `ValueError` for ``sum(x) > 1``.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
patches : list
|
||
|
A sequence of `matplotlib.patches.Wedge` instances
|
||
|
|
||
|
texts : list
|
||
|
A list of the label `.Text` instances.
|
||
|
|
||
|
autotexts : list
|
||
|
A list of `.Text` instances for the numeric labels. This will only
|
||
|
be returned if the parameter *autopct* is not *None*.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The pie chart will probably look best if the figure and Axes are
|
||
|
square, or the Axes aspect is equal.
|
||
|
This method sets the aspect ratio of the axis to "equal".
|
||
|
The Axes aspect ratio can be controlled with `.Axes.set_aspect`.
|
||
|
"""
|
||
|
self.set_aspect('equal')
|
||
|
# The use of float32 is "historical", but can't be changed without
|
||
|
# regenerating the test baselines.
|
||
|
x = np.asarray(x, np.float32)
|
||
|
if x.ndim > 1:
|
||
|
raise ValueError("x must be 1D")
|
||
|
|
||
|
if np.any(x < 0):
|
||
|
raise ValueError("Wedge sizes 'x' must be non negative values")
|
||
|
|
||
|
sx = x.sum()
|
||
|
|
||
|
if normalize:
|
||
|
x = x / sx
|
||
|
elif sx > 1:
|
||
|
raise ValueError('Cannot plot an unnormalized pie with sum(x) > 1')
|
||
|
if labels is None:
|
||
|
labels = [''] * len(x)
|
||
|
if explode is None:
|
||
|
explode = [0] * len(x)
|
||
|
if len(x) != len(labels):
|
||
|
raise ValueError("'label' must be of length 'x'")
|
||
|
if len(x) != len(explode):
|
||
|
raise ValueError("'explode' must be of length 'x'")
|
||
|
if colors is None:
|
||
|
get_next_color = self._get_patches_for_fill.get_next_color
|
||
|
else:
|
||
|
color_cycle = itertools.cycle(colors)
|
||
|
|
||
|
def get_next_color():
|
||
|
return next(color_cycle)
|
||
|
|
||
|
hatch_cycle = itertools.cycle(np.atleast_1d(hatch))
|
||
|
|
||
|
_api.check_isinstance(Real, radius=radius, startangle=startangle)
|
||
|
if radius <= 0:
|
||
|
raise ValueError(f'radius must be a positive number, not {radius}')
|
||
|
|
||
|
# Starting theta1 is the start fraction of the circle
|
||
|
theta1 = startangle / 360
|
||
|
|
||
|
if wedgeprops is None:
|
||
|
wedgeprops = {}
|
||
|
if textprops is None:
|
||
|
textprops = {}
|
||
|
|
||
|
texts = []
|
||
|
slices = []
|
||
|
autotexts = []
|
||
|
|
||
|
for frac, label, expl in zip(x, labels, explode):
|
||
|
x, y = center
|
||
|
theta2 = (theta1 + frac) if counterclock else (theta1 - frac)
|
||
|
thetam = 2 * np.pi * 0.5 * (theta1 + theta2)
|
||
|
x += expl * math.cos(thetam)
|
||
|
y += expl * math.sin(thetam)
|
||
|
|
||
|
w = mpatches.Wedge((x, y), radius, 360. * min(theta1, theta2),
|
||
|
360. * max(theta1, theta2),
|
||
|
facecolor=get_next_color(),
|
||
|
hatch=next(hatch_cycle),
|
||
|
clip_on=False,
|
||
|
label=label)
|
||
|
w.set(**wedgeprops)
|
||
|
slices.append(w)
|
||
|
self.add_patch(w)
|
||
|
|
||
|
if shadow:
|
||
|
# Make sure to add a shadow after the call to add_patch so the
|
||
|
# figure and transform props will be set.
|
||
|
shadow_dict = {'ox': -0.02, 'oy': -0.02, 'label': '_nolegend_'}
|
||
|
if isinstance(shadow, dict):
|
||
|
shadow_dict.update(shadow)
|
||
|
self.add_patch(mpatches.Shadow(w, **shadow_dict))
|
||
|
|
||
|
if labeldistance is not None:
|
||
|
xt = x + labeldistance * radius * math.cos(thetam)
|
||
|
yt = y + labeldistance * radius * math.sin(thetam)
|
||
|
label_alignment_h = 'left' if xt > 0 else 'right'
|
||
|
label_alignment_v = 'center'
|
||
|
label_rotation = 'horizontal'
|
||
|
if rotatelabels:
|
||
|
label_alignment_v = 'bottom' if yt > 0 else 'top'
|
||
|
label_rotation = (np.rad2deg(thetam)
|
||
|
+ (0 if xt > 0 else 180))
|
||
|
t = self.text(xt, yt, label,
|
||
|
clip_on=False,
|
||
|
horizontalalignment=label_alignment_h,
|
||
|
verticalalignment=label_alignment_v,
|
||
|
rotation=label_rotation,
|
||
|
size=mpl.rcParams['xtick.labelsize'])
|
||
|
t.set(**textprops)
|
||
|
texts.append(t)
|
||
|
|
||
|
if autopct is not None:
|
||
|
xt = x + pctdistance * radius * math.cos(thetam)
|
||
|
yt = y + pctdistance * radius * math.sin(thetam)
|
||
|
if isinstance(autopct, str):
|
||
|
s = autopct % (100. * frac)
|
||
|
elif callable(autopct):
|
||
|
s = autopct(100. * frac)
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
'autopct must be callable or a format string')
|
||
|
if mpl._val_or_rc(textprops.get("usetex"), "text.usetex"):
|
||
|
# escape % (i.e. \%) if it is not already escaped
|
||
|
s = re.sub(r"([^\\])%", r"\1\\%", s)
|
||
|
t = self.text(xt, yt, s,
|
||
|
clip_on=False,
|
||
|
horizontalalignment='center',
|
||
|
verticalalignment='center')
|
||
|
t.set(**textprops)
|
||
|
autotexts.append(t)
|
||
|
|
||
|
theta1 = theta2
|
||
|
|
||
|
if frame:
|
||
|
self._request_autoscale_view()
|
||
|
else:
|
||
|
self.set(frame_on=False, xticks=[], yticks=[],
|
||
|
xlim=(-1.25 + center[0], 1.25 + center[0]),
|
||
|
ylim=(-1.25 + center[1], 1.25 + center[1]))
|
||
|
|
||
|
if autopct is None:
|
||
|
return slices, texts
|
||
|
else:
|
||
|
return slices, texts, autotexts
|
||
|
|
||
|
@staticmethod
|
||
|
def _errorevery_to_mask(x, errorevery):
|
||
|
"""
|
||
|
Normalize `errorbar`'s *errorevery* to be a boolean mask for data *x*.
|
||
|
|
||
|
This function is split out to be usable both by 2D and 3D errorbars.
|
||
|
"""
|
||
|
if isinstance(errorevery, Integral):
|
||
|
errorevery = (0, errorevery)
|
||
|
if isinstance(errorevery, tuple):
|
||
|
if (len(errorevery) == 2 and
|
||
|
isinstance(errorevery[0], Integral) and
|
||
|
isinstance(errorevery[1], Integral)):
|
||
|
errorevery = slice(errorevery[0], None, errorevery[1])
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f'{errorevery=!r} is a not a tuple of two integers')
|
||
|
elif isinstance(errorevery, slice):
|
||
|
pass
|
||
|
elif not isinstance(errorevery, str) and np.iterable(errorevery):
|
||
|
try:
|
||
|
x[errorevery] # fancy indexing
|
||
|
except (ValueError, IndexError) as err:
|
||
|
raise ValueError(
|
||
|
f"{errorevery=!r} is iterable but not a valid NumPy fancy "
|
||
|
"index to match 'xerr'/'yerr'") from err
|
||
|
else:
|
||
|
raise ValueError(f"{errorevery=!r} is not a recognized value")
|
||
|
everymask = np.zeros(len(x), bool)
|
||
|
everymask[errorevery] = True
|
||
|
return everymask
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "xerr", "yerr"],
|
||
|
label_namer="y")
|
||
|
@_docstring.dedent_interpd
|
||
|
def errorbar(self, x, y, yerr=None, xerr=None,
|
||
|
fmt='', ecolor=None, elinewidth=None, capsize=None,
|
||
|
barsabove=False, lolims=False, uplims=False,
|
||
|
xlolims=False, xuplims=False, errorevery=1, capthick=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Plot y versus x as lines and/or markers with attached errorbars.
|
||
|
|
||
|
*x*, *y* define the data locations, *xerr*, *yerr* define the errorbar
|
||
|
sizes. By default, this draws the data markers/lines as well as the
|
||
|
errorbars. Use fmt='none' to draw errorbars without any data markers.
|
||
|
|
||
|
.. versionadded:: 3.7
|
||
|
Caps and error lines are drawn in polar coordinates on polar plots.
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : float or array-like
|
||
|
The data positions.
|
||
|
|
||
|
xerr, yerr : float or array-like, shape(N,) or shape(2, N), optional
|
||
|
The errorbar sizes:
|
||
|
|
||
|
- scalar: Symmetric +/- values for all data points.
|
||
|
- shape(N,): Symmetric +/-values for each data point.
|
||
|
- shape(2, N): Separate - and + values for each bar. First row
|
||
|
contains the lower errors, the second row contains the upper
|
||
|
errors.
|
||
|
- *None*: No errorbar.
|
||
|
|
||
|
All values must be >= 0.
|
||
|
|
||
|
See :doc:`/gallery/statistics/errorbar_features`
|
||
|
for an example on the usage of ``xerr`` and ``yerr``.
|
||
|
|
||
|
fmt : str, default: ''
|
||
|
The format for the data points / data lines. See `.plot` for
|
||
|
details.
|
||
|
|
||
|
Use 'none' (case-insensitive) to plot errorbars without any data
|
||
|
markers.
|
||
|
|
||
|
ecolor : :mpltype:`color`, default: None
|
||
|
The color of the errorbar lines. If None, use the color of the
|
||
|
line connecting the markers.
|
||
|
|
||
|
elinewidth : float, default: None
|
||
|
The linewidth of the errorbar lines. If None, the linewidth of
|
||
|
the current style is used.
|
||
|
|
||
|
capsize : float, default: :rc:`errorbar.capsize`
|
||
|
The length of the error bar caps in points.
|
||
|
|
||
|
capthick : float, default: None
|
||
|
An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
|
||
|
This setting is a more sensible name for the property that
|
||
|
controls the thickness of the error bar cap in points. For
|
||
|
backwards compatibility, if *mew* or *markeredgewidth* are given,
|
||
|
then they will over-ride *capthick*. This may change in future
|
||
|
releases.
|
||
|
|
||
|
barsabove : bool, default: False
|
||
|
If True, will plot the errorbars above the plot
|
||
|
symbols. Default is below.
|
||
|
|
||
|
lolims, uplims, xlolims, xuplims : bool or array-like, default: False
|
||
|
These arguments can be used to indicate that a value gives only
|
||
|
upper/lower limits. In that case a caret symbol is used to
|
||
|
indicate this. *lims*-arguments may be scalars, or array-likes of
|
||
|
the same length as *xerr* and *yerr*. To use limits with inverted
|
||
|
axes, `~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before
|
||
|
:meth:`errorbar`. Note the tricky parameter names: setting e.g.
|
||
|
*lolims* to True means that the y-value is a *lower* limit of the
|
||
|
True value, so, only an *upward*-pointing arrow will be drawn!
|
||
|
|
||
|
errorevery : int or (int, int), default: 1
|
||
|
draws error bars on a subset of the data. *errorevery* =N draws
|
||
|
error bars on the points (x[::N], y[::N]).
|
||
|
*errorevery* =(start, N) draws error bars on the points
|
||
|
(x[start::N], y[start::N]). e.g. errorevery=(6, 3)
|
||
|
adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
|
||
|
Used to avoid overlapping error bars when two series share x-axis
|
||
|
values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.ErrorbarContainer`
|
||
|
The container contains:
|
||
|
|
||
|
- plotline: `~matplotlib.lines.Line2D` instance of x, y plot markers
|
||
|
and/or line.
|
||
|
- caplines: A tuple of `~matplotlib.lines.Line2D` instances of the error
|
||
|
bar caps.
|
||
|
- barlinecols: A tuple of `.LineCollection` with the horizontal and
|
||
|
vertical error ranges.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
All other keyword arguments are passed on to the `~.Axes.plot` call
|
||
|
drawing the markers. For example, this code makes big red squares
|
||
|
with thick green edges::
|
||
|
|
||
|
x, y, yerr = rand(3, 10)
|
||
|
errorbar(x, y, yerr, marker='s', mfc='red',
|
||
|
mec='green', ms=20, mew=4)
|
||
|
|
||
|
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
|
||
|
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
|
||
|
and *markeredgewidth*.
|
||
|
|
||
|
Valid kwargs for the marker properties are:
|
||
|
|
||
|
- *dashes*
|
||
|
- *dash_capstyle*
|
||
|
- *dash_joinstyle*
|
||
|
- *drawstyle*
|
||
|
- *fillstyle*
|
||
|
- *linestyle*
|
||
|
- *marker*
|
||
|
- *markeredgecolor*
|
||
|
- *markeredgewidth*
|
||
|
- *markerfacecolor*
|
||
|
- *markerfacecoloralt*
|
||
|
- *markersize*
|
||
|
- *markevery*
|
||
|
- *solid_capstyle*
|
||
|
- *solid_joinstyle*
|
||
|
|
||
|
Refer to the corresponding `.Line2D` property for more details:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
"""
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
|
||
|
# Drop anything that comes in as None to use the default instead.
|
||
|
kwargs = {k: v for k, v in kwargs.items() if v is not None}
|
||
|
kwargs.setdefault('zorder', 2)
|
||
|
|
||
|
# Casting to object arrays preserves units.
|
||
|
if not isinstance(x, np.ndarray):
|
||
|
x = np.asarray(x, dtype=object)
|
||
|
if not isinstance(y, np.ndarray):
|
||
|
y = np.asarray(y, dtype=object)
|
||
|
|
||
|
def _upcast_err(err):
|
||
|
"""
|
||
|
Safely handle tuple of containers that carry units.
|
||
|
|
||
|
This function covers the case where the input to the xerr/yerr is a
|
||
|
length 2 tuple of equal length ndarray-subclasses that carry the
|
||
|
unit information in the container.
|
||
|
|
||
|
If we have a tuple of nested numpy array (subclasses), we defer
|
||
|
coercing the units to be consistent to the underlying unit
|
||
|
library (and implicitly the broadcasting).
|
||
|
|
||
|
Otherwise, fallback to casting to an object array.
|
||
|
"""
|
||
|
|
||
|
if (
|
||
|
# make sure it is not a scalar
|
||
|
np.iterable(err) and
|
||
|
# and it is not empty
|
||
|
len(err) > 0 and
|
||
|
# and the first element is an array sub-class use
|
||
|
# safe_first_element because getitem is index-first not
|
||
|
# location first on pandas objects so err[0] almost always
|
||
|
# fails.
|
||
|
isinstance(cbook._safe_first_finite(err), np.ndarray)
|
||
|
):
|
||
|
# Get the type of the first element
|
||
|
atype = type(cbook._safe_first_finite(err))
|
||
|
# Promote the outer container to match the inner container
|
||
|
if atype is np.ndarray:
|
||
|
# Converts using np.asarray, because data cannot
|
||
|
# be directly passed to init of np.ndarray
|
||
|
return np.asarray(err, dtype=object)
|
||
|
# If atype is not np.ndarray, directly pass data to init.
|
||
|
# This works for types such as unyts and astropy units
|
||
|
return atype(err)
|
||
|
# Otherwise wrap it in an object array
|
||
|
return np.asarray(err, dtype=object)
|
||
|
|
||
|
if xerr is not None and not isinstance(xerr, np.ndarray):
|
||
|
xerr = _upcast_err(xerr)
|
||
|
if yerr is not None and not isinstance(yerr, np.ndarray):
|
||
|
yerr = _upcast_err(yerr)
|
||
|
x, y = np.atleast_1d(x, y) # Make sure all the args are iterable.
|
||
|
if len(x) != len(y):
|
||
|
raise ValueError("'x' and 'y' must have the same size")
|
||
|
|
||
|
everymask = self._errorevery_to_mask(x, errorevery)
|
||
|
|
||
|
label = kwargs.pop("label", None)
|
||
|
kwargs['label'] = '_nolegend_'
|
||
|
|
||
|
# Create the main line and determine overall kwargs for child artists.
|
||
|
# We avoid calling self.plot() directly, or self._get_lines(), because
|
||
|
# that would call self._process_unit_info again, and do other indirect
|
||
|
# data processing.
|
||
|
(data_line, base_style), = self._get_lines._plot_args(
|
||
|
self, (x, y) if fmt == '' else (x, y, fmt), kwargs, return_kwargs=True)
|
||
|
|
||
|
# Do this after creating `data_line` to avoid modifying `base_style`.
|
||
|
if barsabove:
|
||
|
data_line.set_zorder(kwargs['zorder'] - .1)
|
||
|
else:
|
||
|
data_line.set_zorder(kwargs['zorder'] + .1)
|
||
|
|
||
|
# Add line to plot, or throw it away and use it to determine kwargs.
|
||
|
if fmt.lower() != 'none':
|
||
|
self.add_line(data_line)
|
||
|
else:
|
||
|
data_line = None
|
||
|
# Remove alpha=0 color that _get_lines._plot_args returns for
|
||
|
# 'none' format, and replace it with user-specified color, if
|
||
|
# supplied.
|
||
|
base_style.pop('color')
|
||
|
if 'color' in kwargs:
|
||
|
base_style['color'] = kwargs.pop('color')
|
||
|
|
||
|
if 'color' not in base_style:
|
||
|
base_style['color'] = 'C0'
|
||
|
if ecolor is None:
|
||
|
ecolor = base_style['color']
|
||
|
|
||
|
# Eject any line-specific information from format string, as it's not
|
||
|
# needed for bars or caps.
|
||
|
for key in ['marker', 'markersize', 'markerfacecolor',
|
||
|
'markerfacecoloralt',
|
||
|
'markeredgewidth', 'markeredgecolor', 'markevery',
|
||
|
'linestyle', 'fillstyle', 'drawstyle', 'dash_capstyle',
|
||
|
'dash_joinstyle', 'solid_capstyle', 'solid_joinstyle',
|
||
|
'dashes']:
|
||
|
base_style.pop(key, None)
|
||
|
|
||
|
# Make the style dict for the line collections (the bars).
|
||
|
eb_lines_style = {**base_style, 'color': ecolor}
|
||
|
|
||
|
if elinewidth is not None:
|
||
|
eb_lines_style['linewidth'] = elinewidth
|
||
|
elif 'linewidth' in kwargs:
|
||
|
eb_lines_style['linewidth'] = kwargs['linewidth']
|
||
|
|
||
|
for key in ('transform', 'alpha', 'zorder', 'rasterized'):
|
||
|
if key in kwargs:
|
||
|
eb_lines_style[key] = kwargs[key]
|
||
|
|
||
|
# Make the style dict for caps (the "hats").
|
||
|
eb_cap_style = {**base_style, 'linestyle': 'none'}
|
||
|
if capsize is None:
|
||
|
capsize = mpl.rcParams["errorbar.capsize"]
|
||
|
if capsize > 0:
|
||
|
eb_cap_style['markersize'] = 2. * capsize
|
||
|
if capthick is not None:
|
||
|
eb_cap_style['markeredgewidth'] = capthick
|
||
|
|
||
|
# For backwards-compat, allow explicit setting of
|
||
|
# 'markeredgewidth' to over-ride capthick.
|
||
|
for key in ('markeredgewidth', 'transform', 'alpha',
|
||
|
'zorder', 'rasterized'):
|
||
|
if key in kwargs:
|
||
|
eb_cap_style[key] = kwargs[key]
|
||
|
eb_cap_style['color'] = ecolor
|
||
|
|
||
|
barcols = []
|
||
|
caplines = {'x': [], 'y': []}
|
||
|
|
||
|
# Vectorized fancy-indexer.
|
||
|
def apply_mask(arrays, mask):
|
||
|
return [array[mask] for array in arrays]
|
||
|
|
||
|
# dep: dependent dataset, indep: independent dataset
|
||
|
for (dep_axis, dep, err, lolims, uplims, indep, lines_func,
|
||
|
marker, lomarker, himarker) in [
|
||
|
("x", x, xerr, xlolims, xuplims, y, self.hlines,
|
||
|
"|", mlines.CARETRIGHTBASE, mlines.CARETLEFTBASE),
|
||
|
("y", y, yerr, lolims, uplims, x, self.vlines,
|
||
|
"_", mlines.CARETUPBASE, mlines.CARETDOWNBASE),
|
||
|
]:
|
||
|
if err is None:
|
||
|
continue
|
||
|
lolims = np.broadcast_to(lolims, len(dep)).astype(bool)
|
||
|
uplims = np.broadcast_to(uplims, len(dep)).astype(bool)
|
||
|
try:
|
||
|
np.broadcast_to(err, (2, len(dep)))
|
||
|
except ValueError:
|
||
|
raise ValueError(
|
||
|
f"'{dep_axis}err' (shape: {np.shape(err)}) must be a "
|
||
|
f"scalar or a 1D or (2, n) array-like whose shape matches "
|
||
|
f"'{dep_axis}' (shape: {np.shape(dep)})") from None
|
||
|
if err.dtype is np.dtype(object) and np.any(err == None): # noqa: E711
|
||
|
raise ValueError(
|
||
|
f"'{dep_axis}err' must not contain None. "
|
||
|
"Use NaN if you want to skip a value.")
|
||
|
|
||
|
res = np.zeros(err.shape, dtype=bool) # Default in case of nan
|
||
|
if np.any(np.less(err, -err, out=res, where=(err == err))):
|
||
|
# like err<0, but also works for timedelta and nan.
|
||
|
raise ValueError(
|
||
|
f"'{dep_axis}err' must not contain negative values")
|
||
|
# This is like
|
||
|
# elow, ehigh = np.broadcast_to(...)
|
||
|
# return dep - elow * ~lolims, dep + ehigh * ~uplims
|
||
|
# except that broadcast_to would strip units.
|
||
|
low, high = dep + np.vstack([-(1 - lolims), 1 - uplims]) * err
|
||
|
barcols.append(lines_func(
|
||
|
*apply_mask([indep, low, high], everymask), **eb_lines_style))
|
||
|
if self.name == "polar" and dep_axis == "x":
|
||
|
for b in barcols:
|
||
|
for p in b.get_paths():
|
||
|
p._interpolation_steps = 2
|
||
|
# Normal errorbars for points without upper/lower limits.
|
||
|
nolims = ~(lolims | uplims)
|
||
|
if nolims.any() and capsize > 0:
|
||
|
indep_masked, lo_masked, hi_masked = apply_mask(
|
||
|
[indep, low, high], nolims & everymask)
|
||
|
for lh_masked in [lo_masked, hi_masked]:
|
||
|
# Since this has to work for x and y as dependent data, we
|
||
|
# first set both x and y to the independent variable and
|
||
|
# overwrite the respective dependent data in a second step.
|
||
|
line = mlines.Line2D(indep_masked, indep_masked,
|
||
|
marker=marker, **eb_cap_style)
|
||
|
line.set(**{f"{dep_axis}data": lh_masked})
|
||
|
caplines[dep_axis].append(line)
|
||
|
for idx, (lims, hl) in enumerate([(lolims, high), (uplims, low)]):
|
||
|
if not lims.any():
|
||
|
continue
|
||
|
hlmarker = (
|
||
|
himarker
|
||
|
if self._axis_map[dep_axis].get_inverted() ^ idx
|
||
|
else lomarker)
|
||
|
x_masked, y_masked, hl_masked = apply_mask(
|
||
|
[x, y, hl], lims & everymask)
|
||
|
# As above, we set the dependent data in a second step.
|
||
|
line = mlines.Line2D(x_masked, y_masked,
|
||
|
marker=hlmarker, **eb_cap_style)
|
||
|
line.set(**{f"{dep_axis}data": hl_masked})
|
||
|
caplines[dep_axis].append(line)
|
||
|
if capsize > 0:
|
||
|
caplines[dep_axis].append(mlines.Line2D(
|
||
|
x_masked, y_masked, marker=marker, **eb_cap_style))
|
||
|
if self.name == 'polar':
|
||
|
for axis in caplines:
|
||
|
for l in caplines[axis]:
|
||
|
# Rotate caps to be perpendicular to the error bars
|
||
|
for theta, r in zip(l.get_xdata(), l.get_ydata()):
|
||
|
rotation = mtransforms.Affine2D().rotate(theta)
|
||
|
if axis == 'y':
|
||
|
rotation.rotate(-np.pi / 2)
|
||
|
ms = mmarkers.MarkerStyle(marker=marker,
|
||
|
transform=rotation)
|
||
|
self.add_line(mlines.Line2D([theta], [r], marker=ms,
|
||
|
**eb_cap_style))
|
||
|
else:
|
||
|
for axis in caplines:
|
||
|
for l in caplines[axis]:
|
||
|
self.add_line(l)
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
caplines = caplines['x'] + caplines['y']
|
||
|
errorbar_container = ErrorbarContainer(
|
||
|
(data_line, tuple(caplines), tuple(barcols)),
|
||
|
has_xerr=(xerr is not None), has_yerr=(yerr is not None),
|
||
|
label=label)
|
||
|
self.containers.append(errorbar_container)
|
||
|
|
||
|
return errorbar_container # (l0, caplines, barcols)
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_api.rename_parameter("3.9", "labels", "tick_labels")
|
||
|
def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
|
||
|
positions=None, widths=None, patch_artist=None,
|
||
|
bootstrap=None, usermedians=None, conf_intervals=None,
|
||
|
meanline=None, showmeans=None, showcaps=None,
|
||
|
showbox=None, showfliers=None, boxprops=None,
|
||
|
tick_labels=None, flierprops=None, medianprops=None,
|
||
|
meanprops=None, capprops=None, whiskerprops=None,
|
||
|
manage_ticks=True, autorange=False, zorder=None,
|
||
|
capwidths=None, label=None):
|
||
|
"""
|
||
|
Draw a box and whisker plot.
|
||
|
|
||
|
The box extends from the first quartile (Q1) to the third
|
||
|
quartile (Q3) of the data, with a line at the median.
|
||
|
The whiskers extend from the box to the farthest data point
|
||
|
lying within 1.5x the inter-quartile range (IQR) from the box.
|
||
|
Flier points are those past the end of the whiskers.
|
||
|
See https://en.wikipedia.org/wiki/Box_plot for reference.
|
||
|
|
||
|
.. code-block:: none
|
||
|
|
||
|
Q1-1.5IQR Q1 median Q3 Q3+1.5IQR
|
||
|
|-----:-----|
|
||
|
o |--------| : |--------| o o
|
||
|
|-----:-----|
|
||
|
flier <-----------> fliers
|
||
|
IQR
|
||
|
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Array or a sequence of vectors.
|
||
|
The input data. If a 2D array, a boxplot is drawn for each column
|
||
|
in *x*. If a sequence of 1D arrays, a boxplot is drawn for each
|
||
|
array in *x*.
|
||
|
|
||
|
notch : bool, default: :rc:`boxplot.notch`
|
||
|
Whether to draw a notched boxplot (`True`), or a rectangular
|
||
|
boxplot (`False`). The notches represent the confidence interval
|
||
|
(CI) around the median. The documentation for *bootstrap*
|
||
|
describes how the locations of the notches are computed by
|
||
|
default, but their locations may also be overridden by setting the
|
||
|
*conf_intervals* parameter.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
In cases where the values of the CI are less than the
|
||
|
lower quartile or greater than the upper quartile, the
|
||
|
notches will extend beyond the box, giving it a
|
||
|
distinctive "flipped" appearance. This is expected
|
||
|
behavior and consistent with other statistical
|
||
|
visualization packages.
|
||
|
|
||
|
sym : str, optional
|
||
|
The default symbol for flier points. An empty string ('') hides
|
||
|
the fliers. If `None`, then the fliers default to 'b+'. More
|
||
|
control is provided by the *flierprops* parameter.
|
||
|
|
||
|
vert : bool, default: :rc:`boxplot.vertical`
|
||
|
If `True`, draws vertical boxes.
|
||
|
If `False`, draw horizontal boxes.
|
||
|
|
||
|
whis : float or (float, float), default: 1.5
|
||
|
The position of the whiskers.
|
||
|
|
||
|
If a float, the lower whisker is at the lowest datum above
|
||
|
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum
|
||
|
below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and
|
||
|
third quartiles. The default value of ``whis = 1.5`` corresponds
|
||
|
to Tukey's original definition of boxplots.
|
||
|
|
||
|
If a pair of floats, they indicate the percentiles at which to
|
||
|
draw the whiskers (e.g., (5, 95)). In particular, setting this to
|
||
|
(0, 100) results in whiskers covering the whole range of the data.
|
||
|
|
||
|
In the edge case where ``Q1 == Q3``, *whis* is automatically set
|
||
|
to (0, 100) (cover the whole range of the data) if *autorange* is
|
||
|
True.
|
||
|
|
||
|
Beyond the whiskers, data are considered outliers and are plotted
|
||
|
as individual points.
|
||
|
|
||
|
bootstrap : int, optional
|
||
|
Specifies whether to bootstrap the confidence intervals
|
||
|
around the median for notched boxplots. If *bootstrap* is
|
||
|
None, no bootstrapping is performed, and notches are
|
||
|
calculated using a Gaussian-based asymptotic approximation
|
||
|
(see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
|
||
|
Kendall and Stuart, 1967). Otherwise, bootstrap specifies
|
||
|
the number of times to bootstrap the median to determine its
|
||
|
95% confidence intervals. Values between 1000 and 10000 are
|
||
|
recommended.
|
||
|
|
||
|
usermedians : 1D array-like, optional
|
||
|
A 1D array-like of length ``len(x)``. Each entry that is not
|
||
|
`None` forces the value of the median for the corresponding
|
||
|
dataset. For entries that are `None`, the medians are computed
|
||
|
by Matplotlib as normal.
|
||
|
|
||
|
conf_intervals : array-like, optional
|
||
|
A 2D array-like of shape ``(len(x), 2)``. Each entry that is not
|
||
|
None forces the location of the corresponding notch (which is
|
||
|
only drawn if *notch* is `True`). For entries that are `None`,
|
||
|
the notches are computed by the method specified by the other
|
||
|
parameters (e.g., *bootstrap*).
|
||
|
|
||
|
positions : array-like, optional
|
||
|
The positions of the boxes. The ticks and limits are
|
||
|
automatically set to match the positions. Defaults to
|
||
|
``range(1, N+1)`` where N is the number of boxes to be drawn.
|
||
|
|
||
|
widths : float or array-like
|
||
|
The widths of the boxes. The default is 0.5, or ``0.15*(distance
|
||
|
between extreme positions)``, if that is smaller.
|
||
|
|
||
|
patch_artist : bool, default: :rc:`boxplot.patchartist`
|
||
|
If `False` produces boxes with the Line2D artist. Otherwise,
|
||
|
boxes are drawn with Patch artists.
|
||
|
|
||
|
tick_labels : list of str, optional
|
||
|
The tick labels of each boxplot.
|
||
|
Ticks are always placed at the box *positions*. If *tick_labels* is given,
|
||
|
the ticks are labelled accordingly. Otherwise, they keep their numeric
|
||
|
values.
|
||
|
|
||
|
.. versionchanged:: 3.9
|
||
|
Renamed from *labels*, which is deprecated since 3.9
|
||
|
and will be removed in 3.11.
|
||
|
|
||
|
manage_ticks : bool, default: True
|
||
|
If True, the tick locations and labels will be adjusted to match
|
||
|
the boxplot positions.
|
||
|
|
||
|
autorange : bool, default: False
|
||
|
When `True` and the data are distributed such that the 25th and
|
||
|
75th percentiles are equal, *whis* is set to (0, 100) such
|
||
|
that the whisker ends are at the minimum and maximum of the data.
|
||
|
|
||
|
meanline : bool, default: :rc:`boxplot.meanline`
|
||
|
If `True` (and *showmeans* is `True`), will try to render the
|
||
|
mean as a line spanning the full width of the box according to
|
||
|
*meanprops* (see below). Not recommended if *shownotches* is also
|
||
|
True. Otherwise, means will be shown as points.
|
||
|
|
||
|
zorder : float, default: ``Line2D.zorder = 2``
|
||
|
The zorder of the boxplot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict
|
||
|
A dictionary mapping each component of the boxplot to a list
|
||
|
of the `.Line2D` instances created. That dictionary has the
|
||
|
following keys (assuming vertical boxplots):
|
||
|
|
||
|
- ``boxes``: the main body of the boxplot showing the
|
||
|
quartiles and the median's confidence intervals if
|
||
|
enabled.
|
||
|
|
||
|
- ``medians``: horizontal lines at the median of each box.
|
||
|
|
||
|
- ``whiskers``: the vertical lines extending to the most
|
||
|
extreme, non-outlier data points.
|
||
|
|
||
|
- ``caps``: the horizontal lines at the ends of the
|
||
|
whiskers.
|
||
|
|
||
|
- ``fliers``: points representing data that extend beyond
|
||
|
the whiskers (fliers).
|
||
|
|
||
|
- ``means``: points or lines representing the means.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
showcaps : bool, default: :rc:`boxplot.showcaps`
|
||
|
Show the caps on the ends of whiskers.
|
||
|
showbox : bool, default: :rc:`boxplot.showbox`
|
||
|
Show the central box.
|
||
|
showfliers : bool, default: :rc:`boxplot.showfliers`
|
||
|
Show the outliers beyond the caps.
|
||
|
showmeans : bool, default: :rc:`boxplot.showmeans`
|
||
|
Show the arithmetic means.
|
||
|
capprops : dict, default: None
|
||
|
The style of the caps.
|
||
|
capwidths : float or array, default: None
|
||
|
The widths of the caps.
|
||
|
boxprops : dict, default: None
|
||
|
The style of the box.
|
||
|
whiskerprops : dict, default: None
|
||
|
The style of the whiskers.
|
||
|
flierprops : dict, default: None
|
||
|
The style of the fliers.
|
||
|
medianprops : dict, default: None
|
||
|
The style of the median.
|
||
|
meanprops : dict, default: None
|
||
|
The style of the mean.
|
||
|
label : str or list of str, optional
|
||
|
Legend labels. Use a single string when all boxes have the same style and
|
||
|
you only want a single legend entry for them. Use a list of strings to
|
||
|
label all boxes individually. To be distinguishable, the boxes should be
|
||
|
styled individually, which is currently only possible by modifying the
|
||
|
returned artists, see e.g. :doc:`/gallery/statistics/boxplot_demo`.
|
||
|
|
||
|
In the case of a single string, the legend entry will technically be
|
||
|
associated with the first box only. By default, the legend will show the
|
||
|
median line (``result["medians"]``); if *patch_artist* is True, the legend
|
||
|
will show the box `.Patch` artists (``result["boxes"]``) instead.
|
||
|
|
||
|
.. versionadded:: 3.9
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.Axes.bxp : Draw a boxplot from pre-computed statistics.
|
||
|
violinplot : Draw an estimate of the probability density function.
|
||
|
"""
|
||
|
|
||
|
# Missing arguments default to rcParams.
|
||
|
if whis is None:
|
||
|
whis = mpl.rcParams['boxplot.whiskers']
|
||
|
if bootstrap is None:
|
||
|
bootstrap = mpl.rcParams['boxplot.bootstrap']
|
||
|
|
||
|
bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
|
||
|
labels=tick_labels, autorange=autorange)
|
||
|
if notch is None:
|
||
|
notch = mpl.rcParams['boxplot.notch']
|
||
|
if vert is None:
|
||
|
vert = mpl.rcParams['boxplot.vertical']
|
||
|
if patch_artist is None:
|
||
|
patch_artist = mpl.rcParams['boxplot.patchartist']
|
||
|
if meanline is None:
|
||
|
meanline = mpl.rcParams['boxplot.meanline']
|
||
|
if showmeans is None:
|
||
|
showmeans = mpl.rcParams['boxplot.showmeans']
|
||
|
if showcaps is None:
|
||
|
showcaps = mpl.rcParams['boxplot.showcaps']
|
||
|
if showbox is None:
|
||
|
showbox = mpl.rcParams['boxplot.showbox']
|
||
|
if showfliers is None:
|
||
|
showfliers = mpl.rcParams['boxplot.showfliers']
|
||
|
|
||
|
if boxprops is None:
|
||
|
boxprops = {}
|
||
|
if whiskerprops is None:
|
||
|
whiskerprops = {}
|
||
|
if capprops is None:
|
||
|
capprops = {}
|
||
|
if medianprops is None:
|
||
|
medianprops = {}
|
||
|
if meanprops is None:
|
||
|
meanprops = {}
|
||
|
if flierprops is None:
|
||
|
flierprops = {}
|
||
|
|
||
|
if patch_artist:
|
||
|
boxprops['linestyle'] = 'solid' # Not consistent with bxp.
|
||
|
if 'color' in boxprops:
|
||
|
boxprops['edgecolor'] = boxprops.pop('color')
|
||
|
|
||
|
# if non-default sym value, put it into the flier dictionary
|
||
|
# the logic for providing the default symbol ('b+') now lives
|
||
|
# in bxp in the initial value of flierkw
|
||
|
# handle all of the *sym* related logic here so we only have to pass
|
||
|
# on the flierprops dict.
|
||
|
if sym is not None:
|
||
|
# no-flier case, which should really be done with
|
||
|
# 'showfliers=False' but none-the-less deal with it to keep back
|
||
|
# compatibility
|
||
|
if sym == '':
|
||
|
# blow away existing dict and make one for invisible markers
|
||
|
flierprops = dict(linestyle='none', marker='', color='none')
|
||
|
# turn the fliers off just to be safe
|
||
|
showfliers = False
|
||
|
# now process the symbol string
|
||
|
else:
|
||
|
# process the symbol string
|
||
|
# discarded linestyle
|
||
|
_, marker, color = _process_plot_format(sym)
|
||
|
# if we have a marker, use it
|
||
|
if marker is not None:
|
||
|
flierprops['marker'] = marker
|
||
|
# if we have a color, use it
|
||
|
if color is not None:
|
||
|
# assume that if color is passed in the user want
|
||
|
# filled symbol, if the users want more control use
|
||
|
# flierprops
|
||
|
flierprops['color'] = color
|
||
|
flierprops['markerfacecolor'] = color
|
||
|
flierprops['markeredgecolor'] = color
|
||
|
|
||
|
# replace medians if necessary:
|
||
|
if usermedians is not None:
|
||
|
if (len(np.ravel(usermedians)) != len(bxpstats) or
|
||
|
np.shape(usermedians)[0] != len(bxpstats)):
|
||
|
raise ValueError(
|
||
|
"'usermedians' and 'x' have different lengths")
|
||
|
else:
|
||
|
# reassign medians as necessary
|
||
|
for stats, med in zip(bxpstats, usermedians):
|
||
|
if med is not None:
|
||
|
stats['med'] = med
|
||
|
|
||
|
if conf_intervals is not None:
|
||
|
if len(conf_intervals) != len(bxpstats):
|
||
|
raise ValueError(
|
||
|
"'conf_intervals' and 'x' have different lengths")
|
||
|
else:
|
||
|
for stats, ci in zip(bxpstats, conf_intervals):
|
||
|
if ci is not None:
|
||
|
if len(ci) != 2:
|
||
|
raise ValueError('each confidence interval must '
|
||
|
'have two values')
|
||
|
else:
|
||
|
if ci[0] is not None:
|
||
|
stats['cilo'] = ci[0]
|
||
|
if ci[1] is not None:
|
||
|
stats['cihi'] = ci[1]
|
||
|
|
||
|
artists = self.bxp(bxpstats, positions=positions, widths=widths,
|
||
|
vert=vert, patch_artist=patch_artist,
|
||
|
shownotches=notch, showmeans=showmeans,
|
||
|
showcaps=showcaps, showbox=showbox,
|
||
|
boxprops=boxprops, flierprops=flierprops,
|
||
|
medianprops=medianprops, meanprops=meanprops,
|
||
|
meanline=meanline, showfliers=showfliers,
|
||
|
capprops=capprops, whiskerprops=whiskerprops,
|
||
|
manage_ticks=manage_ticks, zorder=zorder,
|
||
|
capwidths=capwidths, label=label)
|
||
|
return artists
|
||
|
|
||
|
def bxp(self, bxpstats, positions=None, widths=None, vert=True,
|
||
|
patch_artist=False, shownotches=False, showmeans=False,
|
||
|
showcaps=True, showbox=True, showfliers=True,
|
||
|
boxprops=None, whiskerprops=None, flierprops=None,
|
||
|
medianprops=None, capprops=None, meanprops=None,
|
||
|
meanline=False, manage_ticks=True, zorder=None,
|
||
|
capwidths=None, label=None):
|
||
|
"""
|
||
|
Draw a box and whisker plot from pre-computed statistics.
|
||
|
|
||
|
The box extends from the first quartile *q1* to the third
|
||
|
quartile *q3* of the data, with a line at the median (*med*).
|
||
|
The whiskers extend from *whislow* to *whishi*.
|
||
|
Flier points are markers past the end of the whiskers.
|
||
|
See https://en.wikipedia.org/wiki/Box_plot for reference.
|
||
|
|
||
|
.. code-block:: none
|
||
|
|
||
|
whislow q1 med q3 whishi
|
||
|
|-----:-----|
|
||
|
o |--------| : |--------| o o
|
||
|
|-----:-----|
|
||
|
flier fliers
|
||
|
|
||
|
.. note::
|
||
|
This is a low-level drawing function for when you already
|
||
|
have the statistical parameters. If you want a boxplot based
|
||
|
on a dataset, use `~.Axes.boxplot` instead.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bxpstats : list of dicts
|
||
|
A list of dictionaries containing stats for each boxplot.
|
||
|
Required keys are:
|
||
|
|
||
|
- ``med``: Median (scalar).
|
||
|
- ``q1``, ``q3``: First & third quartiles (scalars).
|
||
|
- ``whislo``, ``whishi``: Lower & upper whisker positions (scalars).
|
||
|
|
||
|
Optional keys are:
|
||
|
|
||
|
- ``mean``: Mean (scalar). Needed if ``showmeans=True``.
|
||
|
- ``fliers``: Data beyond the whiskers (array-like).
|
||
|
Needed if ``showfliers=True``.
|
||
|
- ``cilo``, ``cihi``: Lower & upper confidence intervals
|
||
|
about the median. Needed if ``shownotches=True``.
|
||
|
- ``label``: Name of the dataset (str). If available,
|
||
|
this will be used a tick label for the boxplot
|
||
|
|
||
|
positions : array-like, default: [1, 2, ..., n]
|
||
|
The positions of the boxes. The ticks and limits
|
||
|
are automatically set to match the positions.
|
||
|
|
||
|
widths : float or array-like, default: None
|
||
|
The widths of the boxes. The default is
|
||
|
``clip(0.15*(distance between extreme positions), 0.15, 0.5)``.
|
||
|
|
||
|
capwidths : float or array-like, default: None
|
||
|
Either a scalar or a vector and sets the width of each cap.
|
||
|
The default is ``0.5*(width of the box)``, see *widths*.
|
||
|
|
||
|
vert : bool, default: True
|
||
|
If `True` (default), makes the boxes vertical.
|
||
|
If `False`, makes horizontal boxes.
|
||
|
|
||
|
patch_artist : bool, default: False
|
||
|
If `False` produces boxes with the `.Line2D` artist.
|
||
|
If `True` produces boxes with the `~matplotlib.patches.Patch` artist.
|
||
|
|
||
|
shownotches, showmeans, showcaps, showbox, showfliers : bool
|
||
|
Whether to draw the CI notches, the mean value (both default to
|
||
|
False), the caps, the box, and the fliers (all three default to
|
||
|
True).
|
||
|
|
||
|
boxprops, whiskerprops, capprops, flierprops, medianprops, meanprops :\
|
||
|
dict, optional
|
||
|
Artist properties for the boxes, whiskers, caps, fliers, medians, and
|
||
|
means.
|
||
|
|
||
|
meanline : bool, default: False
|
||
|
If `True` (and *showmeans* is `True`), will try to render the mean
|
||
|
as a line spanning the full width of the box according to
|
||
|
*meanprops*. Not recommended if *shownotches* is also True.
|
||
|
Otherwise, means will be shown as points.
|
||
|
|
||
|
manage_ticks : bool, default: True
|
||
|
If True, the tick locations and labels will be adjusted to match the
|
||
|
boxplot positions.
|
||
|
|
||
|
label : str or list of str, optional
|
||
|
Legend labels. Use a single string when all boxes have the same style and
|
||
|
you only want a single legend entry for them. Use a list of strings to
|
||
|
label all boxes individually. To be distinguishable, the boxes should be
|
||
|
styled individually, which is currently only possible by modifying the
|
||
|
returned artists, see e.g. :doc:`/gallery/statistics/boxplot_demo`.
|
||
|
|
||
|
In the case of a single string, the legend entry will technically be
|
||
|
associated with the first box only. By default, the legend will show the
|
||
|
median line (``result["medians"]``); if *patch_artist* is True, the legend
|
||
|
will show the box `.Patch` artists (``result["boxes"]``) instead.
|
||
|
|
||
|
.. versionadded:: 3.9
|
||
|
|
||
|
zorder : float, default: ``Line2D.zorder = 2``
|
||
|
The zorder of the resulting boxplot.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict
|
||
|
A dictionary mapping each component of the boxplot to a list
|
||
|
of the `.Line2D` instances created. That dictionary has the
|
||
|
following keys (assuming vertical boxplots):
|
||
|
|
||
|
- ``boxes``: main bodies of the boxplot showing the quartiles, and
|
||
|
the median's confidence intervals if enabled.
|
||
|
- ``medians``: horizontal lines at the median of each box.
|
||
|
- ``whiskers``: vertical lines up to the last non-outlier data.
|
||
|
- ``caps``: horizontal lines at the ends of the whiskers.
|
||
|
- ``fliers``: points representing data beyond the whiskers (fliers).
|
||
|
- ``means``: points or lines representing the means.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
boxplot : Draw a boxplot from data instead of pre-computed statistics.
|
||
|
"""
|
||
|
# Clamp median line to edge of box by default.
|
||
|
medianprops = {
|
||
|
"solid_capstyle": "butt",
|
||
|
"dash_capstyle": "butt",
|
||
|
**(medianprops or {}),
|
||
|
}
|
||
|
meanprops = {
|
||
|
"solid_capstyle": "butt",
|
||
|
"dash_capstyle": "butt",
|
||
|
**(meanprops or {}),
|
||
|
}
|
||
|
|
||
|
# lists of artists to be output
|
||
|
whiskers = []
|
||
|
caps = []
|
||
|
boxes = []
|
||
|
medians = []
|
||
|
means = []
|
||
|
fliers = []
|
||
|
|
||
|
# empty list of xticklabels
|
||
|
datalabels = []
|
||
|
|
||
|
# Use default zorder if none specified
|
||
|
if zorder is None:
|
||
|
zorder = mlines.Line2D.zorder
|
||
|
|
||
|
zdelta = 0.1
|
||
|
|
||
|
def merge_kw_rc(subkey, explicit, zdelta=0, usemarker=True):
|
||
|
d = {k.split('.')[-1]: v for k, v in mpl.rcParams.items()
|
||
|
if k.startswith(f'boxplot.{subkey}props')}
|
||
|
d['zorder'] = zorder + zdelta
|
||
|
if not usemarker:
|
||
|
d['marker'] = ''
|
||
|
d.update(cbook.normalize_kwargs(explicit, mlines.Line2D))
|
||
|
return d
|
||
|
|
||
|
box_kw = {
|
||
|
'linestyle': mpl.rcParams['boxplot.boxprops.linestyle'],
|
||
|
'linewidth': mpl.rcParams['boxplot.boxprops.linewidth'],
|
||
|
'edgecolor': mpl.rcParams['boxplot.boxprops.color'],
|
||
|
'facecolor': ('white' if mpl.rcParams['_internal.classic_mode']
|
||
|
else mpl.rcParams['patch.facecolor']),
|
||
|
'zorder': zorder,
|
||
|
**cbook.normalize_kwargs(boxprops, mpatches.PathPatch)
|
||
|
} if patch_artist else merge_kw_rc('box', boxprops, usemarker=False)
|
||
|
whisker_kw = merge_kw_rc('whisker', whiskerprops, usemarker=False)
|
||
|
cap_kw = merge_kw_rc('cap', capprops, usemarker=False)
|
||
|
flier_kw = merge_kw_rc('flier', flierprops)
|
||
|
median_kw = merge_kw_rc('median', medianprops, zdelta, usemarker=False)
|
||
|
mean_kw = merge_kw_rc('mean', meanprops, zdelta)
|
||
|
removed_prop = 'marker' if meanline else 'linestyle'
|
||
|
# Only remove the property if it's not set explicitly as a parameter.
|
||
|
if meanprops is None or removed_prop not in meanprops:
|
||
|
mean_kw[removed_prop] = ''
|
||
|
|
||
|
# vertical or horizontal plot?
|
||
|
maybe_swap = slice(None) if vert else slice(None, None, -1)
|
||
|
|
||
|
def do_plot(xs, ys, **kwargs):
|
||
|
return self.plot(*[xs, ys][maybe_swap], **kwargs)[0]
|
||
|
|
||
|
def do_patch(xs, ys, **kwargs):
|
||
|
path = mpath.Path._create_closed(
|
||
|
np.column_stack([xs, ys][maybe_swap]))
|
||
|
patch = mpatches.PathPatch(path, **kwargs)
|
||
|
self.add_artist(patch)
|
||
|
return patch
|
||
|
|
||
|
# input validation
|
||
|
N = len(bxpstats)
|
||
|
datashape_message = ("List of boxplot statistics and `{0}` "
|
||
|
"values must have same the length")
|
||
|
# check position
|
||
|
if positions is None:
|
||
|
positions = list(range(1, N + 1))
|
||
|
elif len(positions) != N:
|
||
|
raise ValueError(datashape_message.format("positions"))
|
||
|
|
||
|
positions = np.array(positions)
|
||
|
if len(positions) > 0 and not all(isinstance(p, Real) for p in positions):
|
||
|
raise TypeError("positions should be an iterable of numbers")
|
||
|
|
||
|
# width
|
||
|
if widths is None:
|
||
|
widths = [np.clip(0.15 * np.ptp(positions), 0.15, 0.5)] * N
|
||
|
elif np.isscalar(widths):
|
||
|
widths = [widths] * N
|
||
|
elif len(widths) != N:
|
||
|
raise ValueError(datashape_message.format("widths"))
|
||
|
|
||
|
# capwidth
|
||
|
if capwidths is None:
|
||
|
capwidths = 0.5 * np.array(widths)
|
||
|
elif np.isscalar(capwidths):
|
||
|
capwidths = [capwidths] * N
|
||
|
elif len(capwidths) != N:
|
||
|
raise ValueError(datashape_message.format("capwidths"))
|
||
|
|
||
|
for pos, width, stats, capwidth in zip(positions, widths, bxpstats,
|
||
|
capwidths):
|
||
|
# try to find a new label
|
||
|
datalabels.append(stats.get('label', pos))
|
||
|
|
||
|
# whisker coords
|
||
|
whis_x = [pos, pos]
|
||
|
whislo_y = [stats['q1'], stats['whislo']]
|
||
|
whishi_y = [stats['q3'], stats['whishi']]
|
||
|
# cap coords
|
||
|
cap_left = pos - capwidth * 0.5
|
||
|
cap_right = pos + capwidth * 0.5
|
||
|
cap_x = [cap_left, cap_right]
|
||
|
cap_lo = np.full(2, stats['whislo'])
|
||
|
cap_hi = np.full(2, stats['whishi'])
|
||
|
# box and median coords
|
||
|
box_left = pos - width * 0.5
|
||
|
box_right = pos + width * 0.5
|
||
|
med_y = [stats['med'], stats['med']]
|
||
|
# notched boxes
|
||
|
if shownotches:
|
||
|
notch_left = pos - width * 0.25
|
||
|
notch_right = pos + width * 0.25
|
||
|
box_x = [box_left, box_right, box_right, notch_right,
|
||
|
box_right, box_right, box_left, box_left, notch_left,
|
||
|
box_left, box_left]
|
||
|
box_y = [stats['q1'], stats['q1'], stats['cilo'],
|
||
|
stats['med'], stats['cihi'], stats['q3'],
|
||
|
stats['q3'], stats['cihi'], stats['med'],
|
||
|
stats['cilo'], stats['q1']]
|
||
|
med_x = [notch_left, notch_right]
|
||
|
# plain boxes
|
||
|
else:
|
||
|
box_x = [box_left, box_right, box_right, box_left, box_left]
|
||
|
box_y = [stats['q1'], stats['q1'], stats['q3'], stats['q3'],
|
||
|
stats['q1']]
|
||
|
med_x = [box_left, box_right]
|
||
|
|
||
|
# maybe draw the box
|
||
|
if showbox:
|
||
|
do_box = do_patch if patch_artist else do_plot
|
||
|
boxes.append(do_box(box_x, box_y, **box_kw))
|
||
|
median_kw.setdefault('label', '_nolegend_')
|
||
|
# draw the whiskers
|
||
|
whisker_kw.setdefault('label', '_nolegend_')
|
||
|
whiskers.append(do_plot(whis_x, whislo_y, **whisker_kw))
|
||
|
whiskers.append(do_plot(whis_x, whishi_y, **whisker_kw))
|
||
|
# maybe draw the caps
|
||
|
if showcaps:
|
||
|
cap_kw.setdefault('label', '_nolegend_')
|
||
|
caps.append(do_plot(cap_x, cap_lo, **cap_kw))
|
||
|
caps.append(do_plot(cap_x, cap_hi, **cap_kw))
|
||
|
# draw the medians
|
||
|
medians.append(do_plot(med_x, med_y, **median_kw))
|
||
|
# maybe draw the means
|
||
|
if showmeans:
|
||
|
if meanline:
|
||
|
means.append(do_plot(
|
||
|
[box_left, box_right], [stats['mean'], stats['mean']],
|
||
|
**mean_kw
|
||
|
))
|
||
|
else:
|
||
|
means.append(do_plot([pos], [stats['mean']], **mean_kw))
|
||
|
# maybe draw the fliers
|
||
|
if showfliers:
|
||
|
flier_kw.setdefault('label', '_nolegend_')
|
||
|
flier_x = np.full(len(stats['fliers']), pos, dtype=np.float64)
|
||
|
flier_y = stats['fliers']
|
||
|
fliers.append(do_plot(flier_x, flier_y, **flier_kw))
|
||
|
|
||
|
# Set legend labels
|
||
|
if label:
|
||
|
box_or_med = boxes if showbox and patch_artist else medians
|
||
|
if cbook.is_scalar_or_string(label):
|
||
|
# assign the label only to the first box
|
||
|
box_or_med[0].set_label(label)
|
||
|
else: # label is a sequence
|
||
|
if len(box_or_med) != len(label):
|
||
|
raise ValueError(datashape_message.format("label"))
|
||
|
for artist, lbl in zip(box_or_med, label):
|
||
|
artist.set_label(lbl)
|
||
|
|
||
|
if manage_ticks:
|
||
|
axis_name = "x" if vert else "y"
|
||
|
interval = getattr(self.dataLim, f"interval{axis_name}")
|
||
|
axis = self._axis_map[axis_name]
|
||
|
positions = axis.convert_units(positions)
|
||
|
# The 0.5 additional padding ensures reasonable-looking boxes
|
||
|
# even when drawing a single box. We set the sticky edge to
|
||
|
# prevent margins expansion, in order to match old behavior (back
|
||
|
# when separate calls to boxplot() would completely reset the axis
|
||
|
# limits regardless of what was drawn before). The sticky edges
|
||
|
# are attached to the median lines, as they are always present.
|
||
|
interval[:] = (min(interval[0], min(positions) - .5),
|
||
|
max(interval[1], max(positions) + .5))
|
||
|
for median, position in zip(medians, positions):
|
||
|
getattr(median.sticky_edges, axis_name).extend(
|
||
|
[position - .5, position + .5])
|
||
|
# Modified from Axis.set_ticks and Axis.set_ticklabels.
|
||
|
locator = axis.get_major_locator()
|
||
|
if not isinstance(axis.get_major_locator(),
|
||
|
mticker.FixedLocator):
|
||
|
locator = mticker.FixedLocator([])
|
||
|
axis.set_major_locator(locator)
|
||
|
locator.locs = np.array([*locator.locs, *positions])
|
||
|
formatter = axis.get_major_formatter()
|
||
|
if not isinstance(axis.get_major_formatter(),
|
||
|
mticker.FixedFormatter):
|
||
|
formatter = mticker.FixedFormatter([])
|
||
|
axis.set_major_formatter(formatter)
|
||
|
formatter.seq = [*formatter.seq, *datalabels]
|
||
|
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
|
||
|
medians=medians, fliers=fliers, means=means)
|
||
|
|
||
|
@staticmethod
|
||
|
def _parse_scatter_color_args(c, edgecolors, kwargs, xsize,
|
||
|
get_next_color_func):
|
||
|
"""
|
||
|
Helper function to process color related arguments of `.Axes.scatter`.
|
||
|
|
||
|
Argument precedence for facecolors:
|
||
|
|
||
|
- c (if not None)
|
||
|
- kwargs['facecolor']
|
||
|
- kwargs['facecolors']
|
||
|
- kwargs['color'] (==kwcolor)
|
||
|
- 'b' if in classic mode else the result of ``get_next_color_func()``
|
||
|
|
||
|
Argument precedence for edgecolors:
|
||
|
|
||
|
- kwargs['edgecolor']
|
||
|
- edgecolors (is an explicit kw argument in scatter())
|
||
|
- kwargs['color'] (==kwcolor)
|
||
|
- 'face' if not in classic mode else None
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
c : :mpltype:`color` or array-like or list of :mpltype:`color` or None
|
||
|
See argument description of `.Axes.scatter`.
|
||
|
edgecolors : :mpltype:`color` or sequence of color or {'face', 'none'} or None
|
||
|
See argument description of `.Axes.scatter`.
|
||
|
kwargs : dict
|
||
|
Additional kwargs. If these keys exist, we pop and process them:
|
||
|
'facecolors', 'facecolor', 'edgecolor', 'color'
|
||
|
Note: The dict is modified by this function.
|
||
|
xsize : int
|
||
|
The size of the x and y arrays passed to `.Axes.scatter`.
|
||
|
get_next_color_func : callable
|
||
|
A callable that returns a color. This color is used as facecolor
|
||
|
if no other color is provided.
|
||
|
|
||
|
Note, that this is a function rather than a fixed color value to
|
||
|
support conditional evaluation of the next color. As of the
|
||
|
current implementation obtaining the next color from the
|
||
|
property cycle advances the cycle. This must only happen if we
|
||
|
actually use the color, which will only be decided within this
|
||
|
method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
c
|
||
|
The input *c* if it was not *None*, else a color derived from the
|
||
|
other inputs or defaults.
|
||
|
colors : array(N, 4) or None
|
||
|
The facecolors as RGBA values, or *None* if a colormap is used.
|
||
|
edgecolors
|
||
|
The edgecolor.
|
||
|
|
||
|
"""
|
||
|
facecolors = kwargs.pop('facecolors', None)
|
||
|
facecolors = kwargs.pop('facecolor', facecolors)
|
||
|
edgecolors = kwargs.pop('edgecolor', edgecolors)
|
||
|
|
||
|
kwcolor = kwargs.pop('color', None)
|
||
|
|
||
|
if kwcolor is not None and c is not None:
|
||
|
raise ValueError("Supply a 'c' argument or a 'color'"
|
||
|
" kwarg but not both; they differ but"
|
||
|
" their functionalities overlap.")
|
||
|
|
||
|
if kwcolor is not None:
|
||
|
try:
|
||
|
mcolors.to_rgba_array(kwcolor)
|
||
|
except ValueError as err:
|
||
|
raise ValueError(
|
||
|
"'color' kwarg must be a color or sequence of color "
|
||
|
"specs. For a sequence of values to be color-mapped, use "
|
||
|
"the 'c' argument instead.") from err
|
||
|
if edgecolors is None:
|
||
|
edgecolors = kwcolor
|
||
|
if facecolors is None:
|
||
|
facecolors = kwcolor
|
||
|
|
||
|
if edgecolors is None and not mpl.rcParams['_internal.classic_mode']:
|
||
|
edgecolors = mpl.rcParams['scatter.edgecolors']
|
||
|
|
||
|
c_was_none = c is None
|
||
|
if c is None:
|
||
|
c = (facecolors if facecolors is not None
|
||
|
else "b" if mpl.rcParams['_internal.classic_mode']
|
||
|
else get_next_color_func())
|
||
|
c_is_string_or_strings = (
|
||
|
isinstance(c, str)
|
||
|
or (np.iterable(c) and len(c) > 0
|
||
|
and isinstance(cbook._safe_first_finite(c), str)))
|
||
|
|
||
|
def invalid_shape_exception(csize, xsize):
|
||
|
return ValueError(
|
||
|
f"'c' argument has {csize} elements, which is inconsistent "
|
||
|
f"with 'x' and 'y' with size {xsize}.")
|
||
|
|
||
|
c_is_mapped = False # Unless proven otherwise below.
|
||
|
valid_shape = True # Unless proven otherwise below.
|
||
|
if not c_was_none and kwcolor is None and not c_is_string_or_strings:
|
||
|
try: # First, does 'c' look suitable for value-mapping?
|
||
|
c = np.asanyarray(c, dtype=float)
|
||
|
except ValueError:
|
||
|
pass # Failed to convert to float array; must be color specs.
|
||
|
else:
|
||
|
# handle the documented special case of a 2D array with 1
|
||
|
# row which as RGB(A) to broadcast.
|
||
|
if c.shape == (1, 4) or c.shape == (1, 3):
|
||
|
c_is_mapped = False
|
||
|
if c.size != xsize:
|
||
|
valid_shape = False
|
||
|
# If c can be either mapped values or an RGB(A) color, prefer
|
||
|
# the former if shapes match, the latter otherwise.
|
||
|
elif c.size == xsize:
|
||
|
c = c.ravel()
|
||
|
c_is_mapped = True
|
||
|
else: # Wrong size; it must not be intended for mapping.
|
||
|
if c.shape in ((3,), (4,)):
|
||
|
_api.warn_external(
|
||
|
"*c* argument looks like a single numeric RGB or "
|
||
|
"RGBA sequence, which should be avoided as value-"
|
||
|
"mapping will have precedence in case its length "
|
||
|
"matches with *x* & *y*. Please use the *color* "
|
||
|
"keyword-argument or provide a 2D array "
|
||
|
"with a single row if you intend to specify "
|
||
|
"the same RGB or RGBA value for all points.")
|
||
|
valid_shape = False
|
||
|
if not c_is_mapped:
|
||
|
try: # Is 'c' acceptable as PathCollection facecolors?
|
||
|
colors = mcolors.to_rgba_array(c)
|
||
|
except (TypeError, ValueError) as err:
|
||
|
if "RGBA values should be within 0-1 range" in str(err):
|
||
|
raise
|
||
|
else:
|
||
|
if not valid_shape:
|
||
|
raise invalid_shape_exception(c.size, xsize) from err
|
||
|
# Both the mapping *and* the RGBA conversion failed: pretty
|
||
|
# severe failure => one may appreciate a verbose feedback.
|
||
|
raise ValueError(
|
||
|
f"'c' argument must be a color, a sequence of colors, "
|
||
|
f"or a sequence of numbers, not {c!r}") from err
|
||
|
else:
|
||
|
if len(colors) not in (0, 1, xsize):
|
||
|
# NB: remember that a single color is also acceptable.
|
||
|
# Besides *colors* will be an empty array if c == 'none'.
|
||
|
raise invalid_shape_exception(len(colors), xsize)
|
||
|
else:
|
||
|
colors = None # use cmap, norm after collection is created
|
||
|
return c, colors, edgecolors
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "s", "linewidths",
|
||
|
"edgecolors", "c", "facecolor",
|
||
|
"facecolors", "color"],
|
||
|
label_namer="y")
|
||
|
@_docstring.interpd
|
||
|
def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
|
||
|
vmin=None, vmax=None, alpha=None, linewidths=None, *,
|
||
|
edgecolors=None, plotnonfinite=False, **kwargs):
|
||
|
"""
|
||
|
A scatter plot of *y* vs. *x* with varying marker size and/or color.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : float or array-like, shape (n, )
|
||
|
The data positions.
|
||
|
|
||
|
s : float or array-like, shape (n, ), optional
|
||
|
The marker size in points**2 (typographic points are 1/72 in.).
|
||
|
Default is ``rcParams['lines.markersize'] ** 2``.
|
||
|
|
||
|
The linewidth and edgecolor can visually interact with the marker
|
||
|
size, and can lead to artifacts if the marker size is smaller than
|
||
|
the linewidth.
|
||
|
|
||
|
If the linewidth is greater than 0 and the edgecolor is anything
|
||
|
but *'none'*, then the effective size of the marker will be
|
||
|
increased by half the linewidth because the stroke will be centered
|
||
|
on the edge of the shape.
|
||
|
|
||
|
To eliminate the marker edge either set *linewidth=0* or
|
||
|
*edgecolor='none'*.
|
||
|
|
||
|
c : array-like or list of :mpltype:`color` or :mpltype:`color`, optional
|
||
|
The marker colors. Possible values:
|
||
|
|
||
|
- A scalar or sequence of n numbers to be mapped to colors using
|
||
|
*cmap* and *norm*.
|
||
|
- A 2D array in which the rows are RGB or RGBA.
|
||
|
- A sequence of colors of length n.
|
||
|
- A single color format string.
|
||
|
|
||
|
Note that *c* should not be a single numeric RGB or RGBA sequence
|
||
|
because that is indistinguishable from an array of values to be
|
||
|
colormapped. If you want to specify the same RGB or RGBA value for
|
||
|
all points, use a 2D array with a single row. Otherwise,
|
||
|
value-matching will have precedence in case of a size matching with
|
||
|
*x* and *y*.
|
||
|
|
||
|
If you wish to specify a single color for all points
|
||
|
prefer the *color* keyword argument.
|
||
|
|
||
|
Defaults to `None`. In that case the marker color is determined
|
||
|
by the value of *color*, *facecolor* or *facecolors*. In case
|
||
|
those are not specified or `None`, the marker color is determined
|
||
|
by the next color of the ``Axes``' current "shape and fill" color
|
||
|
cycle. This cycle defaults to :rc:`axes.prop_cycle`.
|
||
|
|
||
|
marker : `~.markers.MarkerStyle`, default: :rc:`scatter.marker`
|
||
|
The marker style. *marker* can be either an instance of the class
|
||
|
or the text shorthand for a particular marker.
|
||
|
See :mod:`matplotlib.markers` for more information about marker
|
||
|
styles.
|
||
|
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
This parameter is ignored if *c* is RGB(A).
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
This parameter is ignored if *c* is RGB(A).
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
This parameter is ignored if *c* is RGB(A).
|
||
|
|
||
|
alpha : float, default: None
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
linewidths : float or array-like, default: :rc:`lines.linewidth`
|
||
|
The linewidth of the marker edges. Note: The default *edgecolors*
|
||
|
is 'face'. You may want to change this as well.
|
||
|
|
||
|
edgecolors : {'face', 'none', *None*} or :mpltype:`color` or list of \
|
||
|
:mpltype:`color`, default: :rc:`scatter.edgecolors`
|
||
|
The edge color of the marker. Possible values:
|
||
|
|
||
|
- 'face': The edge color will always be the same as the face color.
|
||
|
- 'none': No patch boundary will be drawn.
|
||
|
- A color or sequence of colors.
|
||
|
|
||
|
For non-filled markers, *edgecolors* is ignored. Instead, the color
|
||
|
is determined like with 'face', i.e. from *c*, *colors*, or
|
||
|
*facecolors*.
|
||
|
|
||
|
plotnonfinite : bool, default: False
|
||
|
Whether to plot points with nonfinite *c* (i.e. ``inf``, ``-inf``
|
||
|
or ``nan``). If ``True`` the points are drawn with the *bad*
|
||
|
colormap color (see `.Colormap.set_bad`).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.collections.PathCollection`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
**kwargs : `~matplotlib.collections.Collection` properties
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
plot : To plot scatter plots when markers are identical in size and
|
||
|
color.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
* The `.plot` function will be faster for scatterplots where markers
|
||
|
don't vary in size or color.
|
||
|
|
||
|
* Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which
|
||
|
case all masks will be combined and only unmasked points will be
|
||
|
plotted.
|
||
|
|
||
|
* Fundamentally, scatter works with 1D arrays; *x*, *y*, *s*, and *c*
|
||
|
may be input as N-D arrays, but within scatter they will be
|
||
|
flattened. The exception is *c*, which will be flattened only if its
|
||
|
size matches the size of *x* and *y*.
|
||
|
|
||
|
"""
|
||
|
# add edgecolors and linewidths to kwargs so they
|
||
|
# can be processed by normailze_kwargs
|
||
|
if edgecolors is not None:
|
||
|
kwargs.update({'edgecolors': edgecolors})
|
||
|
if linewidths is not None:
|
||
|
kwargs.update({'linewidths': linewidths})
|
||
|
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
|
||
|
# re direct linewidth and edgecolor so it can be
|
||
|
# further processed by the rest of the function
|
||
|
linewidths = kwargs.pop('linewidth', None)
|
||
|
edgecolors = kwargs.pop('edgecolor', None)
|
||
|
# Process **kwargs to handle aliases, conflicts with explicit kwargs:
|
||
|
x, y = self._process_unit_info([("x", x), ("y", y)], kwargs)
|
||
|
# np.ma.ravel yields an ndarray, not a masked array,
|
||
|
# unless its argument is a masked array.
|
||
|
x = np.ma.ravel(x)
|
||
|
y = np.ma.ravel(y)
|
||
|
if x.size != y.size:
|
||
|
raise ValueError("x and y must be the same size")
|
||
|
|
||
|
if s is None:
|
||
|
s = (20 if mpl.rcParams['_internal.classic_mode'] else
|
||
|
mpl.rcParams['lines.markersize'] ** 2.0)
|
||
|
s = np.ma.ravel(s)
|
||
|
if (len(s) not in (1, x.size) or
|
||
|
(not np.issubdtype(s.dtype, np.floating) and
|
||
|
not np.issubdtype(s.dtype, np.integer))):
|
||
|
raise ValueError(
|
||
|
"s must be a scalar, "
|
||
|
"or float array-like with the same size as x and y")
|
||
|
|
||
|
# get the original edgecolor the user passed before we normalize
|
||
|
orig_edgecolor = edgecolors
|
||
|
if edgecolors is None:
|
||
|
orig_edgecolor = kwargs.get('edgecolor', None)
|
||
|
c, colors, edgecolors = \
|
||
|
self._parse_scatter_color_args(
|
||
|
c, edgecolors, kwargs, x.size,
|
||
|
get_next_color_func=self._get_patches_for_fill.get_next_color)
|
||
|
|
||
|
if plotnonfinite and colors is None:
|
||
|
c = np.ma.masked_invalid(c)
|
||
|
x, y, s, edgecolors, linewidths = \
|
||
|
cbook._combine_masks(x, y, s, edgecolors, linewidths)
|
||
|
else:
|
||
|
x, y, s, c, colors, edgecolors, linewidths = \
|
||
|
cbook._combine_masks(
|
||
|
x, y, s, c, colors, edgecolors, linewidths)
|
||
|
# Unmask edgecolors if it was actually a single RGB or RGBA.
|
||
|
if (x.size in (3, 4)
|
||
|
and np.ma.is_masked(edgecolors)
|
||
|
and not np.ma.is_masked(orig_edgecolor)):
|
||
|
edgecolors = edgecolors.data
|
||
|
|
||
|
scales = s # Renamed for readability below.
|
||
|
|
||
|
# load default marker from rcParams
|
||
|
if marker is None:
|
||
|
marker = mpl.rcParams['scatter.marker']
|
||
|
|
||
|
if isinstance(marker, mmarkers.MarkerStyle):
|
||
|
marker_obj = marker
|
||
|
else:
|
||
|
marker_obj = mmarkers.MarkerStyle(marker)
|
||
|
|
||
|
path = marker_obj.get_path().transformed(
|
||
|
marker_obj.get_transform())
|
||
|
if not marker_obj.is_filled():
|
||
|
if orig_edgecolor is not None:
|
||
|
_api.warn_external(
|
||
|
f"You passed a edgecolor/edgecolors ({orig_edgecolor!r}) "
|
||
|
f"for an unfilled marker ({marker!r}). Matplotlib is "
|
||
|
"ignoring the edgecolor in favor of the facecolor. This "
|
||
|
"behavior may change in the future."
|
||
|
)
|
||
|
# We need to handle markers that cannot be filled (like
|
||
|
# '+' and 'x') differently than markers that can be
|
||
|
# filled, but have their fillstyle set to 'none'. This is
|
||
|
# to get:
|
||
|
#
|
||
|
# - respecting the fillestyle if set
|
||
|
# - maintaining back-compatibility for querying the facecolor of
|
||
|
# the un-fillable markers.
|
||
|
#
|
||
|
# While not an ideal situation, but is better than the
|
||
|
# alternatives.
|
||
|
if marker_obj.get_fillstyle() == 'none':
|
||
|
# promote the facecolor to be the edgecolor
|
||
|
edgecolors = colors
|
||
|
# set the facecolor to 'none' (at the last chance) because
|
||
|
# we cannot fill a path if the facecolor is non-null
|
||
|
# (which is defendable at the renderer level).
|
||
|
colors = 'none'
|
||
|
else:
|
||
|
# if we are not nulling the face color we can do this
|
||
|
# simpler
|
||
|
edgecolors = 'face'
|
||
|
|
||
|
if linewidths is None:
|
||
|
linewidths = mpl.rcParams['lines.linewidth']
|
||
|
elif np.iterable(linewidths):
|
||
|
linewidths = [
|
||
|
lw if lw is not None else mpl.rcParams['lines.linewidth']
|
||
|
for lw in linewidths]
|
||
|
|
||
|
offsets = np.ma.column_stack([x, y])
|
||
|
|
||
|
collection = mcoll.PathCollection(
|
||
|
(path,), scales,
|
||
|
facecolors=colors,
|
||
|
edgecolors=edgecolors,
|
||
|
linewidths=linewidths,
|
||
|
offsets=offsets,
|
||
|
offset_transform=kwargs.pop('transform', self.transData),
|
||
|
alpha=alpha,
|
||
|
)
|
||
|
collection.set_transform(mtransforms.IdentityTransform())
|
||
|
if colors is None:
|
||
|
collection.set_array(c)
|
||
|
collection.set_cmap(cmap)
|
||
|
collection.set_norm(norm)
|
||
|
collection._scale_norm(norm, vmin, vmax)
|
||
|
else:
|
||
|
extra_kwargs = {
|
||
|
'cmap': cmap, 'norm': norm, 'vmin': vmin, 'vmax': vmax
|
||
|
}
|
||
|
extra_keys = [k for k, v in extra_kwargs.items() if v is not None]
|
||
|
if any(extra_keys):
|
||
|
keys_str = ", ".join(f"'{k}'" for k in extra_keys)
|
||
|
_api.warn_external(
|
||
|
"No data for colormapping provided via 'c'. "
|
||
|
f"Parameters {keys_str} will be ignored")
|
||
|
collection._internal_update(kwargs)
|
||
|
|
||
|
# Classic mode only:
|
||
|
# ensure there are margins to allow for the
|
||
|
# finite size of the symbols. In v2.x, margins
|
||
|
# are present by default, so we disable this
|
||
|
# scatter-specific override.
|
||
|
if mpl.rcParams['_internal.classic_mode']:
|
||
|
if self._xmargin < 0.05 and x.size > 0:
|
||
|
self.set_xmargin(0.05)
|
||
|
if self._ymargin < 0.05 and x.size > 0:
|
||
|
self.set_ymargin(0.05)
|
||
|
|
||
|
self.add_collection(collection)
|
||
|
self._request_autoscale_view()
|
||
|
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "C"], label_namer="y")
|
||
|
@_docstring.dedent_interpd
|
||
|
def hexbin(self, x, y, C=None, gridsize=100, bins=None,
|
||
|
xscale='linear', yscale='linear', extent=None,
|
||
|
cmap=None, norm=None, vmin=None, vmax=None,
|
||
|
alpha=None, linewidths=None, edgecolors='face',
|
||
|
reduce_C_function=np.mean, mincnt=None, marginals=False,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Make a 2D hexagonal binning plot of points *x*, *y*.
|
||
|
|
||
|
If *C* is *None*, the value of the hexagon is determined by the number
|
||
|
of points in the hexagon. Otherwise, *C* specifies values at the
|
||
|
coordinate (x[i], y[i]). For each hexagon, these values are reduced
|
||
|
using *reduce_C_function*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like
|
||
|
The data positions. *x* and *y* must be of the same length.
|
||
|
|
||
|
C : array-like, optional
|
||
|
If given, these values are accumulated in the bins. Otherwise,
|
||
|
every point has a value of 1. Must be of the same length as *x*
|
||
|
and *y*.
|
||
|
|
||
|
gridsize : int or (int, int), default: 100
|
||
|
If a single int, the number of hexagons in the *x*-direction.
|
||
|
The number of hexagons in the *y*-direction is chosen such that
|
||
|
the hexagons are approximately regular.
|
||
|
|
||
|
Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
|
||
|
in the *x*-direction and the *y*-direction. In the
|
||
|
*y*-direction, counting is done along vertically aligned
|
||
|
hexagons, not along the zig-zag chains of hexagons; see the
|
||
|
following illustration.
|
||
|
|
||
|
.. plot::
|
||
|
|
||
|
import numpy
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
np.random.seed(19680801)
|
||
|
n= 300
|
||
|
x = np.random.standard_normal(n)
|
||
|
y = np.random.standard_normal(n)
|
||
|
|
||
|
fig, ax = plt.subplots(figsize=(4, 4))
|
||
|
h = ax.hexbin(x, y, gridsize=(5, 3))
|
||
|
hx, hy = h.get_offsets().T
|
||
|
ax.plot(hx[24::3], hy[24::3], 'ro-')
|
||
|
ax.plot(hx[-3:], hy[-3:], 'ro-')
|
||
|
ax.set_title('gridsize=(5, 3)')
|
||
|
ax.axis('off')
|
||
|
|
||
|
To get approximately regular hexagons, choose
|
||
|
:math:`n_x = \\sqrt{3}\\,n_y`.
|
||
|
|
||
|
bins : 'log' or int or sequence, default: None
|
||
|
Discretization of the hexagon values.
|
||
|
|
||
|
- If *None*, no binning is applied; the color of each hexagon
|
||
|
directly corresponds to its count value.
|
||
|
- If 'log', use a logarithmic scale for the colormap.
|
||
|
Internally, :math:`log_{10}(i+1)` is used to determine the
|
||
|
hexagon color. This is equivalent to ``norm=LogNorm()``.
|
||
|
- If an integer, divide the counts in the specified number
|
||
|
of bins, and color the hexagons accordingly.
|
||
|
- If a sequence of values, the values of the lower bound of
|
||
|
the bins to be used.
|
||
|
|
||
|
xscale : {'linear', 'log'}, default: 'linear'
|
||
|
Use a linear or log10 scale on the horizontal axis.
|
||
|
|
||
|
yscale : {'linear', 'log'}, default: 'linear'
|
||
|
Use a linear or log10 scale on the vertical axis.
|
||
|
|
||
|
mincnt : int >= 0, default: *None*
|
||
|
If not *None*, only display cells with at least *mincnt*
|
||
|
number of points in the cell.
|
||
|
|
||
|
marginals : bool, default: *False*
|
||
|
If marginals is *True*, plot the marginal density as
|
||
|
colormapped rectangles along the bottom of the x-axis and
|
||
|
left of the y-axis.
|
||
|
|
||
|
extent : 4-tuple of float, default: *None*
|
||
|
The limits of the bins (xmin, xmax, ymin, ymax).
|
||
|
The default assigns the limits based on
|
||
|
*gridsize*, *x*, *y*, *xscale* and *yscale*.
|
||
|
|
||
|
If *xscale* or *yscale* is set to 'log', the limits are
|
||
|
expected to be the exponent for a power of 10. E.g. for
|
||
|
x-limits of 1 and 50 in 'linear' scale and y-limits
|
||
|
of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.collections.PolyCollection`
|
||
|
A `.PolyCollection` defining the hexagonal bins.
|
||
|
|
||
|
- `.PolyCollection.get_offsets` contains a Mx2 array containing
|
||
|
the x, y positions of the M hexagon centers.
|
||
|
- `.PolyCollection.get_array` contains the values of the M
|
||
|
hexagons.
|
||
|
|
||
|
If *marginals* is *True*, horizontal
|
||
|
bar and vertical bar (both PolyCollections) will be attached
|
||
|
to the return collection as attributes *hbar* and *vbar*.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
alpha : float between 0 and 1, optional
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
linewidths : float, default: *None*
|
||
|
If *None*, defaults to :rc:`patch.linewidth`.
|
||
|
|
||
|
edgecolors : {'face', 'none', *None*} or color, default: 'face'
|
||
|
The color of the hexagon edges. Possible values are:
|
||
|
|
||
|
- 'face': Draw the edges in the same color as the fill color.
|
||
|
- 'none': No edges are drawn. This can sometimes lead to unsightly
|
||
|
unpainted pixels between the hexagons.
|
||
|
- *None*: Draw outlines in the default color.
|
||
|
- An explicit color.
|
||
|
|
||
|
reduce_C_function : callable, default: `numpy.mean`
|
||
|
The function to aggregate *C* within the bins. It is ignored if
|
||
|
*C* is not given. This must have the signature::
|
||
|
|
||
|
def reduce_C_function(C: array) -> float
|
||
|
|
||
|
Commonly used functions are:
|
||
|
|
||
|
- `numpy.mean`: average of the points
|
||
|
- `numpy.sum`: integral of the point values
|
||
|
- `numpy.amax`: value taken from the largest point
|
||
|
|
||
|
By default will only reduce cells with at least 1 point because some
|
||
|
reduction functions (such as `numpy.amax`) will error/warn with empty
|
||
|
input. Changing *mincnt* will adjust the cutoff, and if set to 0 will
|
||
|
pass empty input to the reduction function.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs : `~matplotlib.collections.PolyCollection` properties
|
||
|
All other keyword arguments are passed on to `.PolyCollection`:
|
||
|
|
||
|
%(PolyCollection:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hist2d : 2D histogram rectangular bins
|
||
|
"""
|
||
|
self._process_unit_info([("x", x), ("y", y)], kwargs, convert=False)
|
||
|
|
||
|
x, y, C = cbook.delete_masked_points(x, y, C)
|
||
|
|
||
|
# Set the size of the hexagon grid
|
||
|
if np.iterable(gridsize):
|
||
|
nx, ny = gridsize
|
||
|
else:
|
||
|
nx = gridsize
|
||
|
ny = int(nx / math.sqrt(3))
|
||
|
# Count the number of data in each hexagon
|
||
|
x = np.asarray(x, float)
|
||
|
y = np.asarray(y, float)
|
||
|
|
||
|
# Will be log()'d if necessary, and then rescaled.
|
||
|
tx = x
|
||
|
ty = y
|
||
|
|
||
|
if xscale == 'log':
|
||
|
if np.any(x <= 0.0):
|
||
|
raise ValueError(
|
||
|
"x contains non-positive values, so cannot be log-scaled")
|
||
|
tx = np.log10(tx)
|
||
|
if yscale == 'log':
|
||
|
if np.any(y <= 0.0):
|
||
|
raise ValueError(
|
||
|
"y contains non-positive values, so cannot be log-scaled")
|
||
|
ty = np.log10(ty)
|
||
|
if extent is not None:
|
||
|
xmin, xmax, ymin, ymax = extent
|
||
|
if xmin > xmax:
|
||
|
raise ValueError("In extent, xmax must be greater than xmin")
|
||
|
if ymin > ymax:
|
||
|
raise ValueError("In extent, ymax must be greater than ymin")
|
||
|
else:
|
||
|
xmin, xmax = (tx.min(), tx.max()) if len(x) else (0, 1)
|
||
|
ymin, ymax = (ty.min(), ty.max()) if len(y) else (0, 1)
|
||
|
|
||
|
# to avoid issues with singular data, expand the min/max pairs
|
||
|
xmin, xmax = mtransforms.nonsingular(xmin, xmax, expander=0.1)
|
||
|
ymin, ymax = mtransforms.nonsingular(ymin, ymax, expander=0.1)
|
||
|
|
||
|
nx1 = nx + 1
|
||
|
ny1 = ny + 1
|
||
|
nx2 = nx
|
||
|
ny2 = ny
|
||
|
n = nx1 * ny1 + nx2 * ny2
|
||
|
|
||
|
# In the x-direction, the hexagons exactly cover the region from
|
||
|
# xmin to xmax. Need some padding to avoid roundoff errors.
|
||
|
padding = 1.e-9 * (xmax - xmin)
|
||
|
xmin -= padding
|
||
|
xmax += padding
|
||
|
sx = (xmax - xmin) / nx
|
||
|
sy = (ymax - ymin) / ny
|
||
|
# Positions in hexagon index coordinates.
|
||
|
ix = (tx - xmin) / sx
|
||
|
iy = (ty - ymin) / sy
|
||
|
ix1 = np.round(ix).astype(int)
|
||
|
iy1 = np.round(iy).astype(int)
|
||
|
ix2 = np.floor(ix).astype(int)
|
||
|
iy2 = np.floor(iy).astype(int)
|
||
|
# flat indices, plus one so that out-of-range points go to position 0.
|
||
|
i1 = np.where((0 <= ix1) & (ix1 < nx1) & (0 <= iy1) & (iy1 < ny1),
|
||
|
ix1 * ny1 + iy1 + 1, 0)
|
||
|
i2 = np.where((0 <= ix2) & (ix2 < nx2) & (0 <= iy2) & (iy2 < ny2),
|
||
|
ix2 * ny2 + iy2 + 1, 0)
|
||
|
|
||
|
d1 = (ix - ix1) ** 2 + 3.0 * (iy - iy1) ** 2
|
||
|
d2 = (ix - ix2 - 0.5) ** 2 + 3.0 * (iy - iy2 - 0.5) ** 2
|
||
|
bdist = (d1 < d2)
|
||
|
|
||
|
if C is None: # [1:] drops out-of-range points.
|
||
|
counts1 = np.bincount(i1[bdist], minlength=1 + nx1 * ny1)[1:]
|
||
|
counts2 = np.bincount(i2[~bdist], minlength=1 + nx2 * ny2)[1:]
|
||
|
accum = np.concatenate([counts1, counts2]).astype(float)
|
||
|
if mincnt is not None:
|
||
|
accum[accum < mincnt] = np.nan
|
||
|
C = np.ones(len(x))
|
||
|
else:
|
||
|
# store the C values in a list per hexagon index
|
||
|
Cs_at_i1 = [[] for _ in range(1 + nx1 * ny1)]
|
||
|
Cs_at_i2 = [[] for _ in range(1 + nx2 * ny2)]
|
||
|
for i in range(len(x)):
|
||
|
if bdist[i]:
|
||
|
Cs_at_i1[i1[i]].append(C[i])
|
||
|
else:
|
||
|
Cs_at_i2[i2[i]].append(C[i])
|
||
|
if mincnt is None:
|
||
|
mincnt = 1
|
||
|
accum = np.array(
|
||
|
[reduce_C_function(acc) if len(acc) >= mincnt else np.nan
|
||
|
for Cs_at_i in [Cs_at_i1, Cs_at_i2]
|
||
|
for acc in Cs_at_i[1:]], # [1:] drops out-of-range points.
|
||
|
float)
|
||
|
|
||
|
good_idxs = ~np.isnan(accum)
|
||
|
|
||
|
offsets = np.zeros((n, 2), float)
|
||
|
offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
|
||
|
offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
|
||
|
offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
|
||
|
offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
|
||
|
offsets[:, 0] *= sx
|
||
|
offsets[:, 1] *= sy
|
||
|
offsets[:, 0] += xmin
|
||
|
offsets[:, 1] += ymin
|
||
|
# remove accumulation bins with no data
|
||
|
offsets = offsets[good_idxs, :]
|
||
|
accum = accum[good_idxs]
|
||
|
|
||
|
polygon = [sx, sy / 3] * np.array(
|
||
|
[[.5, -.5], [.5, .5], [0., 1.], [-.5, .5], [-.5, -.5], [0., -1.]])
|
||
|
|
||
|
if linewidths is None:
|
||
|
linewidths = [mpl.rcParams['patch.linewidth']]
|
||
|
|
||
|
if xscale == 'log' or yscale == 'log':
|
||
|
polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
|
||
|
if xscale == 'log':
|
||
|
polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
|
||
|
xmin = 10.0 ** xmin
|
||
|
xmax = 10.0 ** xmax
|
||
|
self.set_xscale(xscale)
|
||
|
if yscale == 'log':
|
||
|
polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
|
||
|
ymin = 10.0 ** ymin
|
||
|
ymax = 10.0 ** ymax
|
||
|
self.set_yscale(yscale)
|
||
|
collection = mcoll.PolyCollection(
|
||
|
polygons,
|
||
|
edgecolors=edgecolors,
|
||
|
linewidths=linewidths,
|
||
|
)
|
||
|
else:
|
||
|
collection = mcoll.PolyCollection(
|
||
|
[polygon],
|
||
|
edgecolors=edgecolors,
|
||
|
linewidths=linewidths,
|
||
|
offsets=offsets,
|
||
|
offset_transform=mtransforms.AffineDeltaTransform(
|
||
|
self.transData),
|
||
|
)
|
||
|
|
||
|
# Set normalizer if bins is 'log'
|
||
|
if cbook._str_equal(bins, 'log'):
|
||
|
if norm is not None:
|
||
|
_api.warn_external("Only one of 'bins' and 'norm' arguments "
|
||
|
f"can be supplied, ignoring {bins=}")
|
||
|
else:
|
||
|
norm = mcolors.LogNorm(vmin=vmin, vmax=vmax)
|
||
|
vmin = vmax = None
|
||
|
bins = None
|
||
|
|
||
|
# autoscale the norm with current accum values if it hasn't been set
|
||
|
if norm is not None:
|
||
|
if norm.vmin is None and norm.vmax is None:
|
||
|
norm.autoscale(accum)
|
||
|
|
||
|
if bins is not None:
|
||
|
if not np.iterable(bins):
|
||
|
minimum, maximum = min(accum), max(accum)
|
||
|
bins -= 1 # one less edge than bins
|
||
|
bins = minimum + (maximum - minimum) * np.arange(bins) / bins
|
||
|
bins = np.sort(bins)
|
||
|
accum = bins.searchsorted(accum)
|
||
|
|
||
|
collection.set_array(accum)
|
||
|
collection.set_cmap(cmap)
|
||
|
collection.set_norm(norm)
|
||
|
collection.set_alpha(alpha)
|
||
|
collection._internal_update(kwargs)
|
||
|
collection._scale_norm(norm, vmin, vmax)
|
||
|
|
||
|
corners = ((xmin, ymin), (xmax, ymax))
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view(tight=True)
|
||
|
|
||
|
# add the collection last
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
if not marginals:
|
||
|
return collection
|
||
|
|
||
|
# Process marginals
|
||
|
bars = []
|
||
|
for zname, z, zmin, zmax, zscale, nbins in [
|
||
|
("x", x, xmin, xmax, xscale, nx),
|
||
|
("y", y, ymin, ymax, yscale, 2 * ny),
|
||
|
]:
|
||
|
|
||
|
if zscale == "log":
|
||
|
bin_edges = np.geomspace(zmin, zmax, nbins + 1)
|
||
|
else:
|
||
|
bin_edges = np.linspace(zmin, zmax, nbins + 1)
|
||
|
|
||
|
verts = np.empty((nbins, 4, 2))
|
||
|
verts[:, 0, 0] = verts[:, 1, 0] = bin_edges[:-1]
|
||
|
verts[:, 2, 0] = verts[:, 3, 0] = bin_edges[1:]
|
||
|
verts[:, 0, 1] = verts[:, 3, 1] = .00
|
||
|
verts[:, 1, 1] = verts[:, 2, 1] = .05
|
||
|
if zname == "y":
|
||
|
verts = verts[:, :, ::-1] # Swap x and y.
|
||
|
|
||
|
# Sort z-values into bins defined by bin_edges.
|
||
|
bin_idxs = np.searchsorted(bin_edges, z) - 1
|
||
|
values = np.empty(nbins)
|
||
|
for i in range(nbins):
|
||
|
# Get C-values for each bin, and compute bin value with
|
||
|
# reduce_C_function.
|
||
|
ci = C[bin_idxs == i]
|
||
|
values[i] = reduce_C_function(ci) if len(ci) > 0 else np.nan
|
||
|
|
||
|
mask = ~np.isnan(values)
|
||
|
verts = verts[mask]
|
||
|
values = values[mask]
|
||
|
|
||
|
trans = getattr(self, f"get_{zname}axis_transform")(which="grid")
|
||
|
bar = mcoll.PolyCollection(
|
||
|
verts, transform=trans, edgecolors="face")
|
||
|
bar.set_array(values)
|
||
|
bar.set_cmap(cmap)
|
||
|
bar.set_norm(norm)
|
||
|
bar.set_alpha(alpha)
|
||
|
bar._internal_update(kwargs)
|
||
|
bars.append(self.add_collection(bar, autolim=False))
|
||
|
|
||
|
collection.hbar, collection.vbar = bars
|
||
|
|
||
|
def on_changed(collection):
|
||
|
collection.hbar.set_cmap(collection.get_cmap())
|
||
|
collection.hbar.set_cmap(collection.get_cmap())
|
||
|
collection.vbar.set_clim(collection.get_clim())
|
||
|
collection.vbar.set_clim(collection.get_clim())
|
||
|
|
||
|
collection.callbacks.connect('changed', on_changed)
|
||
|
|
||
|
return collection
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def arrow(self, x, y, dx, dy, **kwargs):
|
||
|
"""
|
||
|
Add an arrow to the Axes.
|
||
|
|
||
|
This draws an arrow from ``(x, y)`` to ``(x+dx, y+dy)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(FancyArrow)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.FancyArrow`
|
||
|
The created `.FancyArrow` object.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The resulting arrow is affected by the Axes aspect ratio and limits.
|
||
|
This may produce an arrow whose head is not square with its stem. To
|
||
|
create an arrow whose head is square with its stem,
|
||
|
use :meth:`annotate` for example:
|
||
|
|
||
|
>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
|
||
|
... arrowprops=dict(arrowstyle="->"))
|
||
|
|
||
|
"""
|
||
|
# Strip away units for the underlying patch since units
|
||
|
# do not make sense to most patch-like code
|
||
|
x = self.convert_xunits(x)
|
||
|
y = self.convert_yunits(y)
|
||
|
dx = self.convert_xunits(dx)
|
||
|
dy = self.convert_yunits(dy)
|
||
|
|
||
|
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
|
||
|
self.add_patch(a)
|
||
|
self._request_autoscale_view()
|
||
|
return a
|
||
|
|
||
|
@_docstring.copy(mquiver.QuiverKey.__init__)
|
||
|
def quiverkey(self, Q, X, Y, U, label, **kwargs):
|
||
|
qk = mquiver.QuiverKey(Q, X, Y, U, label, **kwargs)
|
||
|
self.add_artist(qk)
|
||
|
return qk
|
||
|
|
||
|
# Handle units for x and y, if they've been passed
|
||
|
def _quiver_units(self, args, kwargs):
|
||
|
if len(args) > 3:
|
||
|
x, y = args[0:2]
|
||
|
x, y = self._process_unit_info([("x", x), ("y", y)], kwargs)
|
||
|
return (x, y) + args[2:]
|
||
|
return args
|
||
|
|
||
|
# args can be a combination of X, Y, U, V, C and all should be replaced
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def quiver(self, *args, **kwargs):
|
||
|
"""%(quiver_doc)s"""
|
||
|
# Make sure units are handled for x and y values
|
||
|
args = self._quiver_units(args, kwargs)
|
||
|
q = mquiver.Quiver(self, *args, **kwargs)
|
||
|
self.add_collection(q, autolim=True)
|
||
|
self._request_autoscale_view()
|
||
|
return q
|
||
|
|
||
|
# args can be some combination of X, Y, U, V, C and all should be replaced
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def barbs(self, *args, **kwargs):
|
||
|
"""%(barbs_doc)s"""
|
||
|
# Make sure units are handled for x and y values
|
||
|
args = self._quiver_units(args, kwargs)
|
||
|
b = mquiver.Barbs(self, *args, **kwargs)
|
||
|
self.add_collection(b, autolim=True)
|
||
|
self._request_autoscale_view()
|
||
|
return b
|
||
|
|
||
|
# Uses a custom implementation of data-kwarg handling in
|
||
|
# _process_plot_var_args.
|
||
|
def fill(self, *args, data=None, **kwargs):
|
||
|
"""
|
||
|
Plot filled polygons.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*args : sequence of x, y, [color]
|
||
|
Each polygon is defined by the lists of *x* and *y* positions of
|
||
|
its nodes, optionally followed by a *color* specifier. See
|
||
|
:mod:`matplotlib.colors` for supported color specifiers. The
|
||
|
standard color cycle is used for polygons without a color
|
||
|
specifier.
|
||
|
|
||
|
You can plot multiple polygons by providing multiple *x*, *y*,
|
||
|
*[color]* groups.
|
||
|
|
||
|
For example, each of the following is legal::
|
||
|
|
||
|
ax.fill(x, y) # a polygon with default color
|
||
|
ax.fill(x, y, "b") # a blue polygon
|
||
|
ax.fill(x, y, x2, y2) # two polygons
|
||
|
ax.fill(x, y, "b", x2, y2, "r") # a blue and a red polygon
|
||
|
|
||
|
data : indexable object, optional
|
||
|
An object with labelled data. If given, provide the label names to
|
||
|
plot in *x* and *y*, e.g.::
|
||
|
|
||
|
ax.fill("time", "signal",
|
||
|
data={"time": [0, 1, 2], "signal": [0, 1, 0]})
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
list of `~matplotlib.patches.Polygon`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.patches.Polygon` properties
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Use :meth:`fill_between` if you would like to fill the region between
|
||
|
two curves.
|
||
|
"""
|
||
|
# For compatibility(!), get aliases from Line2D rather than Patch.
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
|
||
|
# _get_patches_for_fill returns a generator, convert it to a list.
|
||
|
patches = [*self._get_patches_for_fill(self, *args, data=data, **kwargs)]
|
||
|
for poly in patches:
|
||
|
self.add_patch(poly)
|
||
|
self._request_autoscale_view()
|
||
|
return patches
|
||
|
|
||
|
def _fill_between_x_or_y(
|
||
|
self, ind_dir, ind, dep1, dep2=0, *,
|
||
|
where=None, interpolate=False, step=None, **kwargs):
|
||
|
# Common implementation between fill_between (*ind_dir*="x") and
|
||
|
# fill_betweenx (*ind_dir*="y"). *ind* is the independent variable,
|
||
|
# *dep* the dependent variable. The docstring below is interpolated
|
||
|
# to generate both methods' docstrings.
|
||
|
"""
|
||
|
Fill the area between two {dir} curves.
|
||
|
|
||
|
The curves are defined by the points (*{ind}*, *{dep}1*) and (*{ind}*,
|
||
|
*{dep}2*). This creates one or multiple polygons describing the filled
|
||
|
area.
|
||
|
|
||
|
You may exclude some {dir} sections from filling using *where*.
|
||
|
|
||
|
By default, the edges connect the given points directly. Use *step*
|
||
|
if the filling should be a step function, i.e. constant in between
|
||
|
*{ind}*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
{ind} : array (length N)
|
||
|
The {ind} coordinates of the nodes defining the curves.
|
||
|
|
||
|
{dep}1 : array (length N) or scalar
|
||
|
The {dep} coordinates of the nodes defining the first curve.
|
||
|
|
||
|
{dep}2 : array (length N) or scalar, default: 0
|
||
|
The {dep} coordinates of the nodes defining the second curve.
|
||
|
|
||
|
where : array of bool (length N), optional
|
||
|
Define *where* to exclude some {dir} regions from being filled.
|
||
|
The filled regions are defined by the coordinates ``{ind}[where]``.
|
||
|
More precisely, fill between ``{ind}[i]`` and ``{ind}[i+1]`` if
|
||
|
``where[i] and where[i+1]``. Note that this definition implies
|
||
|
that an isolated *True* value between two *False* values in *where*
|
||
|
will not result in filling. Both sides of the *True* position
|
||
|
remain unfilled due to the adjacent *False* values.
|
||
|
|
||
|
interpolate : bool, default: False
|
||
|
This option is only relevant if *where* is used and the two curves
|
||
|
are crossing each other.
|
||
|
|
||
|
Semantically, *where* is often used for *{dep}1* > *{dep}2* or
|
||
|
similar. By default, the nodes of the polygon defining the filled
|
||
|
region will only be placed at the positions in the *{ind}* array.
|
||
|
Such a polygon cannot describe the above semantics close to the
|
||
|
intersection. The {ind}-sections containing the intersection are
|
||
|
simply clipped.
|
||
|
|
||
|
Setting *interpolate* to *True* will calculate the actual
|
||
|
intersection point and extend the filled region up to this point.
|
||
|
|
||
|
step : {{'pre', 'post', 'mid'}}, optional
|
||
|
Define *step* if the filling should be a step function,
|
||
|
i.e. constant in between *{ind}*. The value determines where the
|
||
|
step will occur:
|
||
|
|
||
|
- 'pre': The y value is continued constantly to the left from
|
||
|
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'post': The y value is continued constantly to the right from
|
||
|
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
|
||
|
value ``y[i]``.
|
||
|
- 'mid': Steps occur half-way between the *x* positions.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.PolyCollection`
|
||
|
A `.PolyCollection` containing the plotted polygons.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
All other keyword arguments are passed on to `.PolyCollection`.
|
||
|
They control the `.Polygon` properties:
|
||
|
|
||
|
%(PolyCollection:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
fill_between : Fill between two sets of y-values.
|
||
|
fill_betweenx : Fill between two sets of x-values.
|
||
|
"""
|
||
|
|
||
|
dep_dir = {"x": "y", "y": "x"}[ind_dir]
|
||
|
|
||
|
if not mpl.rcParams["_internal.classic_mode"]:
|
||
|
kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
|
||
|
if not any(c in kwargs for c in ("color", "facecolor")):
|
||
|
kwargs["facecolor"] = \
|
||
|
self._get_patches_for_fill.get_next_color()
|
||
|
|
||
|
# Handle united data, such as dates
|
||
|
ind, dep1, dep2 = map(
|
||
|
ma.masked_invalid, self._process_unit_info(
|
||
|
[(ind_dir, ind), (dep_dir, dep1), (dep_dir, dep2)], kwargs))
|
||
|
|
||
|
for name, array in [
|
||
|
(ind_dir, ind), (f"{dep_dir}1", dep1), (f"{dep_dir}2", dep2)]:
|
||
|
if array.ndim > 1:
|
||
|
raise ValueError(f"{name!r} is not 1-dimensional")
|
||
|
|
||
|
if where is None:
|
||
|
where = True
|
||
|
else:
|
||
|
where = np.asarray(where, dtype=bool)
|
||
|
if where.size != ind.size:
|
||
|
raise ValueError(f"where size ({where.size}) does not match "
|
||
|
f"{ind_dir} size ({ind.size})")
|
||
|
where = where & ~functools.reduce(
|
||
|
np.logical_or, map(np.ma.getmaskarray, [ind, dep1, dep2]))
|
||
|
|
||
|
ind, dep1, dep2 = np.broadcast_arrays(
|
||
|
np.atleast_1d(ind), dep1, dep2, subok=True)
|
||
|
|
||
|
polys = []
|
||
|
for idx0, idx1 in cbook.contiguous_regions(where):
|
||
|
indslice = ind[idx0:idx1]
|
||
|
dep1slice = dep1[idx0:idx1]
|
||
|
dep2slice = dep2[idx0:idx1]
|
||
|
if step is not None:
|
||
|
step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
|
||
|
indslice, dep1slice, dep2slice = \
|
||
|
step_func(indslice, dep1slice, dep2slice)
|
||
|
|
||
|
if not len(indslice):
|
||
|
continue
|
||
|
|
||
|
N = len(indslice)
|
||
|
pts = np.zeros((2 * N + 2, 2))
|
||
|
|
||
|
if interpolate:
|
||
|
def get_interp_point(idx):
|
||
|
im1 = max(idx - 1, 0)
|
||
|
ind_values = ind[im1:idx+1]
|
||
|
diff_values = dep1[im1:idx+1] - dep2[im1:idx+1]
|
||
|
dep1_values = dep1[im1:idx+1]
|
||
|
|
||
|
if len(diff_values) == 2:
|
||
|
if np.ma.is_masked(diff_values[1]):
|
||
|
return ind[im1], dep1[im1]
|
||
|
elif np.ma.is_masked(diff_values[0]):
|
||
|
return ind[idx], dep1[idx]
|
||
|
|
||
|
diff_order = diff_values.argsort()
|
||
|
diff_root_ind = np.interp(
|
||
|
0, diff_values[diff_order], ind_values[diff_order])
|
||
|
ind_order = ind_values.argsort()
|
||
|
diff_root_dep = np.interp(
|
||
|
diff_root_ind,
|
||
|
ind_values[ind_order], dep1_values[ind_order])
|
||
|
return diff_root_ind, diff_root_dep
|
||
|
|
||
|
start = get_interp_point(idx0)
|
||
|
end = get_interp_point(idx1)
|
||
|
else:
|
||
|
# Handle scalar dep2 (e.g. 0): the fill should go all
|
||
|
# the way down to 0 even if none of the dep1 sample points do.
|
||
|
start = indslice[0], dep2slice[0]
|
||
|
end = indslice[-1], dep2slice[-1]
|
||
|
|
||
|
pts[0] = start
|
||
|
pts[N + 1] = end
|
||
|
|
||
|
pts[1:N+1, 0] = indslice
|
||
|
pts[1:N+1, 1] = dep1slice
|
||
|
pts[N+2:, 0] = indslice[::-1]
|
||
|
pts[N+2:, 1] = dep2slice[::-1]
|
||
|
|
||
|
if ind_dir == "y":
|
||
|
pts = pts[:, ::-1]
|
||
|
|
||
|
polys.append(pts)
|
||
|
|
||
|
collection = mcoll.PolyCollection(polys, **kwargs)
|
||
|
|
||
|
# now update the datalim and autoscale
|
||
|
pts = np.vstack([np.hstack([ind[where, None], dep1[where, None]]),
|
||
|
np.hstack([ind[where, None], dep2[where, None]])])
|
||
|
if ind_dir == "y":
|
||
|
pts = pts[:, ::-1]
|
||
|
|
||
|
up_x = up_y = True
|
||
|
if "transform" in kwargs:
|
||
|
up_x, up_y = kwargs["transform"].contains_branch_seperately(self.transData)
|
||
|
self.update_datalim(pts, updatex=up_x, updatey=up_y)
|
||
|
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
|
||
|
step=None, **kwargs):
|
||
|
return self._fill_between_x_or_y(
|
||
|
"x", x, y1, y2,
|
||
|
where=where, interpolate=interpolate, step=step, **kwargs)
|
||
|
|
||
|
if _fill_between_x_or_y.__doc__:
|
||
|
fill_between.__doc__ = _fill_between_x_or_y.__doc__.format(
|
||
|
dir="horizontal", ind="x", dep="y"
|
||
|
)
|
||
|
fill_between = _preprocess_data(
|
||
|
_docstring.dedent_interpd(fill_between),
|
||
|
replace_names=["x", "y1", "y2", "where"])
|
||
|
|
||
|
def fill_betweenx(self, y, x1, x2=0, where=None,
|
||
|
step=None, interpolate=False, **kwargs):
|
||
|
return self._fill_between_x_or_y(
|
||
|
"y", y, x1, x2,
|
||
|
where=where, interpolate=interpolate, step=step, **kwargs)
|
||
|
|
||
|
if _fill_between_x_or_y.__doc__:
|
||
|
fill_betweenx.__doc__ = _fill_between_x_or_y.__doc__.format(
|
||
|
dir="vertical", ind="y", dep="x"
|
||
|
)
|
||
|
fill_betweenx = _preprocess_data(
|
||
|
_docstring.dedent_interpd(fill_betweenx),
|
||
|
replace_names=["y", "x1", "x2", "where"])
|
||
|
|
||
|
#### plotting z(x, y): imshow, pcolor and relatives, contour
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.interpd
|
||
|
def imshow(self, X, cmap=None, norm=None, *, aspect=None,
|
||
|
interpolation=None, alpha=None,
|
||
|
vmin=None, vmax=None, origin=None, extent=None,
|
||
|
interpolation_stage=None, filternorm=True, filterrad=4.0,
|
||
|
resample=None, url=None, **kwargs):
|
||
|
"""
|
||
|
Display data as an image, i.e., on a 2D regular raster.
|
||
|
|
||
|
The input may either be actual RGB(A) data, or 2D scalar data, which
|
||
|
will be rendered as a pseudocolor image. For displaying a grayscale
|
||
|
image, set up the colormapping using the parameters
|
||
|
``cmap='gray', vmin=0, vmax=255``.
|
||
|
|
||
|
The number of pixels used to render an image is set by the Axes size
|
||
|
and the figure *dpi*. This can lead to aliasing artifacts when
|
||
|
the image is resampled, because the displayed image size will usually
|
||
|
not match the size of *X* (see
|
||
|
:doc:`/gallery/images_contours_and_fields/image_antialiasing`).
|
||
|
The resampling can be controlled via the *interpolation* parameter
|
||
|
and/or :rc:`image.interpolation`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like or PIL image
|
||
|
The image data. Supported array shapes are:
|
||
|
|
||
|
- (M, N): an image with scalar data. The values are mapped to
|
||
|
colors using normalization and a colormap. See parameters *norm*,
|
||
|
*cmap*, *vmin*, *vmax*.
|
||
|
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
|
||
|
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
|
||
|
i.e. including transparency.
|
||
|
|
||
|
The first two dimensions (M, N) define the rows and columns of
|
||
|
the image.
|
||
|
|
||
|
Out-of-range RGB(A) values are clipped.
|
||
|
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
This parameter is ignored if *X* is RGB(A).
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
This parameter is ignored if *X* is RGB(A).
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
This parameter is ignored if *X* is RGB(A).
|
||
|
|
||
|
aspect : {'equal', 'auto'} or float or None, default: None
|
||
|
The aspect ratio of the Axes. This parameter is particularly
|
||
|
relevant for images since it determines whether data pixels are
|
||
|
square.
|
||
|
|
||
|
This parameter is a shortcut for explicitly calling
|
||
|
`.Axes.set_aspect`. See there for further details.
|
||
|
|
||
|
- 'equal': Ensures an aspect ratio of 1. Pixels will be square
|
||
|
(unless pixel sizes are explicitly made non-square in data
|
||
|
coordinates using *extent*).
|
||
|
- 'auto': The Axes is kept fixed and the aspect is adjusted so
|
||
|
that the data fit in the Axes. In general, this will result in
|
||
|
non-square pixels.
|
||
|
|
||
|
Normally, None (the default) means to use :rc:`image.aspect`. However, if
|
||
|
the image uses a transform that does not contain the axes data transform,
|
||
|
then None means to not modify the axes aspect at all (in that case, directly
|
||
|
call `.Axes.set_aspect` if desired).
|
||
|
|
||
|
interpolation : str, default: :rc:`image.interpolation`
|
||
|
The interpolation method used.
|
||
|
|
||
|
Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
|
||
|
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
|
||
|
'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
|
||
|
'sinc', 'lanczos', 'blackman'.
|
||
|
|
||
|
The data *X* is resampled to the pixel size of the image on the
|
||
|
figure canvas, using the interpolation method to either up- or
|
||
|
downsample the data.
|
||
|
|
||
|
If *interpolation* is 'none', then for the ps, pdf, and svg
|
||
|
backends no down- or upsampling occurs, and the image data is
|
||
|
passed to the backend as a native image. Note that different ps,
|
||
|
pdf, and svg viewers may display these raw pixels differently. On
|
||
|
other backends, 'none' is the same as 'nearest'.
|
||
|
|
||
|
If *interpolation* is the default 'antialiased', then 'nearest'
|
||
|
interpolation is used if the image is upsampled by more than a
|
||
|
factor of three (i.e. the number of display pixels is at least
|
||
|
three times the size of the data array). If the upsampling rate is
|
||
|
smaller than 3, or the image is downsampled, then 'hanning'
|
||
|
interpolation is used to act as an anti-aliasing filter, unless the
|
||
|
image happens to be upsampled by exactly a factor of two or one.
|
||
|
|
||
|
See
|
||
|
:doc:`/gallery/images_contours_and_fields/interpolation_methods`
|
||
|
for an overview of the supported interpolation methods, and
|
||
|
:doc:`/gallery/images_contours_and_fields/image_antialiasing` for
|
||
|
a discussion of image antialiasing.
|
||
|
|
||
|
Some interpolation methods require an additional radius parameter,
|
||
|
which can be set by *filterrad*. Additionally, the antigrain image
|
||
|
resize filter is controlled by the parameter *filternorm*.
|
||
|
|
||
|
interpolation_stage : {'data', 'rgba'}, default: 'data'
|
||
|
If 'data', interpolation
|
||
|
is carried out on the data provided by the user. If 'rgba', the
|
||
|
interpolation is carried out after the colormapping has been
|
||
|
applied (visual interpolation).
|
||
|
|
||
|
alpha : float or array-like, optional
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
If *alpha* is an array, the alpha blending values are applied pixel
|
||
|
by pixel, and *alpha* must have the same shape as *X*.
|
||
|
|
||
|
origin : {'upper', 'lower'}, default: :rc:`image.origin`
|
||
|
Place the [0, 0] index of the array in the upper left or lower
|
||
|
left corner of the Axes. The convention (the default) 'upper' is
|
||
|
typically used for matrices and images.
|
||
|
|
||
|
Note that the vertical axis points upward for 'lower'
|
||
|
but downward for 'upper'.
|
||
|
|
||
|
See the :ref:`imshow_extent` tutorial for
|
||
|
examples and a more detailed description.
|
||
|
|
||
|
extent : floats (left, right, bottom, top), optional
|
||
|
The bounding box in data coordinates that the image will fill.
|
||
|
These values may be unitful and match the units of the Axes.
|
||
|
The image is stretched individually along x and y to fill the box.
|
||
|
|
||
|
The default extent is determined by the following conditions.
|
||
|
Pixels have unit size in data coordinates. Their centers are on
|
||
|
integer coordinates, and their center coordinates range from 0 to
|
||
|
columns-1 horizontally and from 0 to rows-1 vertically.
|
||
|
|
||
|
Note that the direction of the vertical axis and thus the default
|
||
|
values for top and bottom depend on *origin*:
|
||
|
|
||
|
- For ``origin == 'upper'`` the default is
|
||
|
``(-0.5, numcols-0.5, numrows-0.5, -0.5)``.
|
||
|
- For ``origin == 'lower'`` the default is
|
||
|
``(-0.5, numcols-0.5, -0.5, numrows-0.5)``.
|
||
|
|
||
|
See the :ref:`imshow_extent` tutorial for
|
||
|
examples and a more detailed description.
|
||
|
|
||
|
filternorm : bool, default: True
|
||
|
A parameter for the antigrain image resize filter (see the
|
||
|
antigrain documentation). If *filternorm* is set, the filter
|
||
|
normalizes integer values and corrects the rounding errors. It
|
||
|
doesn't do anything with the source floating point values, it
|
||
|
corrects only integers according to the rule of 1.0 which means
|
||
|
that any sum of pixel weights must be equal to 1.0. So, the
|
||
|
filter function must produce a graph of the proper shape.
|
||
|
|
||
|
filterrad : float > 0, default: 4.0
|
||
|
The filter radius for filters that have a radius parameter, i.e.
|
||
|
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.
|
||
|
|
||
|
resample : bool, default: :rc:`image.resample`
|
||
|
When *True*, use a full resampling method. When *False*, only
|
||
|
resample when the output image is larger than the input image.
|
||
|
|
||
|
url : str, optional
|
||
|
Set the url of the created `.AxesImage`. See `.Artist.set_url`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.image.AxesImage`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs : `~matplotlib.artist.Artist` properties
|
||
|
These parameters are passed on to the constructor of the
|
||
|
`.AxesImage` artist.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
matshow : Plot a matrix or an array as an image.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Unless *extent* is used, pixel centers will be located at integer
|
||
|
coordinates. In other words: the origin will coincide with the center
|
||
|
of pixel (0, 0).
|
||
|
|
||
|
There are two common representations for RGB images with an alpha
|
||
|
channel:
|
||
|
|
||
|
- Straight (unassociated) alpha: R, G, and B channels represent the
|
||
|
color of the pixel, disregarding its opacity.
|
||
|
- Premultiplied (associated) alpha: R, G, and B channels represent
|
||
|
the color of the pixel, adjusted for its opacity by multiplication.
|
||
|
|
||
|
`~matplotlib.pyplot.imshow` expects RGB images adopting the straight
|
||
|
(unassociated) alpha representation.
|
||
|
"""
|
||
|
im = mimage.AxesImage(self, cmap=cmap, norm=norm,
|
||
|
interpolation=interpolation, origin=origin,
|
||
|
extent=extent, filternorm=filternorm,
|
||
|
filterrad=filterrad, resample=resample,
|
||
|
interpolation_stage=interpolation_stage,
|
||
|
**kwargs)
|
||
|
|
||
|
if aspect is None and not (
|
||
|
im.is_transform_set()
|
||
|
and not im.get_transform().contains_branch(self.transData)):
|
||
|
aspect = mpl.rcParams['image.aspect']
|
||
|
if aspect is not None:
|
||
|
self.set_aspect(aspect)
|
||
|
|
||
|
im.set_data(X)
|
||
|
im.set_alpha(alpha)
|
||
|
if im.get_clip_path() is None:
|
||
|
# image does not already have clipping set, clip to Axes patch
|
||
|
im.set_clip_path(self.patch)
|
||
|
im._scale_norm(norm, vmin, vmax)
|
||
|
im.set_url(url)
|
||
|
|
||
|
# update ax.dataLim, and, if autoscaling, set viewLim
|
||
|
# to tightly fit the image, regardless of dataLim.
|
||
|
im.set_extent(im.get_extent())
|
||
|
|
||
|
self.add_image(im)
|
||
|
return im
|
||
|
|
||
|
def _pcolorargs(self, funcname, *args, shading='auto', **kwargs):
|
||
|
# - create X and Y if not present;
|
||
|
# - reshape X and Y as needed if they are 1-D;
|
||
|
# - check for proper sizes based on `shading` kwarg;
|
||
|
# - reset shading if shading='auto' to flat or nearest
|
||
|
# depending on size;
|
||
|
|
||
|
_valid_shading = ['gouraud', 'nearest', 'flat', 'auto']
|
||
|
try:
|
||
|
_api.check_in_list(_valid_shading, shading=shading)
|
||
|
except ValueError:
|
||
|
_api.warn_external(f"shading value '{shading}' not in list of "
|
||
|
f"valid values {_valid_shading}. Setting "
|
||
|
"shading='auto'.")
|
||
|
shading = 'auto'
|
||
|
|
||
|
if len(args) == 1:
|
||
|
C = np.asanyarray(args[0])
|
||
|
nrows, ncols = C.shape[:2]
|
||
|
if shading in ['gouraud', 'nearest']:
|
||
|
X, Y = np.meshgrid(np.arange(ncols), np.arange(nrows))
|
||
|
else:
|
||
|
X, Y = np.meshgrid(np.arange(ncols + 1), np.arange(nrows + 1))
|
||
|
shading = 'flat'
|
||
|
C = cbook.safe_masked_invalid(C, copy=True)
|
||
|
return X, Y, C, shading
|
||
|
|
||
|
if len(args) == 3:
|
||
|
# Check x and y for bad data...
|
||
|
C = np.asanyarray(args[2])
|
||
|
# unit conversion allows e.g. datetime objects as axis values
|
||
|
X, Y = args[:2]
|
||
|
X, Y = self._process_unit_info([("x", X), ("y", Y)], kwargs)
|
||
|
X, Y = [cbook.safe_masked_invalid(a, copy=True) for a in [X, Y]]
|
||
|
|
||
|
if funcname == 'pcolormesh':
|
||
|
if np.ma.is_masked(X) or np.ma.is_masked(Y):
|
||
|
raise ValueError(
|
||
|
'x and y arguments to pcolormesh cannot have '
|
||
|
'non-finite values or be of type '
|
||
|
'numpy.ma.MaskedArray with masked values')
|
||
|
nrows, ncols = C.shape[:2]
|
||
|
else:
|
||
|
raise _api.nargs_error(funcname, takes="1 or 3", given=len(args))
|
||
|
|
||
|
Nx = X.shape[-1]
|
||
|
Ny = Y.shape[0]
|
||
|
if X.ndim != 2 or X.shape[0] == 1:
|
||
|
x = X.reshape(1, Nx)
|
||
|
X = x.repeat(Ny, axis=0)
|
||
|
if Y.ndim != 2 or Y.shape[1] == 1:
|
||
|
y = Y.reshape(Ny, 1)
|
||
|
Y = y.repeat(Nx, axis=1)
|
||
|
if X.shape != Y.shape:
|
||
|
raise TypeError(f'Incompatible X, Y inputs to {funcname}; '
|
||
|
f'see help({funcname})')
|
||
|
|
||
|
if shading == 'auto':
|
||
|
if ncols == Nx and nrows == Ny:
|
||
|
shading = 'nearest'
|
||
|
else:
|
||
|
shading = 'flat'
|
||
|
|
||
|
if shading == 'flat':
|
||
|
if (Nx, Ny) != (ncols + 1, nrows + 1):
|
||
|
raise TypeError(f"Dimensions of C {C.shape} should"
|
||
|
f" be one smaller than X({Nx}) and Y({Ny})"
|
||
|
f" while using shading='flat'"
|
||
|
f" see help({funcname})")
|
||
|
else: # ['nearest', 'gouraud']:
|
||
|
if (Nx, Ny) != (ncols, nrows):
|
||
|
raise TypeError('Dimensions of C %s are incompatible with'
|
||
|
' X (%d) and/or Y (%d); see help(%s)' % (
|
||
|
C.shape, Nx, Ny, funcname))
|
||
|
if shading == 'nearest':
|
||
|
# grid is specified at the center, so define corners
|
||
|
# at the midpoints between the grid centers and then use the
|
||
|
# flat algorithm.
|
||
|
def _interp_grid(X):
|
||
|
# helper for below
|
||
|
if np.shape(X)[1] > 1:
|
||
|
dX = np.diff(X, axis=1) * 0.5
|
||
|
if not (np.all(dX >= 0) or np.all(dX <= 0)):
|
||
|
_api.warn_external(
|
||
|
f"The input coordinates to {funcname} are "
|
||
|
"interpreted as cell centers, but are not "
|
||
|
"monotonically increasing or decreasing. "
|
||
|
"This may lead to incorrectly calculated cell "
|
||
|
"edges, in which case, please supply "
|
||
|
f"explicit cell edges to {funcname}.")
|
||
|
|
||
|
hstack = np.ma.hstack if np.ma.isMA(X) else np.hstack
|
||
|
X = hstack((X[:, [0]] - dX[:, [0]],
|
||
|
X[:, :-1] + dX,
|
||
|
X[:, [-1]] + dX[:, [-1]]))
|
||
|
else:
|
||
|
# This is just degenerate, but we can't reliably guess
|
||
|
# a dX if there is just one value.
|
||
|
X = np.hstack((X, X))
|
||
|
return X
|
||
|
|
||
|
if ncols == Nx:
|
||
|
X = _interp_grid(X)
|
||
|
Y = _interp_grid(Y)
|
||
|
if nrows == Ny:
|
||
|
X = _interp_grid(X.T).T
|
||
|
Y = _interp_grid(Y.T).T
|
||
|
shading = 'flat'
|
||
|
|
||
|
C = cbook.safe_masked_invalid(C, copy=True)
|
||
|
return X, Y, C, shading
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def pcolor(self, *args, shading=None, alpha=None, norm=None, cmap=None,
|
||
|
vmin=None, vmax=None, **kwargs):
|
||
|
r"""
|
||
|
Create a pseudocolor plot with a non-regular rectangular grid.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
pcolor([X, Y,] C, **kwargs)
|
||
|
|
||
|
*X* and *Y* can be used to specify the corners of the quadrilaterals.
|
||
|
|
||
|
.. hint::
|
||
|
|
||
|
``pcolor()`` can be very slow for large arrays. In most
|
||
|
cases you should use the similar but much faster
|
||
|
`~.Axes.pcolormesh` instead. See
|
||
|
:ref:`Differences between pcolor() and pcolormesh()
|
||
|
<differences-pcolor-pcolormesh>` for a discussion of the
|
||
|
differences.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
C : 2D array-like
|
||
|
The color-mapped values. Color-mapping is controlled by *cmap*,
|
||
|
*norm*, *vmin*, and *vmax*.
|
||
|
|
||
|
X, Y : array-like, optional
|
||
|
The coordinates of the corners of quadrilaterals of a pcolormesh::
|
||
|
|
||
|
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
|
||
|
●╶───╴●
|
||
|
│ │
|
||
|
●╶───╴●
|
||
|
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])
|
||
|
|
||
|
Note that the column index corresponds to the x-coordinate, and
|
||
|
the row index corresponds to y. For details, see the
|
||
|
:ref:`Notes <axes-pcolormesh-grid-orientation>` section below.
|
||
|
|
||
|
If ``shading='flat'`` the dimensions of *X* and *Y* should be one
|
||
|
greater than those of *C*, and the quadrilateral is colored due
|
||
|
to the value at ``C[i, j]``. If *X*, *Y* and *C* have equal
|
||
|
dimensions, a warning will be raised and the last row and column
|
||
|
of *C* will be ignored.
|
||
|
|
||
|
If ``shading='nearest'``, the dimensions of *X* and *Y* should be
|
||
|
the same as those of *C* (if not, a ValueError will be raised). The
|
||
|
color ``C[i, j]`` will be centered on ``(X[i, j], Y[i, j])``.
|
||
|
|
||
|
If *X* and/or *Y* are 1-D arrays or column vectors they will be
|
||
|
expanded as needed into the appropriate 2D arrays, making a
|
||
|
rectangular grid.
|
||
|
|
||
|
shading : {'flat', 'nearest', 'auto'}, default: :rc:`pcolor.shading`
|
||
|
The fill style for the quadrilateral. Possible values:
|
||
|
|
||
|
- 'flat': A solid color is used for each quad. The color of the
|
||
|
quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
|
||
|
``C[i, j]``. The dimensions of *X* and *Y* should be
|
||
|
one greater than those of *C*; if they are the same as *C*,
|
||
|
then a deprecation warning is raised, and the last row
|
||
|
and column of *C* are dropped.
|
||
|
- 'nearest': Each grid point will have a color centered on it,
|
||
|
extending halfway between the adjacent grid centers. The
|
||
|
dimensions of *X* and *Y* must be the same as *C*.
|
||
|
- 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
|
||
|
larger than *C*. Choose 'nearest' if dimensions are the same.
|
||
|
|
||
|
See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
|
||
|
for more description.
|
||
|
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
edgecolors : {'none', None, 'face', color, color sequence}, optional
|
||
|
The color of the edges. Defaults to 'none'. Possible values:
|
||
|
|
||
|
- 'none' or '': No edge.
|
||
|
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
|
||
|
:rc:`patch.force_edgecolor` has to be True for this to work.
|
||
|
- 'face': Use the adjacent face color.
|
||
|
- A color or sequence of colors will set the edge color.
|
||
|
|
||
|
The singular form *edgecolor* works as an alias.
|
||
|
|
||
|
alpha : float, default: None
|
||
|
The alpha blending value of the face color, between 0 (transparent)
|
||
|
and 1 (opaque). Note: The edgecolor is currently not affected by
|
||
|
this.
|
||
|
|
||
|
snap : bool, default: False
|
||
|
Whether to snap the mesh to pixel boundaries.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`matplotlib.collections.PolyQuadMesh`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
antialiaseds : bool, default: False
|
||
|
The default *antialiaseds* is False if the default
|
||
|
*edgecolors*\ ="none" is used. This eliminates artificial lines
|
||
|
at patch boundaries, and works regardless of the value of alpha.
|
||
|
If *edgecolors* is not "none", then the default *antialiaseds*
|
||
|
is taken from :rc:`patch.antialiased`.
|
||
|
Stroking the edges may be preferred if *alpha* is 1, but will
|
||
|
cause artifacts otherwise.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Additionally, the following arguments are allowed. They are passed
|
||
|
along to the `~matplotlib.collections.PolyQuadMesh` constructor:
|
||
|
|
||
|
%(PolyCollection:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pcolormesh : for an explanation of the differences between
|
||
|
pcolor and pcolormesh.
|
||
|
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
|
||
|
faster alternative.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Masked arrays**
|
||
|
|
||
|
*X*, *Y* and *C* may be masked arrays. If either ``C[i, j]``, or one
|
||
|
of the vertices surrounding ``C[i, j]`` (*X* or *Y* at
|
||
|
``[i, j], [i+1, j], [i, j+1], [i+1, j+1]``) is masked, nothing is
|
||
|
plotted.
|
||
|
|
||
|
.. _axes-pcolor-grid-orientation:
|
||
|
|
||
|
**Grid orientation**
|
||
|
|
||
|
The grid orientation follows the standard matrix convention: An array
|
||
|
*C* with shape (nrows, ncolumns) is plotted with the column number as
|
||
|
*X* and the row number as *Y*.
|
||
|
"""
|
||
|
|
||
|
if shading is None:
|
||
|
shading = mpl.rcParams['pcolor.shading']
|
||
|
shading = shading.lower()
|
||
|
X, Y, C, shading = self._pcolorargs('pcolor', *args, shading=shading,
|
||
|
kwargs=kwargs)
|
||
|
linewidths = (0.25,)
|
||
|
if 'linewidth' in kwargs:
|
||
|
kwargs['linewidths'] = kwargs.pop('linewidth')
|
||
|
kwargs.setdefault('linewidths', linewidths)
|
||
|
|
||
|
if 'edgecolor' in kwargs:
|
||
|
kwargs['edgecolors'] = kwargs.pop('edgecolor')
|
||
|
ec = kwargs.setdefault('edgecolors', 'none')
|
||
|
|
||
|
# aa setting will default via collections to patch.antialiased
|
||
|
# unless the boundary is not stroked, in which case the
|
||
|
# default will be False; with unstroked boundaries, aa
|
||
|
# makes artifacts that are often disturbing.
|
||
|
if 'antialiaseds' in kwargs:
|
||
|
kwargs['antialiased'] = kwargs.pop('antialiaseds')
|
||
|
if 'antialiased' not in kwargs and cbook._str_lower_equal(ec, "none"):
|
||
|
kwargs['antialiased'] = False
|
||
|
|
||
|
kwargs.setdefault('snap', False)
|
||
|
|
||
|
if np.ma.isMaskedArray(X) or np.ma.isMaskedArray(Y):
|
||
|
stack = np.ma.stack
|
||
|
X = np.ma.asarray(X)
|
||
|
Y = np.ma.asarray(Y)
|
||
|
# For bounds collections later
|
||
|
x = X.compressed()
|
||
|
y = Y.compressed()
|
||
|
else:
|
||
|
stack = np.stack
|
||
|
x = X
|
||
|
y = Y
|
||
|
coords = stack([X, Y], axis=-1)
|
||
|
|
||
|
collection = mcoll.PolyQuadMesh(
|
||
|
coords, array=C, cmap=cmap, norm=norm, alpha=alpha, **kwargs)
|
||
|
collection._scale_norm(norm, vmin, vmax)
|
||
|
|
||
|
# Transform from native to data coordinates?
|
||
|
t = collection._transform
|
||
|
if (not isinstance(t, mtransforms.Transform) and
|
||
|
hasattr(t, '_as_mpl_transform')):
|
||
|
t = t._as_mpl_transform(self.axes)
|
||
|
|
||
|
if t and any(t.contains_branch_seperately(self.transData)):
|
||
|
trans_to_data = t - self.transData
|
||
|
pts = np.vstack([x, y]).T.astype(float)
|
||
|
transformed_pts = trans_to_data.transform(pts)
|
||
|
x = transformed_pts[..., 0]
|
||
|
y = transformed_pts[..., 1]
|
||
|
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
|
||
|
minx = np.min(x)
|
||
|
maxx = np.max(x)
|
||
|
miny = np.min(y)
|
||
|
maxy = np.max(y)
|
||
|
collection.sticky_edges.x[:] = [minx, maxx]
|
||
|
collection.sticky_edges.y[:] = [miny, maxy]
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def pcolormesh(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
|
||
|
vmax=None, shading=None, antialiased=False, **kwargs):
|
||
|
"""
|
||
|
Create a pseudocolor plot with a non-regular rectangular grid.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
pcolormesh([X, Y,] C, **kwargs)
|
||
|
|
||
|
*X* and *Y* can be used to specify the corners of the quadrilaterals.
|
||
|
|
||
|
.. hint::
|
||
|
|
||
|
`~.Axes.pcolormesh` is similar to `~.Axes.pcolor`. It is much faster
|
||
|
and preferred in most cases. For a detailed discussion on the
|
||
|
differences see :ref:`Differences between pcolor() and pcolormesh()
|
||
|
<differences-pcolor-pcolormesh>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
C : array-like
|
||
|
The mesh data. Supported array shapes are:
|
||
|
|
||
|
- (M, N) or M*N: a mesh with scalar data. The values are mapped to
|
||
|
colors using normalization and a colormap. See parameters *norm*,
|
||
|
*cmap*, *vmin*, *vmax*.
|
||
|
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
|
||
|
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
|
||
|
i.e. including transparency.
|
||
|
|
||
|
The first two dimensions (M, N) define the rows and columns of
|
||
|
the mesh data.
|
||
|
|
||
|
X, Y : array-like, optional
|
||
|
The coordinates of the corners of quadrilaterals of a pcolormesh::
|
||
|
|
||
|
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
|
||
|
●╶───╴●
|
||
|
│ │
|
||
|
●╶───╴●
|
||
|
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])
|
||
|
|
||
|
Note that the column index corresponds to the x-coordinate, and
|
||
|
the row index corresponds to y. For details, see the
|
||
|
:ref:`Notes <axes-pcolormesh-grid-orientation>` section below.
|
||
|
|
||
|
If ``shading='flat'`` the dimensions of *X* and *Y* should be one
|
||
|
greater than those of *C*, and the quadrilateral is colored due
|
||
|
to the value at ``C[i, j]``. If *X*, *Y* and *C* have equal
|
||
|
dimensions, a warning will be raised and the last row and column
|
||
|
of *C* will be ignored.
|
||
|
|
||
|
If ``shading='nearest'`` or ``'gouraud'``, the dimensions of *X*
|
||
|
and *Y* should be the same as those of *C* (if not, a ValueError
|
||
|
will be raised). For ``'nearest'`` the color ``C[i, j]`` is
|
||
|
centered on ``(X[i, j], Y[i, j])``. For ``'gouraud'``, a smooth
|
||
|
interpolation is carried out between the quadrilateral corners.
|
||
|
|
||
|
If *X* and/or *Y* are 1-D arrays or column vectors they will be
|
||
|
expanded as needed into the appropriate 2D arrays, making a
|
||
|
rectangular grid.
|
||
|
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
edgecolors : {'none', None, 'face', color, color sequence}, optional
|
||
|
The color of the edges. Defaults to 'none'. Possible values:
|
||
|
|
||
|
- 'none' or '': No edge.
|
||
|
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
|
||
|
:rc:`patch.force_edgecolor` has to be True for this to work.
|
||
|
- 'face': Use the adjacent face color.
|
||
|
- A color or sequence of colors will set the edge color.
|
||
|
|
||
|
The singular form *edgecolor* works as an alias.
|
||
|
|
||
|
alpha : float, default: None
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
shading : {'flat', 'nearest', 'gouraud', 'auto'}, optional
|
||
|
The fill style for the quadrilateral; defaults to
|
||
|
:rc:`pcolor.shading`. Possible values:
|
||
|
|
||
|
- 'flat': A solid color is used for each quad. The color of the
|
||
|
quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
|
||
|
``C[i, j]``. The dimensions of *X* and *Y* should be
|
||
|
one greater than those of *C*; if they are the same as *C*,
|
||
|
then a deprecation warning is raised, and the last row
|
||
|
and column of *C* are dropped.
|
||
|
- 'nearest': Each grid point will have a color centered on it,
|
||
|
extending halfway between the adjacent grid centers. The
|
||
|
dimensions of *X* and *Y* must be the same as *C*.
|
||
|
- 'gouraud': Each quad will be Gouraud shaded: The color of the
|
||
|
corners (i', j') are given by ``C[i', j']``. The color values of
|
||
|
the area in between is interpolated from the corner values.
|
||
|
The dimensions of *X* and *Y* must be the same as *C*. When
|
||
|
Gouraud shading is used, *edgecolors* is ignored.
|
||
|
- 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
|
||
|
larger than *C*. Choose 'nearest' if dimensions are the same.
|
||
|
|
||
|
See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
|
||
|
for more description.
|
||
|
|
||
|
snap : bool, default: False
|
||
|
Whether to snap the mesh to pixel boundaries.
|
||
|
|
||
|
rasterized : bool, optional
|
||
|
Rasterize the pcolormesh when drawing vector graphics. This can
|
||
|
speed up rendering and produce smaller files for large data sets.
|
||
|
See also :doc:`/gallery/misc/rasterization_demo`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`matplotlib.collections.QuadMesh`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Additionally, the following arguments are allowed. They are passed
|
||
|
along to the `~matplotlib.collections.QuadMesh` constructor:
|
||
|
|
||
|
%(QuadMesh:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
pcolor : An alternative implementation with slightly different
|
||
|
features. For a detailed discussion on the differences see
|
||
|
:ref:`Differences between pcolor() and pcolormesh()
|
||
|
<differences-pcolor-pcolormesh>`.
|
||
|
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
|
||
|
faster alternative.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Masked arrays**
|
||
|
|
||
|
*C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
|
||
|
quadrilateral will be transparent. Masking of *X* and *Y* is not
|
||
|
supported. Use `~.Axes.pcolor` if you need this functionality.
|
||
|
|
||
|
.. _axes-pcolormesh-grid-orientation:
|
||
|
|
||
|
**Grid orientation**
|
||
|
|
||
|
The grid orientation follows the standard matrix convention: An array
|
||
|
*C* with shape (nrows, ncolumns) is plotted with the column number as
|
||
|
*X* and the row number as *Y*.
|
||
|
|
||
|
.. _differences-pcolor-pcolormesh:
|
||
|
|
||
|
**Differences between pcolor() and pcolormesh()**
|
||
|
|
||
|
Both methods are used to create a pseudocolor plot of a 2D array
|
||
|
using quadrilaterals.
|
||
|
|
||
|
The main difference lies in the created object and internal data
|
||
|
handling:
|
||
|
While `~.Axes.pcolor` returns a `.PolyQuadMesh`, `~.Axes.pcolormesh`
|
||
|
returns a `.QuadMesh`. The latter is more specialized for the given
|
||
|
purpose and thus is faster. It should almost always be preferred.
|
||
|
|
||
|
There is also a slight difference in the handling of masked arrays.
|
||
|
Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
|
||
|
for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
|
||
|
and *Y*. The reason lies in the internal handling of the masked values.
|
||
|
`~.Axes.pcolor` leaves out the respective polygons from the
|
||
|
PolyQuadMesh. `~.Axes.pcolormesh` sets the facecolor of the masked
|
||
|
elements to transparent. You can see the difference when using
|
||
|
edgecolors. While all edges are drawn irrespective of masking in a
|
||
|
QuadMesh, the edge between two adjacent masked quadrilaterals in
|
||
|
`~.Axes.pcolor` is not drawn as the corresponding polygons do not
|
||
|
exist in the PolyQuadMesh. Because PolyQuadMesh draws each individual
|
||
|
polygon, it also supports applying hatches and linestyles to the collection.
|
||
|
|
||
|
Another difference is the support of Gouraud shading in
|
||
|
`~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.
|
||
|
|
||
|
"""
|
||
|
if shading is None:
|
||
|
shading = mpl.rcParams['pcolor.shading']
|
||
|
shading = shading.lower()
|
||
|
kwargs.setdefault('edgecolors', 'none')
|
||
|
|
||
|
X, Y, C, shading = self._pcolorargs('pcolormesh', *args,
|
||
|
shading=shading, kwargs=kwargs)
|
||
|
coords = np.stack([X, Y], axis=-1)
|
||
|
|
||
|
kwargs.setdefault('snap', mpl.rcParams['pcolormesh.snap'])
|
||
|
|
||
|
collection = mcoll.QuadMesh(
|
||
|
coords, antialiased=antialiased, shading=shading,
|
||
|
array=C, cmap=cmap, norm=norm, alpha=alpha, **kwargs)
|
||
|
collection._scale_norm(norm, vmin, vmax)
|
||
|
|
||
|
coords = coords.reshape(-1, 2) # flatten the grid structure; keep x, y
|
||
|
|
||
|
# Transform from native to data coordinates?
|
||
|
t = collection._transform
|
||
|
if (not isinstance(t, mtransforms.Transform) and
|
||
|
hasattr(t, '_as_mpl_transform')):
|
||
|
t = t._as_mpl_transform(self.axes)
|
||
|
|
||
|
if t and any(t.contains_branch_seperately(self.transData)):
|
||
|
trans_to_data = t - self.transData
|
||
|
coords = trans_to_data.transform(coords)
|
||
|
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
|
||
|
minx, miny = np.min(coords, axis=0)
|
||
|
maxx, maxy = np.max(coords, axis=0)
|
||
|
collection.sticky_edges.x[:] = [minx, maxx]
|
||
|
collection.sticky_edges.y[:] = [miny, maxy]
|
||
|
corners = (minx, miny), (maxx, maxy)
|
||
|
self.update_datalim(corners)
|
||
|
self._request_autoscale_view()
|
||
|
return collection
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def pcolorfast(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
|
||
|
vmax=None, **kwargs):
|
||
|
"""
|
||
|
Create a pseudocolor plot with a non-regular rectangular grid.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
ax.pcolorfast([X, Y], C, /, **kwargs)
|
||
|
|
||
|
This method is similar to `~.Axes.pcolor` and `~.Axes.pcolormesh`.
|
||
|
It's designed to provide the fastest pcolor-type plotting with the
|
||
|
Agg backend. To achieve this, it uses different algorithms internally
|
||
|
depending on the complexity of the input grid (regular rectangular,
|
||
|
non-regular rectangular or arbitrary quadrilateral).
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This method is experimental. Compared to `~.Axes.pcolor` or
|
||
|
`~.Axes.pcolormesh` it has some limitations:
|
||
|
|
||
|
- It supports only flat shading (no outlines)
|
||
|
- It lacks support for log scaling of the axes.
|
||
|
- It does not have a pyplot wrapper.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
C : array-like
|
||
|
The image data. Supported array shapes are:
|
||
|
|
||
|
- (M, N): an image with scalar data. Color-mapping is controlled
|
||
|
by *cmap*, *norm*, *vmin*, and *vmax*.
|
||
|
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
|
||
|
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
|
||
|
i.e. including transparency.
|
||
|
|
||
|
The first two dimensions (M, N) define the rows and columns of
|
||
|
the image.
|
||
|
|
||
|
This parameter can only be passed positionally.
|
||
|
|
||
|
X, Y : tuple or array-like, default: ``(0, N)``, ``(0, M)``
|
||
|
*X* and *Y* are used to specify the coordinates of the
|
||
|
quadrilaterals. There are different ways to do this:
|
||
|
|
||
|
- Use tuples ``X=(xmin, xmax)`` and ``Y=(ymin, ymax)`` to define
|
||
|
a *uniform rectangular grid*.
|
||
|
|
||
|
The tuples define the outer edges of the grid. All individual
|
||
|
quadrilaterals will be of the same size. This is the fastest
|
||
|
version.
|
||
|
|
||
|
- Use 1D arrays *X*, *Y* to specify a *non-uniform rectangular
|
||
|
grid*.
|
||
|
|
||
|
In this case *X* and *Y* have to be monotonic 1D arrays of length
|
||
|
*N+1* and *M+1*, specifying the x and y boundaries of the cells.
|
||
|
|
||
|
The speed is intermediate. Note: The grid is checked, and if
|
||
|
found to be uniform the fast version is used.
|
||
|
|
||
|
- Use 2D arrays *X*, *Y* if you need an *arbitrary quadrilateral
|
||
|
grid* (i.e. if the quadrilaterals are not rectangular).
|
||
|
|
||
|
In this case *X* and *Y* are 2D arrays with shape (M + 1, N + 1),
|
||
|
specifying the x and y coordinates of the corners of the colored
|
||
|
quadrilaterals.
|
||
|
|
||
|
This is the most general, but the slowest to render. It may
|
||
|
produce faster and more compact output using ps, pdf, and
|
||
|
svg backends, however.
|
||
|
|
||
|
These arguments can only be passed positionally.
|
||
|
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
This parameter is ignored if *C* is RGB(A).
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
This parameter is ignored if *C* is RGB(A).
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
This parameter is ignored if *C* is RGB(A).
|
||
|
|
||
|
alpha : float, default: None
|
||
|
The alpha blending value, between 0 (transparent) and 1 (opaque).
|
||
|
|
||
|
snap : bool, default: False
|
||
|
Whether to snap the mesh to pixel boundaries.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.AxesImage` or `.PcolorImage` or `.QuadMesh`
|
||
|
The return type depends on the type of grid:
|
||
|
|
||
|
- `.AxesImage` for a regular rectangular grid.
|
||
|
- `.PcolorImage` for a non-regular rectangular grid.
|
||
|
- `.QuadMesh` for a non-rectangular grid.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Supported additional parameters depend on the type of grid.
|
||
|
See return types of *image* for further description.
|
||
|
"""
|
||
|
|
||
|
C = args[-1]
|
||
|
nr, nc = np.shape(C)[:2]
|
||
|
if len(args) == 1:
|
||
|
style = "image"
|
||
|
x = [0, nc]
|
||
|
y = [0, nr]
|
||
|
elif len(args) == 3:
|
||
|
x, y = args[:2]
|
||
|
x = np.asarray(x)
|
||
|
y = np.asarray(y)
|
||
|
if x.ndim == 1 and y.ndim == 1:
|
||
|
if x.size == 2 and y.size == 2:
|
||
|
style = "image"
|
||
|
else:
|
||
|
dx = np.diff(x)
|
||
|
dy = np.diff(y)
|
||
|
if (np.ptp(dx) < 0.01 * abs(dx.mean()) and
|
||
|
np.ptp(dy) < 0.01 * abs(dy.mean())):
|
||
|
style = "image"
|
||
|
else:
|
||
|
style = "pcolorimage"
|
||
|
elif x.ndim == 2 and y.ndim == 2:
|
||
|
style = "quadmesh"
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
f"When 3 positional parameters are passed to pcolorfast, the first "
|
||
|
f"two (X and Y) must be both 1D or both 2D; the given X was "
|
||
|
f"{x.ndim}D and the given Y was {y.ndim}D")
|
||
|
else:
|
||
|
raise _api.nargs_error('pcolorfast', '1 or 3', len(args))
|
||
|
|
||
|
if style == "quadmesh":
|
||
|
# data point in each cell is value at lower left corner
|
||
|
coords = np.stack([x, y], axis=-1)
|
||
|
if np.ndim(C) not in {2, 3}:
|
||
|
raise ValueError("C must be 2D or 3D")
|
||
|
collection = mcoll.QuadMesh(
|
||
|
coords, array=C,
|
||
|
alpha=alpha, cmap=cmap, norm=norm,
|
||
|
antialiased=False, edgecolors="none")
|
||
|
self.add_collection(collection, autolim=False)
|
||
|
xl, xr, yb, yt = x.min(), x.max(), y.min(), y.max()
|
||
|
ret = collection
|
||
|
|
||
|
else: # It's one of the two image styles.
|
||
|
extent = xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
|
||
|
if style == "image":
|
||
|
im = mimage.AxesImage(
|
||
|
self, cmap=cmap, norm=norm,
|
||
|
data=C, alpha=alpha, extent=extent,
|
||
|
interpolation='nearest', origin='lower',
|
||
|
**kwargs)
|
||
|
elif style == "pcolorimage":
|
||
|
im = mimage.PcolorImage(
|
||
|
self, x, y, C,
|
||
|
cmap=cmap, norm=norm, alpha=alpha, extent=extent,
|
||
|
**kwargs)
|
||
|
self.add_image(im)
|
||
|
ret = im
|
||
|
|
||
|
if np.ndim(C) == 2: # C.ndim == 3 is RGB(A) so doesn't need scaling.
|
||
|
ret._scale_norm(norm, vmin, vmax)
|
||
|
|
||
|
if ret.get_clip_path() is None:
|
||
|
# image does not already have clipping set, clip to Axes patch
|
||
|
ret.set_clip_path(self.patch)
|
||
|
|
||
|
ret.sticky_edges.x[:] = [xl, xr]
|
||
|
ret.sticky_edges.y[:] = [yb, yt]
|
||
|
self.update_datalim(np.array([[xl, yb], [xr, yt]]))
|
||
|
self._request_autoscale_view(tight=True)
|
||
|
return ret
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def contour(self, *args, **kwargs):
|
||
|
"""
|
||
|
Plot contour lines.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
contour([X, Y,] Z, [levels], **kwargs)
|
||
|
%(contour_doc)s
|
||
|
"""
|
||
|
kwargs['filled'] = False
|
||
|
contours = mcontour.QuadContourSet(self, *args, **kwargs)
|
||
|
self._request_autoscale_view()
|
||
|
return contours
|
||
|
|
||
|
@_preprocess_data()
|
||
|
@_docstring.dedent_interpd
|
||
|
def contourf(self, *args, **kwargs):
|
||
|
"""
|
||
|
Plot filled contours.
|
||
|
|
||
|
Call signature::
|
||
|
|
||
|
contourf([X, Y,] Z, [levels], **kwargs)
|
||
|
%(contour_doc)s
|
||
|
"""
|
||
|
kwargs['filled'] = True
|
||
|
contours = mcontour.QuadContourSet(self, *args, **kwargs)
|
||
|
self._request_autoscale_view()
|
||
|
return contours
|
||
|
|
||
|
def clabel(self, CS, levels=None, **kwargs):
|
||
|
"""
|
||
|
Label a contour plot.
|
||
|
|
||
|
Adds labels to line contours in given `.ContourSet`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
CS : `.ContourSet` instance
|
||
|
Line contours to label.
|
||
|
|
||
|
levels : array-like, optional
|
||
|
A list of level values, that should be labeled. The list must be
|
||
|
a subset of ``CS.levels``. If not given, all levels are labeled.
|
||
|
|
||
|
**kwargs
|
||
|
All other parameters are documented in `~.ContourLabeler.clabel`.
|
||
|
"""
|
||
|
return CS.clabel(levels, **kwargs)
|
||
|
|
||
|
#### Data analysis
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", 'weights'], label_namer="x")
|
||
|
def hist(self, x, bins=None, range=None, density=False, weights=None,
|
||
|
cumulative=False, bottom=None, histtype='bar', align='mid',
|
||
|
orientation='vertical', rwidth=None, log=False,
|
||
|
color=None, label=None, stacked=False, **kwargs):
|
||
|
"""
|
||
|
Compute and plot a histogram.
|
||
|
|
||
|
This method uses `numpy.histogram` to bin the data in *x* and count the
|
||
|
number of values in each bin, then draws the distribution either as a
|
||
|
`.BarContainer` or `.Polygon`. The *bins*, *range*, *density*, and
|
||
|
*weights* parameters are forwarded to `numpy.histogram`.
|
||
|
|
||
|
If the data has already been binned and counted, use `~.bar` or
|
||
|
`~.stairs` to plot the distribution::
|
||
|
|
||
|
counts, bins = np.histogram(x)
|
||
|
plt.stairs(counts, bins)
|
||
|
|
||
|
Alternatively, plot pre-computed bins and counts using ``hist()`` by
|
||
|
treating each bin as a single point with a weight equal to its count::
|
||
|
|
||
|
plt.hist(bins[:-1], bins, weights=counts)
|
||
|
|
||
|
The data input *x* can be a singular array, a list of datasets of
|
||
|
potentially different lengths ([*x0*, *x1*, ...]), or a 2D ndarray in
|
||
|
which each column is a dataset. Note that the ndarray form is
|
||
|
transposed relative to the list form. If the input is an array, then
|
||
|
the return value is a tuple (*n*, *bins*, *patches*); if the input is a
|
||
|
sequence of arrays, then the return value is a tuple
|
||
|
([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*, ...]).
|
||
|
|
||
|
Masked arrays are not supported.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (n,) array or sequence of (n,) arrays
|
||
|
Input values, this takes either a single array or a sequence of
|
||
|
arrays which are not required to be of the same length.
|
||
|
|
||
|
bins : int or sequence or str, default: :rc:`hist.bins`
|
||
|
If *bins* is an integer, it defines the number of equal-width bins
|
||
|
in the range.
|
||
|
|
||
|
If *bins* is a sequence, it defines the bin edges, including the
|
||
|
left edge of the first bin and the right edge of the last bin;
|
||
|
in this case, bins may be unequally spaced. All but the last
|
||
|
(righthand-most) bin is half-open. In other words, if *bins* is::
|
||
|
|
||
|
[1, 2, 3, 4]
|
||
|
|
||
|
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
|
||
|
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
|
||
|
*includes* 4.
|
||
|
|
||
|
If *bins* is a string, it is one of the binning strategies
|
||
|
supported by `numpy.histogram_bin_edges`: 'auto', 'fd', 'doane',
|
||
|
'scott', 'stone', 'rice', 'sturges', or 'sqrt'.
|
||
|
|
||
|
range : tuple or None, default: None
|
||
|
The lower and upper range of the bins. Lower and upper outliers
|
||
|
are ignored. If not provided, *range* is ``(x.min(), x.max())``.
|
||
|
Range has no effect if *bins* is a sequence.
|
||
|
|
||
|
If *bins* is a sequence or *range* is specified, autoscaling
|
||
|
is based on the specified bin range instead of the
|
||
|
range of x.
|
||
|
|
||
|
density : bool, default: False
|
||
|
If ``True``, draw and return a probability density: each bin
|
||
|
will display the bin's raw count divided by the total number of
|
||
|
counts *and the bin width*
|
||
|
(``density = counts / (sum(counts) * np.diff(bins))``),
|
||
|
so that the area under the histogram integrates to 1
|
||
|
(``np.sum(density * np.diff(bins)) == 1``).
|
||
|
|
||
|
If *stacked* is also ``True``, the sum of the histograms is
|
||
|
normalized to 1.
|
||
|
|
||
|
weights : (n,) array-like or None, default: None
|
||
|
An array of weights, of the same shape as *x*. Each value in
|
||
|
*x* only contributes its associated weight towards the bin count
|
||
|
(instead of 1). If *density* is ``True``, the weights are
|
||
|
normalized, so that the integral of the density over the range
|
||
|
remains 1.
|
||
|
|
||
|
cumulative : bool or -1, default: False
|
||
|
If ``True``, then a histogram is computed where each bin gives the
|
||
|
counts in that bin plus all bins for smaller values. The last bin
|
||
|
gives the total number of datapoints.
|
||
|
|
||
|
If *density* is also ``True`` then the histogram is normalized such
|
||
|
that the last bin equals 1.
|
||
|
|
||
|
If *cumulative* is a number less than 0 (e.g., -1), the direction
|
||
|
of accumulation is reversed. In this case, if *density* is also
|
||
|
``True``, then the histogram is normalized such that the first bin
|
||
|
equals 1.
|
||
|
|
||
|
bottom : array-like, scalar, or None, default: None
|
||
|
Location of the bottom of each bin, i.e. bins are drawn from
|
||
|
``bottom`` to ``bottom + hist(x, bins)`` If a scalar, the bottom
|
||
|
of each bin is shifted by the same amount. If an array, each bin
|
||
|
is shifted independently and the length of bottom must match the
|
||
|
number of bins. If None, defaults to 0.
|
||
|
|
||
|
histtype : {'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar'
|
||
|
The type of histogram to draw.
|
||
|
|
||
|
- 'bar' is a traditional bar-type histogram. If multiple data
|
||
|
are given the bars are arranged side by side.
|
||
|
- 'barstacked' is a bar-type histogram where multiple
|
||
|
data are stacked on top of each other.
|
||
|
- 'step' generates a lineplot that is by default unfilled.
|
||
|
- 'stepfilled' generates a lineplot that is by default filled.
|
||
|
|
||
|
align : {'left', 'mid', 'right'}, default: 'mid'
|
||
|
The horizontal alignment of the histogram bars.
|
||
|
|
||
|
- 'left': bars are centered on the left bin edges.
|
||
|
- 'mid': bars are centered between the bin edges.
|
||
|
- 'right': bars are centered on the right bin edges.
|
||
|
|
||
|
orientation : {'vertical', 'horizontal'}, default: 'vertical'
|
||
|
If 'horizontal', `~.Axes.barh` will be used for bar-type histograms
|
||
|
and the *bottom* kwarg will be the left edges.
|
||
|
|
||
|
rwidth : float or None, default: None
|
||
|
The relative width of the bars as a fraction of the bin width. If
|
||
|
``None``, automatically compute the width.
|
||
|
|
||
|
Ignored if *histtype* is 'step' or 'stepfilled'.
|
||
|
|
||
|
log : bool, default: False
|
||
|
If ``True``, the histogram axis will be set to a log scale.
|
||
|
|
||
|
color : :mpltype:`color` or list of :mpltype:`color` or None, default: None
|
||
|
Color or sequence of colors, one per dataset. Default (``None``)
|
||
|
uses the standard line color sequence.
|
||
|
|
||
|
label : str or list of str, optional
|
||
|
String, or sequence of strings to match multiple datasets. Bar
|
||
|
charts yield multiple patches per dataset, but only the first gets
|
||
|
the label, so that `~.Axes.legend` will work as expected.
|
||
|
|
||
|
stacked : bool, default: False
|
||
|
If ``True``, multiple data are stacked on top of each other If
|
||
|
``False`` multiple data are arranged side by side if histtype is
|
||
|
'bar' or on top of each other if histtype is 'step'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
n : array or list of arrays
|
||
|
The values of the histogram bins. See *density* and *weights* for a
|
||
|
description of the possible semantics. If input *x* is an array,
|
||
|
then this is an array of length *nbins*. If input is a sequence of
|
||
|
arrays ``[data1, data2, ...]``, then this is a list of arrays with
|
||
|
the values of the histograms for each of the arrays in the same
|
||
|
order. The dtype of the array *n* (or of its element arrays) will
|
||
|
always be float even if no weighting or normalization is used.
|
||
|
|
||
|
bins : array
|
||
|
The edges of the bins. Length nbins + 1 (nbins left edges and right
|
||
|
edge of last bin). Always a single array even when multiple data
|
||
|
sets are passed in.
|
||
|
|
||
|
patches : `.BarContainer` or list of a single `.Polygon` or list of \
|
||
|
such objects
|
||
|
Container of individual artists used to create the histogram
|
||
|
or list of such containers if there are multiple input datasets.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
`~matplotlib.patches.Patch` properties
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hist2d : 2D histogram with rectangular bins
|
||
|
hexbin : 2D histogram with hexagonal bins
|
||
|
stairs : Plot a pre-computed histogram
|
||
|
bar : Plot a pre-computed histogram
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For large numbers of bins (>1000), plotting can be significantly
|
||
|
accelerated by using `~.Axes.stairs` to plot a pre-computed histogram
|
||
|
(``plt.stairs(*np.histogram(data))``), or by setting *histtype* to
|
||
|
'step' or 'stepfilled' rather than 'bar' or 'barstacked'.
|
||
|
"""
|
||
|
# Avoid shadowing the builtin.
|
||
|
bin_range = range
|
||
|
from builtins import range
|
||
|
|
||
|
if np.isscalar(x):
|
||
|
x = [x]
|
||
|
|
||
|
if bins is None:
|
||
|
bins = mpl.rcParams['hist.bins']
|
||
|
|
||
|
# Validate string inputs here to avoid cluttering subsequent code.
|
||
|
_api.check_in_list(['bar', 'barstacked', 'step', 'stepfilled'],
|
||
|
histtype=histtype)
|
||
|
_api.check_in_list(['left', 'mid', 'right'], align=align)
|
||
|
_api.check_in_list(['horizontal', 'vertical'], orientation=orientation)
|
||
|
|
||
|
if histtype == 'barstacked' and not stacked:
|
||
|
stacked = True
|
||
|
|
||
|
# Massage 'x' for processing.
|
||
|
x = cbook._reshape_2D(x, 'x')
|
||
|
nx = len(x) # number of datasets
|
||
|
|
||
|
# Process unit information. _process_unit_info sets the unit and
|
||
|
# converts the first dataset; then we convert each following dataset
|
||
|
# one at a time.
|
||
|
if orientation == "vertical":
|
||
|
convert_units = self.convert_xunits
|
||
|
x = [*self._process_unit_info([("x", x[0])], kwargs),
|
||
|
*map(convert_units, x[1:])]
|
||
|
else: # horizontal
|
||
|
convert_units = self.convert_yunits
|
||
|
x = [*self._process_unit_info([("y", x[0])], kwargs),
|
||
|
*map(convert_units, x[1:])]
|
||
|
|
||
|
if bin_range is not None:
|
||
|
bin_range = convert_units(bin_range)
|
||
|
|
||
|
if not cbook.is_scalar_or_string(bins):
|
||
|
bins = convert_units(bins)
|
||
|
|
||
|
# We need to do to 'weights' what was done to 'x'
|
||
|
if weights is not None:
|
||
|
w = cbook._reshape_2D(weights, 'weights')
|
||
|
else:
|
||
|
w = [None] * nx
|
||
|
|
||
|
if len(w) != nx:
|
||
|
raise ValueError('weights should have the same shape as x')
|
||
|
|
||
|
input_empty = True
|
||
|
for xi, wi in zip(x, w):
|
||
|
len_xi = len(xi)
|
||
|
if wi is not None and len(wi) != len_xi:
|
||
|
raise ValueError('weights should have the same shape as x')
|
||
|
if len_xi:
|
||
|
input_empty = False
|
||
|
|
||
|
if color is None:
|
||
|
colors = [self._get_lines.get_next_color() for i in range(nx)]
|
||
|
else:
|
||
|
colors = mcolors.to_rgba_array(color)
|
||
|
if len(colors) != nx:
|
||
|
raise ValueError(f"The 'color' keyword argument must have one "
|
||
|
f"color per dataset, but {nx} datasets and "
|
||
|
f"{len(colors)} colors were provided")
|
||
|
|
||
|
hist_kwargs = dict()
|
||
|
|
||
|
# if the bin_range is not given, compute without nan numpy
|
||
|
# does not do this for us when guessing the range (but will
|
||
|
# happily ignore nans when computing the histogram).
|
||
|
if bin_range is None:
|
||
|
xmin = np.inf
|
||
|
xmax = -np.inf
|
||
|
for xi in x:
|
||
|
if len(xi):
|
||
|
# python's min/max ignore nan,
|
||
|
# np.minnan returns nan for all nan input
|
||
|
xmin = min(xmin, np.nanmin(xi))
|
||
|
xmax = max(xmax, np.nanmax(xi))
|
||
|
if xmin <= xmax: # Only happens if we have seen a finite value.
|
||
|
bin_range = (xmin, xmax)
|
||
|
|
||
|
# If bins are not specified either explicitly or via range,
|
||
|
# we need to figure out the range required for all datasets,
|
||
|
# and supply that to np.histogram.
|
||
|
if not input_empty and len(x) > 1:
|
||
|
if weights is not None:
|
||
|
_w = np.concatenate(w)
|
||
|
else:
|
||
|
_w = None
|
||
|
bins = np.histogram_bin_edges(
|
||
|
np.concatenate(x), bins, bin_range, _w)
|
||
|
else:
|
||
|
hist_kwargs['range'] = bin_range
|
||
|
|
||
|
density = bool(density)
|
||
|
if density and not stacked:
|
||
|
hist_kwargs['density'] = density
|
||
|
|
||
|
# List to store all the top coordinates of the histograms
|
||
|
tops = [] # Will have shape (n_datasets, n_bins).
|
||
|
# Loop through datasets
|
||
|
for i in range(nx):
|
||
|
# this will automatically overwrite bins,
|
||
|
# so that each histogram uses the same bins
|
||
|
m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
|
||
|
tops.append(m)
|
||
|
tops = np.array(tops, float) # causes problems later if it's an int
|
||
|
bins = np.array(bins, float) # causes problems if float16
|
||
|
if stacked:
|
||
|
tops = tops.cumsum(axis=0)
|
||
|
# If a stacked density plot, normalize so the area of all the
|
||
|
# stacked histograms together is 1
|
||
|
if density:
|
||
|
tops = (tops / np.diff(bins)) / tops[-1].sum()
|
||
|
if cumulative:
|
||
|
slc = slice(None)
|
||
|
if isinstance(cumulative, Number) and cumulative < 0:
|
||
|
slc = slice(None, None, -1)
|
||
|
if density:
|
||
|
tops = (tops * np.diff(bins))[:, slc].cumsum(axis=1)[:, slc]
|
||
|
else:
|
||
|
tops = tops[:, slc].cumsum(axis=1)[:, slc]
|
||
|
|
||
|
patches = []
|
||
|
|
||
|
if histtype.startswith('bar'):
|
||
|
|
||
|
totwidth = np.diff(bins)
|
||
|
|
||
|
if rwidth is not None:
|
||
|
dr = np.clip(rwidth, 0, 1)
|
||
|
elif (len(tops) > 1 and
|
||
|
((not stacked) or mpl.rcParams['_internal.classic_mode'])):
|
||
|
dr = 0.8
|
||
|
else:
|
||
|
dr = 1.0
|
||
|
|
||
|
if histtype == 'bar' and not stacked:
|
||
|
width = dr * totwidth / nx
|
||
|
dw = width
|
||
|
boffset = -0.5 * dr * totwidth * (1 - 1 / nx)
|
||
|
elif histtype == 'barstacked' or stacked:
|
||
|
width = dr * totwidth
|
||
|
boffset, dw = 0.0, 0.0
|
||
|
|
||
|
if align == 'mid':
|
||
|
boffset += 0.5 * totwidth
|
||
|
elif align == 'right':
|
||
|
boffset += totwidth
|
||
|
|
||
|
if orientation == 'horizontal':
|
||
|
_barfunc = self.barh
|
||
|
bottom_kwarg = 'left'
|
||
|
else: # orientation == 'vertical'
|
||
|
_barfunc = self.bar
|
||
|
bottom_kwarg = 'bottom'
|
||
|
|
||
|
for top, color in zip(tops, colors):
|
||
|
if bottom is None:
|
||
|
bottom = np.zeros(len(top))
|
||
|
if stacked:
|
||
|
height = top - bottom
|
||
|
else:
|
||
|
height = top
|
||
|
bars = _barfunc(bins[:-1]+boffset, height, width,
|
||
|
align='center', log=log,
|
||
|
color=color, **{bottom_kwarg: bottom})
|
||
|
patches.append(bars)
|
||
|
if stacked:
|
||
|
bottom = top
|
||
|
boffset += dw
|
||
|
# Remove stickies from all bars but the lowest ones, as otherwise
|
||
|
# margin expansion would be unable to cross the stickies in the
|
||
|
# middle of the bars.
|
||
|
for bars in patches[1:]:
|
||
|
for patch in bars:
|
||
|
patch.sticky_edges.x[:] = patch.sticky_edges.y[:] = []
|
||
|
|
||
|
elif histtype.startswith('step'):
|
||
|
# these define the perimeter of the polygon
|
||
|
x = np.zeros(4 * len(bins) - 3)
|
||
|
y = np.zeros(4 * len(bins) - 3)
|
||
|
|
||
|
x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
|
||
|
x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]
|
||
|
|
||
|
if bottom is None:
|
||
|
bottom = 0
|
||
|
|
||
|
y[1:2*len(bins)-1:2] = y[2:2*len(bins):2] = bottom
|
||
|
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
|
||
|
|
||
|
if log:
|
||
|
if orientation == 'horizontal':
|
||
|
self.set_xscale('log', nonpositive='clip')
|
||
|
else: # orientation == 'vertical'
|
||
|
self.set_yscale('log', nonpositive='clip')
|
||
|
|
||
|
if align == 'left':
|
||
|
x -= 0.5*(bins[1]-bins[0])
|
||
|
elif align == 'right':
|
||
|
x += 0.5*(bins[1]-bins[0])
|
||
|
|
||
|
# If fill kwarg is set, it will be passed to the patch collection,
|
||
|
# overriding this
|
||
|
fill = (histtype == 'stepfilled')
|
||
|
|
||
|
xvals, yvals = [], []
|
||
|
for top in tops:
|
||
|
if stacked:
|
||
|
# top of the previous polygon becomes the bottom
|
||
|
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
|
||
|
# set the top of this polygon
|
||
|
y[1:2*len(bins)-1:2] = y[2:2*len(bins):2] = top + bottom
|
||
|
|
||
|
# The starting point of the polygon has not yet been
|
||
|
# updated. So far only the endpoint was adjusted. This
|
||
|
# assignment closes the polygon. The redundant endpoint is
|
||
|
# later discarded (for step and stepfilled).
|
||
|
y[0] = y[-1]
|
||
|
|
||
|
if orientation == 'horizontal':
|
||
|
xvals.append(y.copy())
|
||
|
yvals.append(x.copy())
|
||
|
else:
|
||
|
xvals.append(x.copy())
|
||
|
yvals.append(y.copy())
|
||
|
|
||
|
# stepfill is closed, step is not
|
||
|
split = -1 if fill else 2 * len(bins)
|
||
|
# add patches in reverse order so that when stacking,
|
||
|
# items lower in the stack are plotted on top of
|
||
|
# items higher in the stack
|
||
|
for x, y, color in reversed(list(zip(xvals, yvals, colors))):
|
||
|
patches.append(self.fill(
|
||
|
x[:split], y[:split],
|
||
|
closed=True if fill else None,
|
||
|
facecolor=color,
|
||
|
edgecolor=None if fill else color,
|
||
|
fill=fill if fill else None,
|
||
|
zorder=None if fill else mlines.Line2D.zorder))
|
||
|
for patch_list in patches:
|
||
|
for patch in patch_list:
|
||
|
if orientation == 'vertical':
|
||
|
patch.sticky_edges.y.append(0)
|
||
|
elif orientation == 'horizontal':
|
||
|
patch.sticky_edges.x.append(0)
|
||
|
|
||
|
# we return patches, so put it back in the expected order
|
||
|
patches.reverse()
|
||
|
|
||
|
# If None, make all labels None (via zip_longest below); otherwise,
|
||
|
# cast each element to str, but keep a single str as it.
|
||
|
labels = [] if label is None else np.atleast_1d(np.asarray(label, str))
|
||
|
for patch, lbl in itertools.zip_longest(patches, labels):
|
||
|
if patch:
|
||
|
p = patch[0]
|
||
|
p._internal_update(kwargs)
|
||
|
if lbl is not None:
|
||
|
p.set_label(lbl)
|
||
|
for p in patch[1:]:
|
||
|
p._internal_update(kwargs)
|
||
|
p.set_label('_nolegend_')
|
||
|
|
||
|
if nx == 1:
|
||
|
return tops[0], bins, patches[0]
|
||
|
else:
|
||
|
patch_type = ("BarContainer" if histtype.startswith("bar")
|
||
|
else "list[Polygon]")
|
||
|
return tops, bins, cbook.silent_list(patch_type, patches)
|
||
|
|
||
|
@_preprocess_data()
|
||
|
def stairs(self, values, edges=None, *,
|
||
|
orientation='vertical', baseline=0, fill=False, **kwargs):
|
||
|
"""
|
||
|
Draw a stepwise constant function as a line or a filled plot.
|
||
|
|
||
|
*edges* define the x-axis positions of the steps. *values* the function values
|
||
|
between these steps. Depending on *fill*, the function is drawn either as a
|
||
|
continuous line with vertical segments at the edges, or as a filled area.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : array-like
|
||
|
The step heights.
|
||
|
|
||
|
edges : array-like
|
||
|
The step positions, with ``len(edges) == len(vals) + 1``,
|
||
|
between which the curve takes on vals values.
|
||
|
|
||
|
orientation : {'vertical', 'horizontal'}, default: 'vertical'
|
||
|
The direction of the steps. Vertical means that *values* are along
|
||
|
the y-axis, and edges are along the x-axis.
|
||
|
|
||
|
baseline : float, array-like or None, default: 0
|
||
|
The bottom value of the bounding edges or when
|
||
|
``fill=True``, position of lower edge. If *fill* is
|
||
|
True or an array is passed to *baseline*, a closed
|
||
|
path is drawn.
|
||
|
|
||
|
fill : bool, default: False
|
||
|
Whether the area under the step curve should be filled.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
StepPatch : `~matplotlib.patches.StepPatch`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
`~matplotlib.patches.StepPatch` properties
|
||
|
|
||
|
"""
|
||
|
|
||
|
if 'color' in kwargs:
|
||
|
_color = kwargs.pop('color')
|
||
|
else:
|
||
|
_color = self._get_lines.get_next_color()
|
||
|
if fill:
|
||
|
kwargs.setdefault('linewidth', 0)
|
||
|
kwargs.setdefault('facecolor', _color)
|
||
|
else:
|
||
|
kwargs.setdefault('edgecolor', _color)
|
||
|
|
||
|
if edges is None:
|
||
|
edges = np.arange(len(values) + 1)
|
||
|
|
||
|
edges, values, baseline = self._process_unit_info(
|
||
|
[("x", edges), ("y", values), ("y", baseline)], kwargs)
|
||
|
|
||
|
patch = mpatches.StepPatch(values,
|
||
|
edges,
|
||
|
baseline=baseline,
|
||
|
orientation=orientation,
|
||
|
fill=fill,
|
||
|
**kwargs)
|
||
|
self.add_patch(patch)
|
||
|
if baseline is None:
|
||
|
baseline = 0
|
||
|
if orientation == 'vertical':
|
||
|
patch.sticky_edges.y.append(np.min(baseline))
|
||
|
self.update_datalim([(edges[0], np.min(baseline))])
|
||
|
else:
|
||
|
patch.sticky_edges.x.append(np.min(baseline))
|
||
|
self.update_datalim([(np.min(baseline), edges[0])])
|
||
|
self._request_autoscale_view()
|
||
|
return patch
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y", "weights"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def hist2d(self, x, y, bins=10, range=None, density=False, weights=None,
|
||
|
cmin=None, cmax=None, **kwargs):
|
||
|
"""
|
||
|
Make a 2D histogram plot.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array-like, shape (n, )
|
||
|
Input values
|
||
|
|
||
|
bins : None or int or [int, int] or array-like or [array, array]
|
||
|
|
||
|
The bin specification:
|
||
|
|
||
|
- If int, the number of bins for the two dimensions
|
||
|
(``nx = ny = bins``).
|
||
|
- If ``[int, int]``, the number of bins in each dimension
|
||
|
(``nx, ny = bins``).
|
||
|
- If array-like, the bin edges for the two dimensions
|
||
|
(``x_edges = y_edges = bins``).
|
||
|
- If ``[array, array]``, the bin edges in each dimension
|
||
|
(``x_edges, y_edges = bins``).
|
||
|
|
||
|
The default value is 10.
|
||
|
|
||
|
range : array-like shape(2, 2), optional
|
||
|
The leftmost and rightmost edges of the bins along each dimension
|
||
|
(if not specified explicitly in the bins parameters): ``[[xmin,
|
||
|
xmax], [ymin, ymax]]``. All values outside of this range will be
|
||
|
considered outliers and not tallied in the histogram.
|
||
|
|
||
|
density : bool, default: False
|
||
|
Normalize histogram. See the documentation for the *density*
|
||
|
parameter of `~.Axes.hist` for more details.
|
||
|
|
||
|
weights : array-like, shape (n, ), optional
|
||
|
An array of values w_i weighing each sample (x_i, y_i).
|
||
|
|
||
|
cmin, cmax : float, default: None
|
||
|
All bins that has count less than *cmin* or more than *cmax* will not be
|
||
|
displayed (set to NaN before passing to `~.Axes.pcolormesh`) and these count
|
||
|
values in the return value count histogram will also be set to nan upon
|
||
|
return.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
h : 2D array
|
||
|
The bi-dimensional histogram of samples x and y. Values in x are
|
||
|
histogrammed along the first dimension and values in y are
|
||
|
histogrammed along the second dimension.
|
||
|
xedges : 1D array
|
||
|
The bin edges along the x-axis.
|
||
|
yedges : 1D array
|
||
|
The bin edges along the y-axis.
|
||
|
image : `~.matplotlib.collections.QuadMesh`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
%(cmap_doc)s
|
||
|
|
||
|
%(norm_doc)s
|
||
|
|
||
|
%(vmin_vmax_doc)s
|
||
|
|
||
|
alpha : ``0 <= scalar <= 1`` or ``None``, optional
|
||
|
The alpha blending value.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Additional parameters are passed along to the
|
||
|
`~.Axes.pcolormesh` method and `~matplotlib.collections.QuadMesh`
|
||
|
constructor.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hist : 1D histogram plotting
|
||
|
hexbin : 2D histogram with hexagonal bins
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
- Currently ``hist2d`` calculates its own axis limits, and any limits
|
||
|
previously set are ignored.
|
||
|
- Rendering the histogram with a logarithmic color scale is
|
||
|
accomplished by passing a `.colors.LogNorm` instance to the *norm*
|
||
|
keyword argument. Likewise, power-law normalization (similar
|
||
|
in effect to gamma correction) can be accomplished with
|
||
|
`.colors.PowerNorm`.
|
||
|
"""
|
||
|
|
||
|
h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=range,
|
||
|
density=density, weights=weights)
|
||
|
|
||
|
if cmin is not None:
|
||
|
h[h < cmin] = None
|
||
|
if cmax is not None:
|
||
|
h[h > cmax] = None
|
||
|
|
||
|
pc = self.pcolormesh(xedges, yedges, h.T, **kwargs)
|
||
|
self.set_xlim(xedges[0], xedges[-1])
|
||
|
self.set_ylim(yedges[0], yedges[-1])
|
||
|
|
||
|
return h, xedges, yedges, pc
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "weights"], label_namer="x")
|
||
|
@_docstring.dedent_interpd
|
||
|
def ecdf(self, x, weights=None, *, complementary=False,
|
||
|
orientation="vertical", compress=False, **kwargs):
|
||
|
"""
|
||
|
Compute and plot the empirical cumulative distribution function of *x*.
|
||
|
|
||
|
.. versionadded:: 3.8
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1d array-like
|
||
|
The input data. Infinite entries are kept (and move the relevant
|
||
|
end of the ecdf from 0/1), but NaNs and masked values are errors.
|
||
|
|
||
|
weights : 1d array-like or None, default: None
|
||
|
The weights of the entries; must have the same shape as *x*.
|
||
|
Weights corresponding to NaN data points are dropped, and then the
|
||
|
remaining weights are normalized to sum to 1. If unset, all
|
||
|
entries have the same weight.
|
||
|
|
||
|
complementary : bool, default: False
|
||
|
Whether to plot a cumulative distribution function, which increases
|
||
|
from 0 to 1 (the default), or a complementary cumulative
|
||
|
distribution function, which decreases from 1 to 0.
|
||
|
|
||
|
orientation : {"vertical", "horizontal"}, default: "vertical"
|
||
|
Whether the entries are plotted along the x-axis ("vertical", the
|
||
|
default) or the y-axis ("horizontal"). This parameter takes the
|
||
|
same values as in `~.Axes.hist`.
|
||
|
|
||
|
compress : bool, default: False
|
||
|
Whether multiple entries with the same values are grouped together
|
||
|
(with a summed weight) before plotting. This is mainly useful if
|
||
|
*x* contains many identical data points, to decrease the rendering
|
||
|
complexity of the plot. If *x* contains no duplicate points, this
|
||
|
has no effect and just uses some time and memory.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.Line2D`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The ecdf plot can be thought of as a cumulative histogram with one bin
|
||
|
per data entry; i.e. it reports on the entire dataset without any
|
||
|
arbitrary binning.
|
||
|
|
||
|
If *x* contains NaNs or masked entries, either remove them first from
|
||
|
the array (if they should not taken into account), or replace them by
|
||
|
-inf or +inf (if they should be sorted at the beginning or the end of
|
||
|
the array).
|
||
|
"""
|
||
|
_api.check_in_list(["horizontal", "vertical"], orientation=orientation)
|
||
|
if "drawstyle" in kwargs or "ds" in kwargs:
|
||
|
raise TypeError("Cannot pass 'drawstyle' or 'ds' to ecdf()")
|
||
|
if np.ma.getmask(x).any():
|
||
|
raise ValueError("ecdf() does not support masked entries")
|
||
|
x = np.asarray(x)
|
||
|
if np.isnan(x).any():
|
||
|
raise ValueError("ecdf() does not support NaNs")
|
||
|
argsort = np.argsort(x)
|
||
|
x = x[argsort]
|
||
|
if weights is None:
|
||
|
# Ensure that we end at exactly 1, avoiding floating point errors.
|
||
|
cum_weights = (1 + np.arange(len(x))) / len(x)
|
||
|
else:
|
||
|
weights = np.take(weights, argsort) # Reorder weights like we reordered x.
|
||
|
cum_weights = np.cumsum(weights / np.sum(weights))
|
||
|
if compress:
|
||
|
# Get indices of unique x values.
|
||
|
compress_idxs = [0, *(x[:-1] != x[1:]).nonzero()[0] + 1]
|
||
|
x = x[compress_idxs]
|
||
|
cum_weights = cum_weights[compress_idxs]
|
||
|
if orientation == "vertical":
|
||
|
if not complementary:
|
||
|
line, = self.plot([x[0], *x], [0, *cum_weights],
|
||
|
drawstyle="steps-post", **kwargs)
|
||
|
else:
|
||
|
line, = self.plot([*x, x[-1]], [1, *1 - cum_weights],
|
||
|
drawstyle="steps-pre", **kwargs)
|
||
|
line.sticky_edges.y[:] = [0, 1]
|
||
|
else: # orientation == "horizontal":
|
||
|
if not complementary:
|
||
|
line, = self.plot([0, *cum_weights], [x[0], *x],
|
||
|
drawstyle="steps-pre", **kwargs)
|
||
|
else:
|
||
|
line, = self.plot([1, *1 - cum_weights], [*x, x[-1]],
|
||
|
drawstyle="steps-post", **kwargs)
|
||
|
line.sticky_edges.x[:] = [0, 1]
|
||
|
return line
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def psd(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
|
||
|
window=None, noverlap=None, pad_to=None,
|
||
|
sides=None, scale_by_freq=None, return_line=None, **kwargs):
|
||
|
r"""
|
||
|
Plot the power spectral density.
|
||
|
|
||
|
The power spectral density :math:`P_{xx}` by Welch's average
|
||
|
periodogram method. The vector *x* is divided into *NFFT* length
|
||
|
segments. Each segment is detrended by function *detrend* and
|
||
|
windowed by function *window*. *noverlap* gives the length of
|
||
|
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
|
||
|
of each segment :math:`i` are averaged to compute :math:`P_{xx}`,
|
||
|
with a scaling to correct for power loss due to windowing.
|
||
|
|
||
|
If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
noverlap : int, default: 0 (no overlap)
|
||
|
The number of points of overlap between segments.
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
return_line : bool, default: False
|
||
|
Whether to include the line object plotted in the returned values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Pxx : 1-D array
|
||
|
The values for the power spectrum :math:`P_{xx}` before scaling
|
||
|
(real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *Pxx*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
Only returned if *return_line* is True.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
specgram
|
||
|
Differs in the default overlap; in not returning the mean of the
|
||
|
segment periodograms; in returning the times of the segments; and
|
||
|
in plotting a colormap instead of a line.
|
||
|
magnitude_spectrum
|
||
|
Plots the magnitude spectrum.
|
||
|
csd
|
||
|
Plots the spectral density between two signals.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For plotting, the power is plotted as
|
||
|
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
|
||
|
is returned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
|
||
|
John Wiley & Sons (1986)
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
pxx, freqs = mlab.psd(x=x, NFFT=NFFT, Fs=Fs, detrend=detrend,
|
||
|
window=window, noverlap=noverlap, pad_to=pad_to,
|
||
|
sides=sides, scale_by_freq=scale_by_freq)
|
||
|
freqs += Fc
|
||
|
|
||
|
if scale_by_freq in (None, True):
|
||
|
psd_units = 'dB/Hz'
|
||
|
else:
|
||
|
psd_units = 'dB'
|
||
|
|
||
|
line = self.plot(freqs, 10 * np.log10(pxx), **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Power Spectral Density (%s)' % psd_units)
|
||
|
self.grid(True)
|
||
|
|
||
|
vmin, vmax = self.get_ybound()
|
||
|
step = max(10 * int(np.log10(vmax - vmin)), 1)
|
||
|
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
|
||
|
self.set_yticks(ticks)
|
||
|
|
||
|
if return_line is None or not return_line:
|
||
|
return pxx, freqs
|
||
|
else:
|
||
|
return pxx, freqs, line
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
|
||
|
@_docstring.dedent_interpd
|
||
|
def csd(self, x, y, NFFT=None, Fs=None, Fc=None, detrend=None,
|
||
|
window=None, noverlap=None, pad_to=None,
|
||
|
sides=None, scale_by_freq=None, return_line=None, **kwargs):
|
||
|
r"""
|
||
|
Plot the cross-spectral density.
|
||
|
|
||
|
The cross spectral density :math:`P_{xy}` by Welch's average
|
||
|
periodogram method. The vectors *x* and *y* are divided into
|
||
|
*NFFT* length segments. Each segment is detrended by function
|
||
|
*detrend* and windowed by function *window*. *noverlap* gives
|
||
|
the length of the overlap between segments. The product of
|
||
|
the direct FFTs of *x* and *y* are averaged over each segment
|
||
|
to compute :math:`P_{xy}`, with a scaling to correct for power
|
||
|
loss due to windowing.
|
||
|
|
||
|
If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
|
||
|
padded to *NFFT*.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : 1-D arrays or sequences
|
||
|
Arrays or sequences containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
noverlap : int, default: 0 (no overlap)
|
||
|
The number of points of overlap between segments.
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
return_line : bool, default: False
|
||
|
Whether to include the line object plotted in the returned values.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Pxy : 1-D array
|
||
|
The values for the cross spectrum :math:`P_{xy}` before scaling
|
||
|
(complex valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *Pxy*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
Only returned if *return_line* is True.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
psd : is equivalent to setting ``y = x``.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For plotting, the power is plotted as
|
||
|
:math:`10 \log_{10}(P_{xy})` for decibels, though :math:`P_{xy}` itself
|
||
|
is returned.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
|
||
|
John Wiley & Sons (1986)
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
pxy, freqs = mlab.csd(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
|
||
|
window=window, noverlap=noverlap, pad_to=pad_to,
|
||
|
sides=sides, scale_by_freq=scale_by_freq)
|
||
|
# pxy is complex
|
||
|
freqs += Fc
|
||
|
|
||
|
line = self.plot(freqs, 10 * np.log10(np.abs(pxy)), **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Cross Spectrum Magnitude (dB)')
|
||
|
self.grid(True)
|
||
|
|
||
|
vmin, vmax = self.get_ybound()
|
||
|
step = max(10 * int(np.log10(vmax - vmin)), 1)
|
||
|
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
|
||
|
self.set_yticks(ticks)
|
||
|
|
||
|
if return_line is None or not return_line:
|
||
|
return pxy, freqs
|
||
|
else:
|
||
|
return pxy, freqs, line
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def magnitude_spectrum(self, x, Fs=None, Fc=None, window=None,
|
||
|
pad_to=None, sides=None, scale=None,
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Plot the magnitude spectrum.
|
||
|
|
||
|
Compute the magnitude spectrum of *x*. Data is padded to a
|
||
|
length of *pad_to* and the windowing function *window* is applied to
|
||
|
the signal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(Single_Spectrum)s
|
||
|
|
||
|
scale : {'default', 'linear', 'dB'}
|
||
|
The scaling of the values in the *spec*. 'linear' is no scaling.
|
||
|
'dB' returns the values in dB scale, i.e., the dB amplitude
|
||
|
(20 * log10). 'default' is 'linear'.
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 1-D array
|
||
|
The values for the magnitude spectrum before scaling (real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *spectrum*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
psd
|
||
|
Plots the power spectral density.
|
||
|
angle_spectrum
|
||
|
Plots the angles of the corresponding frequencies.
|
||
|
phase_spectrum
|
||
|
Plots the phase (unwrapped angle) of the corresponding frequencies.
|
||
|
specgram
|
||
|
Can plot the magnitude spectrum of segments within the signal in a
|
||
|
colormap.
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
spec, freqs = mlab.magnitude_spectrum(x=x, Fs=Fs, window=window,
|
||
|
pad_to=pad_to, sides=sides)
|
||
|
freqs += Fc
|
||
|
|
||
|
yunits = _api.check_getitem(
|
||
|
{None: 'energy', 'default': 'energy', 'linear': 'energy',
|
||
|
'dB': 'dB'},
|
||
|
scale=scale)
|
||
|
if yunits == 'energy':
|
||
|
Z = spec
|
||
|
else: # yunits == 'dB'
|
||
|
Z = 20. * np.log10(spec)
|
||
|
|
||
|
line, = self.plot(freqs, Z, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Magnitude (%s)' % yunits)
|
||
|
|
||
|
return spec, freqs, line
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def angle_spectrum(self, x, Fs=None, Fc=None, window=None,
|
||
|
pad_to=None, sides=None, **kwargs):
|
||
|
"""
|
||
|
Plot the angle spectrum.
|
||
|
|
||
|
Compute the angle spectrum (wrapped phase spectrum) of *x*.
|
||
|
Data is padded to a length of *pad_to* and the windowing function
|
||
|
*window* is applied to the signal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(Single_Spectrum)s
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 1-D array
|
||
|
The values for the angle spectrum in radians (real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *spectrum*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
magnitude_spectrum
|
||
|
Plots the magnitudes of the corresponding frequencies.
|
||
|
phase_spectrum
|
||
|
Plots the unwrapped version of this function.
|
||
|
specgram
|
||
|
Can plot the angle spectrum of segments within the signal in a
|
||
|
colormap.
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
spec, freqs = mlab.angle_spectrum(x=x, Fs=Fs, window=window,
|
||
|
pad_to=pad_to, sides=sides)
|
||
|
freqs += Fc
|
||
|
|
||
|
lines = self.plot(freqs, spec, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Angle (radians)')
|
||
|
|
||
|
return spec, freqs, lines[0]
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def phase_spectrum(self, x, Fs=None, Fc=None, window=None,
|
||
|
pad_to=None, sides=None, **kwargs):
|
||
|
"""
|
||
|
Plot the phase spectrum.
|
||
|
|
||
|
Compute the phase spectrum (unwrapped angle spectrum) of *x*.
|
||
|
Data is padded to a length of *pad_to* and the windowing function
|
||
|
*window* is applied to the signal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(Single_Spectrum)s
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 1-D array
|
||
|
The values for the phase spectrum in radians (real valued).
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the elements in *spectrum*.
|
||
|
|
||
|
line : `~matplotlib.lines.Line2D`
|
||
|
The line created by this function.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
magnitude_spectrum
|
||
|
Plots the magnitudes of the corresponding frequencies.
|
||
|
angle_spectrum
|
||
|
Plots the wrapped version of this function.
|
||
|
specgram
|
||
|
Can plot the phase spectrum of segments within the signal in a
|
||
|
colormap.
|
||
|
"""
|
||
|
if Fc is None:
|
||
|
Fc = 0
|
||
|
|
||
|
spec, freqs = mlab.phase_spectrum(x=x, Fs=Fs, window=window,
|
||
|
pad_to=pad_to, sides=sides)
|
||
|
freqs += Fc
|
||
|
|
||
|
lines = self.plot(freqs, spec, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Phase (radians)')
|
||
|
|
||
|
return spec, freqs, lines[0]
|
||
|
|
||
|
@_preprocess_data(replace_names=["x", "y"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
|
||
|
window=mlab.window_hanning, noverlap=0, pad_to=None,
|
||
|
sides='default', scale_by_freq=None, **kwargs):
|
||
|
r"""
|
||
|
Plot the coherence between *x* and *y*.
|
||
|
|
||
|
Coherence is the normalized cross spectral density:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
noverlap : int, default: 0 (no overlap)
|
||
|
The number of points of overlap between blocks.
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Cxy : 1-D array
|
||
|
The coherence vector.
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies for the elements in *Cxy*.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Keyword arguments control the `.Line2D` properties:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
|
||
|
John Wiley & Sons (1986)
|
||
|
"""
|
||
|
cxy, freqs = mlab.cohere(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
|
||
|
window=window, noverlap=noverlap,
|
||
|
scale_by_freq=scale_by_freq, sides=sides,
|
||
|
pad_to=pad_to)
|
||
|
freqs += Fc
|
||
|
|
||
|
self.plot(freqs, cxy, **kwargs)
|
||
|
self.set_xlabel('Frequency')
|
||
|
self.set_ylabel('Coherence')
|
||
|
self.grid(True)
|
||
|
|
||
|
return cxy, freqs
|
||
|
|
||
|
@_preprocess_data(replace_names=["x"])
|
||
|
@_docstring.dedent_interpd
|
||
|
def specgram(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
|
||
|
window=None, noverlap=None,
|
||
|
cmap=None, xextent=None, pad_to=None, sides=None,
|
||
|
scale_by_freq=None, mode=None, scale=None,
|
||
|
vmin=None, vmax=None, **kwargs):
|
||
|
"""
|
||
|
Plot a spectrogram.
|
||
|
|
||
|
Compute and plot a spectrogram of data in *x*. Data are split into
|
||
|
*NFFT* length segments and the spectrum of each section is
|
||
|
computed. The windowing function *window* is applied to each
|
||
|
segment, and the amount of overlap of each segment is
|
||
|
specified with *noverlap*. The spectrogram is plotted as a colormap
|
||
|
(using imshow).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : 1-D array or sequence
|
||
|
Array or sequence containing the data.
|
||
|
|
||
|
%(Spectral)s
|
||
|
|
||
|
%(PSD)s
|
||
|
|
||
|
mode : {'default', 'psd', 'magnitude', 'angle', 'phase'}
|
||
|
What sort of spectrum to use. Default is 'psd', which takes the
|
||
|
power spectral density. 'magnitude' returns the magnitude
|
||
|
spectrum. 'angle' returns the phase spectrum without unwrapping.
|
||
|
'phase' returns the phase spectrum with unwrapping.
|
||
|
|
||
|
noverlap : int, default: 128
|
||
|
The number of points of overlap between blocks.
|
||
|
|
||
|
scale : {'default', 'linear', 'dB'}
|
||
|
The scaling of the values in the *spec*. 'linear' is no scaling.
|
||
|
'dB' returns the values in dB scale. When *mode* is 'psd',
|
||
|
this is dB power (10 * log10). Otherwise, this is dB amplitude
|
||
|
(20 * log10). 'default' is 'dB' if *mode* is 'psd' or
|
||
|
'magnitude' and 'linear' otherwise. This must be 'linear'
|
||
|
if *mode* is 'angle' or 'phase'.
|
||
|
|
||
|
Fc : int, default: 0
|
||
|
The center frequency of *x*, which offsets the x extents of the
|
||
|
plot to reflect the frequency range used when a signal is acquired
|
||
|
and then filtered and downsampled to baseband.
|
||
|
|
||
|
cmap : `.Colormap`, default: :rc:`image.cmap`
|
||
|
|
||
|
xextent : *None* or (xmin, xmax)
|
||
|
The image extent along the x-axis. The default sets *xmin* to the
|
||
|
left border of the first bin (*spectrum* column) and *xmax* to the
|
||
|
right border of the last bin. Note that for *noverlap>0* the width
|
||
|
of the bins is smaller than those of the segments.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments are passed on to `~.axes.Axes.imshow`
|
||
|
which makes the specgram image. The origin keyword argument
|
||
|
is not supported.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spectrum : 2D array
|
||
|
Columns are the periodograms of successive segments.
|
||
|
|
||
|
freqs : 1-D array
|
||
|
The frequencies corresponding to the rows in *spectrum*.
|
||
|
|
||
|
t : 1-D array
|
||
|
The times corresponding to midpoints of segments (i.e., the columns
|
||
|
in *spectrum*).
|
||
|
|
||
|
im : `.AxesImage`
|
||
|
The image created by imshow containing the spectrogram.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
psd
|
||
|
Differs in the default overlap; in returning the mean of the
|
||
|
segment periodograms; in not returning times; and in generating a
|
||
|
line plot instead of colormap.
|
||
|
magnitude_spectrum
|
||
|
A single spectrum, similar to having a single segment when *mode*
|
||
|
is 'magnitude'. Plots a line instead of a colormap.
|
||
|
angle_spectrum
|
||
|
A single spectrum, similar to having a single segment when *mode*
|
||
|
is 'angle'. Plots a line instead of a colormap.
|
||
|
phase_spectrum
|
||
|
A single spectrum, similar to having a single segment when *mode*
|
||
|
is 'phase'. Plots a line instead of a colormap.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The parameters *detrend* and *scale_by_freq* do only apply when *mode*
|
||
|
is set to 'psd'.
|
||
|
"""
|
||
|
if NFFT is None:
|
||
|
NFFT = 256 # same default as in mlab.specgram()
|
||
|
if Fc is None:
|
||
|
Fc = 0 # same default as in mlab._spectral_helper()
|
||
|
if noverlap is None:
|
||
|
noverlap = 128 # same default as in mlab.specgram()
|
||
|
if Fs is None:
|
||
|
Fs = 2 # same default as in mlab._spectral_helper()
|
||
|
|
||
|
if mode == 'complex':
|
||
|
raise ValueError('Cannot plot a complex specgram')
|
||
|
|
||
|
if scale is None or scale == 'default':
|
||
|
if mode in ['angle', 'phase']:
|
||
|
scale = 'linear'
|
||
|
else:
|
||
|
scale = 'dB'
|
||
|
elif mode in ['angle', 'phase'] and scale == 'dB':
|
||
|
raise ValueError('Cannot use dB scale with angle or phase mode')
|
||
|
|
||
|
spec, freqs, t = mlab.specgram(x=x, NFFT=NFFT, Fs=Fs,
|
||
|
detrend=detrend, window=window,
|
||
|
noverlap=noverlap, pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale_by_freq=scale_by_freq,
|
||
|
mode=mode)
|
||
|
|
||
|
if scale == 'linear':
|
||
|
Z = spec
|
||
|
elif scale == 'dB':
|
||
|
if mode is None or mode == 'default' or mode == 'psd':
|
||
|
Z = 10. * np.log10(spec)
|
||
|
else:
|
||
|
Z = 20. * np.log10(spec)
|
||
|
else:
|
||
|
raise ValueError(f'Unknown scale {scale!r}')
|
||
|
|
||
|
Z = np.flipud(Z)
|
||
|
|
||
|
if xextent is None:
|
||
|
# padding is needed for first and last segment:
|
||
|
pad_xextent = (NFFT-noverlap) / Fs / 2
|
||
|
xextent = np.min(t) - pad_xextent, np.max(t) + pad_xextent
|
||
|
xmin, xmax = xextent
|
||
|
freqs += Fc
|
||
|
extent = xmin, xmax, freqs[0], freqs[-1]
|
||
|
|
||
|
if 'origin' in kwargs:
|
||
|
raise _api.kwarg_error("specgram", "origin")
|
||
|
|
||
|
im = self.imshow(Z, cmap, extent=extent, vmin=vmin, vmax=vmax,
|
||
|
origin='upper', **kwargs)
|
||
|
self.axis('auto')
|
||
|
|
||
|
return spec, freqs, t, im
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def spy(self, Z, precision=0, marker=None, markersize=None,
|
||
|
aspect='equal', origin="upper", **kwargs):
|
||
|
"""
|
||
|
Plot the sparsity pattern of a 2D array.
|
||
|
|
||
|
This visualizes the non-zero values of the array.
|
||
|
|
||
|
Two plotting styles are available: image and marker. Both
|
||
|
are available for full arrays, but only the marker style
|
||
|
works for `scipy.sparse.spmatrix` instances.
|
||
|
|
||
|
**Image style**
|
||
|
|
||
|
If *marker* and *markersize* are *None*, `~.Axes.imshow` is used. Any
|
||
|
extra remaining keyword arguments are passed to this method.
|
||
|
|
||
|
**Marker style**
|
||
|
|
||
|
If *Z* is a `scipy.sparse.spmatrix` or *marker* or *markersize* are
|
||
|
*None*, a `.Line2D` object will be returned with the value of marker
|
||
|
determining the marker type, and any remaining keyword arguments
|
||
|
passed to `~.Axes.plot`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Z : (M, N) array-like
|
||
|
The array to be plotted.
|
||
|
|
||
|
precision : float or 'present', default: 0
|
||
|
If *precision* is 0, any non-zero value will be plotted. Otherwise,
|
||
|
values of :math:`|Z| > precision` will be plotted.
|
||
|
|
||
|
For `scipy.sparse.spmatrix` instances, you can also
|
||
|
pass 'present'. In this case any value present in the array
|
||
|
will be plotted, even if it is identically zero.
|
||
|
|
||
|
aspect : {'equal', 'auto', None} or float, default: 'equal'
|
||
|
The aspect ratio of the Axes. This parameter is particularly
|
||
|
relevant for images since it determines whether data pixels are
|
||
|
square.
|
||
|
|
||
|
This parameter is a shortcut for explicitly calling
|
||
|
`.Axes.set_aspect`. See there for further details.
|
||
|
|
||
|
- 'equal': Ensures an aspect ratio of 1. Pixels will be square.
|
||
|
- 'auto': The Axes is kept fixed and the aspect is adjusted so
|
||
|
that the data fit in the Axes. In general, this will result in
|
||
|
non-square pixels.
|
||
|
- *None*: Use :rc:`image.aspect`.
|
||
|
|
||
|
origin : {'upper', 'lower'}, default: :rc:`image.origin`
|
||
|
Place the [0, 0] index of the array in the upper left or lower left
|
||
|
corner of the Axes. The convention 'upper' is typically used for
|
||
|
matrices and images.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.image.AxesImage` or `.Line2D`
|
||
|
The return type depends on the plotting style (see above).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
The supported additional parameters depend on the plotting style.
|
||
|
|
||
|
For the image style, you can pass the following additional
|
||
|
parameters of `~.Axes.imshow`:
|
||
|
|
||
|
- *cmap*
|
||
|
- *alpha*
|
||
|
- *url*
|
||
|
- any `.Artist` properties (passed on to the `.AxesImage`)
|
||
|
|
||
|
For the marker style, you can pass any `.Line2D` property except
|
||
|
for *linestyle*:
|
||
|
|
||
|
%(Line2D:kwdoc)s
|
||
|
"""
|
||
|
if marker is None and markersize is None and hasattr(Z, 'tocoo'):
|
||
|
marker = 's'
|
||
|
_api.check_in_list(["upper", "lower"], origin=origin)
|
||
|
if marker is None and markersize is None:
|
||
|
Z = np.asarray(Z)
|
||
|
mask = np.abs(Z) > precision
|
||
|
|
||
|
if 'cmap' not in kwargs:
|
||
|
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
|
||
|
name='binary')
|
||
|
if 'interpolation' in kwargs:
|
||
|
raise _api.kwarg_error("spy", "interpolation")
|
||
|
if 'norm' not in kwargs:
|
||
|
kwargs['norm'] = mcolors.NoNorm()
|
||
|
ret = self.imshow(mask, interpolation='nearest',
|
||
|
aspect=aspect, origin=origin,
|
||
|
**kwargs)
|
||
|
else:
|
||
|
if hasattr(Z, 'tocoo'):
|
||
|
c = Z.tocoo()
|
||
|
if precision == 'present':
|
||
|
y = c.row
|
||
|
x = c.col
|
||
|
else:
|
||
|
nonzero = np.abs(c.data) > precision
|
||
|
y = c.row[nonzero]
|
||
|
x = c.col[nonzero]
|
||
|
else:
|
||
|
Z = np.asarray(Z)
|
||
|
nonzero = np.abs(Z) > precision
|
||
|
y, x = np.nonzero(nonzero)
|
||
|
if marker is None:
|
||
|
marker = 's'
|
||
|
if markersize is None:
|
||
|
markersize = 10
|
||
|
if 'linestyle' in kwargs:
|
||
|
raise _api.kwarg_error("spy", "linestyle")
|
||
|
ret = mlines.Line2D(
|
||
|
x, y, linestyle='None', marker=marker, markersize=markersize,
|
||
|
**kwargs)
|
||
|
self.add_line(ret)
|
||
|
nr, nc = Z.shape
|
||
|
self.set_xlim(-0.5, nc - 0.5)
|
||
|
if origin == "upper":
|
||
|
self.set_ylim(nr - 0.5, -0.5)
|
||
|
else:
|
||
|
self.set_ylim(-0.5, nr - 0.5)
|
||
|
self.set_aspect(aspect)
|
||
|
self.title.set_y(1.05)
|
||
|
if origin == "upper":
|
||
|
self.xaxis.tick_top()
|
||
|
else: # lower
|
||
|
self.xaxis.tick_bottom()
|
||
|
self.xaxis.set_ticks_position('both')
|
||
|
self.xaxis.set_major_locator(
|
||
|
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
|
||
|
self.yaxis.set_major_locator(
|
||
|
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
|
||
|
return ret
|
||
|
|
||
|
def matshow(self, Z, **kwargs):
|
||
|
"""
|
||
|
Plot the values of a 2D matrix or array as color-coded image.
|
||
|
|
||
|
The matrix will be shown the way it would be printed, with the first
|
||
|
row at the top. Row and column numbering is zero-based.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
Z : (M, N) array-like
|
||
|
The matrix to be displayed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.image.AxesImage`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
imshow : More general function to plot data on a 2D regular raster.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is just a convenience function wrapping `.imshow` to set useful
|
||
|
defaults for displaying a matrix. In particular:
|
||
|
|
||
|
- Set ``origin='upper'``.
|
||
|
- Set ``interpolation='nearest'``.
|
||
|
- Set ``aspect='equal'``.
|
||
|
- Ticks are placed to the left and above.
|
||
|
- Ticks are formatted to show integer indices.
|
||
|
|
||
|
"""
|
||
|
Z = np.asanyarray(Z)
|
||
|
kw = {'origin': 'upper',
|
||
|
'interpolation': 'nearest',
|
||
|
'aspect': 'equal', # (already the imshow default)
|
||
|
**kwargs}
|
||
|
im = self.imshow(Z, **kw)
|
||
|
self.title.set_y(1.05)
|
||
|
self.xaxis.tick_top()
|
||
|
self.xaxis.set_ticks_position('both')
|
||
|
self.xaxis.set_major_locator(
|
||
|
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
|
||
|
self.yaxis.set_major_locator(
|
||
|
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
|
||
|
return im
|
||
|
|
||
|
@_preprocess_data(replace_names=["dataset"])
|
||
|
def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
|
||
|
showmeans=False, showextrema=True, showmedians=False,
|
||
|
quantiles=None, points=100, bw_method=None, side='both'):
|
||
|
"""
|
||
|
Make a violin plot.
|
||
|
|
||
|
Make a violin plot for each column of *dataset* or each vector in
|
||
|
sequence *dataset*. Each filled area extends to represent the
|
||
|
entire data range, with optional lines at the mean, the median,
|
||
|
the minimum, the maximum, and user-specified quantiles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dataset : Array or a sequence of vectors.
|
||
|
The input data.
|
||
|
|
||
|
positions : array-like, default: [1, 2, ..., n]
|
||
|
The positions of the violins; i.e. coordinates on the x-axis for
|
||
|
vertical violins (or y-axis for horizontal violins).
|
||
|
|
||
|
vert : bool, default: True.
|
||
|
If true, creates a vertical violin plot.
|
||
|
Otherwise, creates a horizontal violin plot.
|
||
|
|
||
|
widths : float or array-like, default: 0.5
|
||
|
The maximum width of each violin in units of the *positions* axis.
|
||
|
The default is 0.5, which is half the available space when using default
|
||
|
*positions*.
|
||
|
|
||
|
showmeans : bool, default: False
|
||
|
Whether to show the mean with a line.
|
||
|
|
||
|
showextrema : bool, default: True
|
||
|
Whether to show extrema with a line.
|
||
|
|
||
|
showmedians : bool, default: False
|
||
|
Whether to show the median with a line.
|
||
|
|
||
|
quantiles : array-like, default: None
|
||
|
If not None, set a list of floats in interval [0, 1] for each violin,
|
||
|
which stands for the quantiles that will be rendered for that
|
||
|
violin.
|
||
|
|
||
|
points : int, default: 100
|
||
|
The number of points to evaluate each of the gaussian kernel density
|
||
|
estimations at.
|
||
|
|
||
|
bw_method : {'scott', 'silverman'} or float or callable, default: 'scott'
|
||
|
The method used to calculate the estimator bandwidth. If a
|
||
|
float, this will be used directly as `kde.factor`. If a
|
||
|
callable, it should take a `matplotlib.mlab.GaussianKDE` instance as
|
||
|
its only parameter and return a float.
|
||
|
|
||
|
side : {'both', 'low', 'high'}, default: 'both'
|
||
|
'both' plots standard violins. 'low'/'high' only
|
||
|
plots the side below/above the positions value.
|
||
|
|
||
|
data : indexable object, optional
|
||
|
DATA_PARAMETER_PLACEHOLDER
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict
|
||
|
A dictionary mapping each component of the violinplot to a
|
||
|
list of the corresponding collection instances created. The
|
||
|
dictionary has the following keys:
|
||
|
|
||
|
- ``bodies``: A list of the `~.collections.PolyCollection`
|
||
|
instances containing the filled area of each violin.
|
||
|
|
||
|
- ``cmeans``: A `~.collections.LineCollection` instance that marks
|
||
|
the mean values of each of the violin's distribution.
|
||
|
|
||
|
- ``cmins``: A `~.collections.LineCollection` instance that marks
|
||
|
the bottom of each violin's distribution.
|
||
|
|
||
|
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
|
||
|
the top of each violin's distribution.
|
||
|
|
||
|
- ``cbars``: A `~.collections.LineCollection` instance that marks
|
||
|
the centers of each violin's distribution.
|
||
|
|
||
|
- ``cmedians``: A `~.collections.LineCollection` instance that
|
||
|
marks the median values of each of the violin's distribution.
|
||
|
|
||
|
- ``cquantiles``: A `~.collections.LineCollection` instance created
|
||
|
to identify the quantile values of each of the violin's
|
||
|
distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.Axes.violin : Draw a violin from pre-computed statistics.
|
||
|
boxplot : Draw a box and whisker plot.
|
||
|
"""
|
||
|
|
||
|
def _kde_method(X, coords):
|
||
|
# Unpack in case of e.g. Pandas or xarray object
|
||
|
X = cbook._unpack_to_numpy(X)
|
||
|
# fallback gracefully if the vector contains only one value
|
||
|
if np.all(X[0] == X):
|
||
|
return (X[0] == coords).astype(float)
|
||
|
kde = mlab.GaussianKDE(X, bw_method)
|
||
|
return kde.evaluate(coords)
|
||
|
|
||
|
vpstats = cbook.violin_stats(dataset, _kde_method, points=points,
|
||
|
quantiles=quantiles)
|
||
|
return self.violin(vpstats, positions=positions, vert=vert,
|
||
|
widths=widths, showmeans=showmeans,
|
||
|
showextrema=showextrema, showmedians=showmedians, side=side)
|
||
|
|
||
|
def violin(self, vpstats, positions=None, vert=True, widths=0.5,
|
||
|
showmeans=False, showextrema=True, showmedians=False, side='both'):
|
||
|
"""
|
||
|
Draw a violin plot from pre-computed statistics.
|
||
|
|
||
|
Draw a violin plot for each column of *vpstats*. Each filled area
|
||
|
extends to represent the entire data range, with optional lines at the
|
||
|
mean, the median, the minimum, the maximum, and the quantiles values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vpstats : list of dicts
|
||
|
A list of dictionaries containing stats for each violin plot.
|
||
|
Required keys are:
|
||
|
|
||
|
- ``coords``: A list of scalars containing the coordinates that
|
||
|
the violin's kernel density estimate were evaluated at.
|
||
|
|
||
|
- ``vals``: A list of scalars containing the values of the
|
||
|
kernel density estimate at each of the coordinates given
|
||
|
in *coords*.
|
||
|
|
||
|
- ``mean``: The mean value for this violin's dataset.
|
||
|
|
||
|
- ``median``: The median value for this violin's dataset.
|
||
|
|
||
|
- ``min``: The minimum value for this violin's dataset.
|
||
|
|
||
|
- ``max``: The maximum value for this violin's dataset.
|
||
|
|
||
|
Optional keys are:
|
||
|
|
||
|
- ``quantiles``: A list of scalars containing the quantile values
|
||
|
for this violin's dataset.
|
||
|
|
||
|
positions : array-like, default: [1, 2, ..., n]
|
||
|
The positions of the violins; i.e. coordinates on the x-axis for
|
||
|
vertical violins (or y-axis for horizontal violins).
|
||
|
|
||
|
vert : bool, default: True.
|
||
|
If true, plots the violins vertically.
|
||
|
Otherwise, plots the violins horizontally.
|
||
|
|
||
|
widths : float or array-like, default: 0.5
|
||
|
The maximum width of each violin in units of the *positions* axis.
|
||
|
The default is 0.5, which is half available space when using default
|
||
|
*positions*.
|
||
|
|
||
|
showmeans : bool, default: False
|
||
|
Whether to show the mean with a line.
|
||
|
|
||
|
showextrema : bool, default: True
|
||
|
Whether to show extrema with a line.
|
||
|
|
||
|
showmedians : bool, default: False
|
||
|
Whether to show the median with a line.
|
||
|
|
||
|
side : {'both', 'low', 'high'}, default: 'both'
|
||
|
'both' plots standard violins. 'low'/'high' only
|
||
|
plots the side below/above the positions value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict
|
||
|
A dictionary mapping each component of the violinplot to a
|
||
|
list of the corresponding collection instances created. The
|
||
|
dictionary has the following keys:
|
||
|
|
||
|
- ``bodies``: A list of the `~.collections.PolyCollection`
|
||
|
instances containing the filled area of each violin.
|
||
|
|
||
|
- ``cmeans``: A `~.collections.LineCollection` instance that marks
|
||
|
the mean values of each of the violin's distribution.
|
||
|
|
||
|
- ``cmins``: A `~.collections.LineCollection` instance that marks
|
||
|
the bottom of each violin's distribution.
|
||
|
|
||
|
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
|
||
|
the top of each violin's distribution.
|
||
|
|
||
|
- ``cbars``: A `~.collections.LineCollection` instance that marks
|
||
|
the centers of each violin's distribution.
|
||
|
|
||
|
- ``cmedians``: A `~.collections.LineCollection` instance that
|
||
|
marks the median values of each of the violin's distribution.
|
||
|
|
||
|
- ``cquantiles``: A `~.collections.LineCollection` instance created
|
||
|
to identify the quantiles values of each of the violin's
|
||
|
distribution.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
violin :
|
||
|
Draw a violin plot from data instead of pre-computed statistics.
|
||
|
"""
|
||
|
|
||
|
# Statistical quantities to be plotted on the violins
|
||
|
means = []
|
||
|
mins = []
|
||
|
maxes = []
|
||
|
medians = []
|
||
|
quantiles = []
|
||
|
|
||
|
qlens = [] # Number of quantiles in each dataset.
|
||
|
|
||
|
artists = {} # Collections to be returned
|
||
|
|
||
|
N = len(vpstats)
|
||
|
datashape_message = ("List of violinplot statistics and `{0}` "
|
||
|
"values must have the same length")
|
||
|
|
||
|
# Validate positions
|
||
|
if positions is None:
|
||
|
positions = range(1, N + 1)
|
||
|
elif len(positions) != N:
|
||
|
raise ValueError(datashape_message.format("positions"))
|
||
|
|
||
|
# Validate widths
|
||
|
if np.isscalar(widths):
|
||
|
widths = [widths] * N
|
||
|
elif len(widths) != N:
|
||
|
raise ValueError(datashape_message.format("widths"))
|
||
|
|
||
|
# Validate side
|
||
|
_api.check_in_list(["both", "low", "high"], side=side)
|
||
|
|
||
|
# Calculate ranges for statistics lines (shape (2, N)).
|
||
|
line_ends = [[-0.25 if side in ['both', 'low'] else 0],
|
||
|
[0.25 if side in ['both', 'high'] else 0]] \
|
||
|
* np.array(widths) + positions
|
||
|
|
||
|
# Colors.
|
||
|
if mpl.rcParams['_internal.classic_mode']:
|
||
|
fillcolor = 'y'
|
||
|
linecolor = 'r'
|
||
|
else:
|
||
|
fillcolor = linecolor = self._get_lines.get_next_color()
|
||
|
|
||
|
# Check whether we are rendering vertically or horizontally
|
||
|
if vert:
|
||
|
fill = self.fill_betweenx
|
||
|
if side in ['low', 'high']:
|
||
|
perp_lines = functools.partial(self.hlines, colors=linecolor,
|
||
|
capstyle='projecting')
|
||
|
par_lines = functools.partial(self.vlines, colors=linecolor,
|
||
|
capstyle='projecting')
|
||
|
else:
|
||
|
perp_lines = functools.partial(self.hlines, colors=linecolor)
|
||
|
par_lines = functools.partial(self.vlines, colors=linecolor)
|
||
|
else:
|
||
|
fill = self.fill_between
|
||
|
if side in ['low', 'high']:
|
||
|
perp_lines = functools.partial(self.vlines, colors=linecolor,
|
||
|
capstyle='projecting')
|
||
|
par_lines = functools.partial(self.hlines, colors=linecolor,
|
||
|
capstyle='projecting')
|
||
|
else:
|
||
|
perp_lines = functools.partial(self.vlines, colors=linecolor)
|
||
|
par_lines = functools.partial(self.hlines, colors=linecolor)
|
||
|
|
||
|
# Render violins
|
||
|
bodies = []
|
||
|
for stats, pos, width in zip(vpstats, positions, widths):
|
||
|
# The 0.5 factor reflects the fact that we plot from v-p to v+p.
|
||
|
vals = np.array(stats['vals'])
|
||
|
vals = 0.5 * width * vals / vals.max()
|
||
|
bodies += [fill(stats['coords'],
|
||
|
-vals + pos if side in ['both', 'low'] else pos,
|
||
|
vals + pos if side in ['both', 'high'] else pos,
|
||
|
facecolor=fillcolor, alpha=0.3)]
|
||
|
means.append(stats['mean'])
|
||
|
mins.append(stats['min'])
|
||
|
maxes.append(stats['max'])
|
||
|
medians.append(stats['median'])
|
||
|
q = stats.get('quantiles') # a list of floats, or None
|
||
|
if q is None:
|
||
|
q = []
|
||
|
quantiles.extend(q)
|
||
|
qlens.append(len(q))
|
||
|
artists['bodies'] = bodies
|
||
|
|
||
|
if showmeans: # Render means
|
||
|
artists['cmeans'] = perp_lines(means, *line_ends)
|
||
|
if showextrema: # Render extrema
|
||
|
artists['cmaxes'] = perp_lines(maxes, *line_ends)
|
||
|
artists['cmins'] = perp_lines(mins, *line_ends)
|
||
|
artists['cbars'] = par_lines(positions, mins, maxes)
|
||
|
if showmedians: # Render medians
|
||
|
artists['cmedians'] = perp_lines(medians, *line_ends)
|
||
|
if quantiles: # Render quantiles: each width is repeated qlen times.
|
||
|
artists['cquantiles'] = perp_lines(
|
||
|
quantiles, *np.repeat(line_ends, qlens, axis=1))
|
||
|
|
||
|
return artists
|
||
|
|
||
|
# Methods that are entirely implemented in other modules.
|
||
|
|
||
|
table = _make_axes_method(mtable.table)
|
||
|
|
||
|
# args can be either Y or y1, y2, ... and all should be replaced
|
||
|
stackplot = _preprocess_data()(_make_axes_method(mstack.stackplot))
|
||
|
|
||
|
streamplot = _preprocess_data(
|
||
|
replace_names=["x", "y", "u", "v", "start_points"])(
|
||
|
_make_axes_method(mstream.streamplot))
|
||
|
|
||
|
tricontour = _make_axes_method(mtri.tricontour)
|
||
|
tricontourf = _make_axes_method(mtri.tricontourf)
|
||
|
tripcolor = _make_axes_method(mtri.tripcolor)
|
||
|
triplot = _make_axes_method(mtri.triplot)
|
||
|
|
||
|
def _get_aspect_ratio(self):
|
||
|
"""
|
||
|
Convenience method to calculate the aspect ratio of the Axes in
|
||
|
the display coordinate system.
|
||
|
"""
|
||
|
figure_size = self.get_figure().get_size_inches()
|
||
|
ll, ur = self.get_position() * figure_size
|
||
|
width, height = ur - ll
|
||
|
return height / (width * self.get_data_ratio())
|