936 lines
27 KiB
Python
936 lines
27 KiB
Python
|
"""
|
||
|
Computational functions for interval arithmetic.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from .backend import xrange
|
||
|
|
||
|
from .libmpf import (
|
||
|
ComplexResult,
|
||
|
round_down, round_up, round_floor, round_ceiling, round_nearest,
|
||
|
prec_to_dps, repr_dps, dps_to_prec,
|
||
|
bitcount,
|
||
|
from_float,
|
||
|
fnan, finf, fninf, fzero, fhalf, fone, fnone,
|
||
|
mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp,
|
||
|
mpf_min_max,
|
||
|
mpf_floor, from_int, to_int, to_str, from_str,
|
||
|
mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
|
||
|
mpf_div, mpf_shift, mpf_pow_int,
|
||
|
from_man_exp, MPZ_ONE)
|
||
|
|
||
|
from .libelefun import (
|
||
|
mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2,
|
||
|
mpf_pi, mod_pi2, mpf_cos_sin
|
||
|
)
|
||
|
|
||
|
from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma
|
||
|
|
||
|
def mpi_str(s, prec):
|
||
|
sa, sb = s
|
||
|
dps = prec_to_dps(prec) + 5
|
||
|
return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps))
|
||
|
#dps = prec_to_dps(prec)
|
||
|
#m = mpi_mid(s, prec)
|
||
|
#d = mpf_shift(mpi_delta(s, 20), -1)
|
||
|
#return "%s +/- %s" % (to_str(m, dps), to_str(d, 3))
|
||
|
|
||
|
mpi_zero = (fzero, fzero)
|
||
|
mpi_one = (fone, fone)
|
||
|
|
||
|
def mpi_eq(s, t):
|
||
|
return s == t
|
||
|
|
||
|
def mpi_ne(s, t):
|
||
|
return s != t
|
||
|
|
||
|
def mpi_lt(s, t):
|
||
|
sa, sb = s
|
||
|
ta, tb = t
|
||
|
if mpf_lt(sb, ta): return True
|
||
|
if mpf_ge(sa, tb): return False
|
||
|
return None
|
||
|
|
||
|
def mpi_le(s, t):
|
||
|
sa, sb = s
|
||
|
ta, tb = t
|
||
|
if mpf_le(sb, ta): return True
|
||
|
if mpf_gt(sa, tb): return False
|
||
|
return None
|
||
|
|
||
|
def mpi_gt(s, t): return mpi_lt(t, s)
|
||
|
def mpi_ge(s, t): return mpi_le(t, s)
|
||
|
|
||
|
def mpi_add(s, t, prec=0):
|
||
|
sa, sb = s
|
||
|
ta, tb = t
|
||
|
a = mpf_add(sa, ta, prec, round_floor)
|
||
|
b = mpf_add(sb, tb, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = finf
|
||
|
return a, b
|
||
|
|
||
|
def mpi_sub(s, t, prec=0):
|
||
|
sa, sb = s
|
||
|
ta, tb = t
|
||
|
a = mpf_sub(sa, tb, prec, round_floor)
|
||
|
b = mpf_sub(sb, ta, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = finf
|
||
|
return a, b
|
||
|
|
||
|
def mpi_delta(s, prec):
|
||
|
sa, sb = s
|
||
|
return mpf_sub(sb, sa, prec, round_up)
|
||
|
|
||
|
def mpi_mid(s, prec):
|
||
|
sa, sb = s
|
||
|
return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1)
|
||
|
|
||
|
def mpi_pos(s, prec):
|
||
|
sa, sb = s
|
||
|
a = mpf_pos(sa, prec, round_floor)
|
||
|
b = mpf_pos(sb, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_neg(s, prec=0):
|
||
|
sa, sb = s
|
||
|
a = mpf_neg(sb, prec, round_floor)
|
||
|
b = mpf_neg(sa, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_abs(s, prec=0):
|
||
|
sa, sb = s
|
||
|
sas = mpf_sign(sa)
|
||
|
sbs = mpf_sign(sb)
|
||
|
# Both points nonnegative?
|
||
|
if sas >= 0:
|
||
|
a = mpf_pos(sa, prec, round_floor)
|
||
|
b = mpf_pos(sb, prec, round_ceiling)
|
||
|
# Upper point nonnegative?
|
||
|
elif sbs >= 0:
|
||
|
a = fzero
|
||
|
negsa = mpf_neg(sa)
|
||
|
if mpf_lt(negsa, sb):
|
||
|
b = mpf_pos(sb, prec, round_ceiling)
|
||
|
else:
|
||
|
b = mpf_pos(negsa, prec, round_ceiling)
|
||
|
# Both negative?
|
||
|
else:
|
||
|
a = mpf_neg(sb, prec, round_floor)
|
||
|
b = mpf_neg(sa, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
# TODO: optimize
|
||
|
def mpi_mul_mpf(s, t, prec):
|
||
|
return mpi_mul(s, (t, t), prec)
|
||
|
|
||
|
def mpi_div_mpf(s, t, prec):
|
||
|
return mpi_div(s, (t, t), prec)
|
||
|
|
||
|
def mpi_mul(s, t, prec=0):
|
||
|
sa, sb = s
|
||
|
ta, tb = t
|
||
|
sas = mpf_sign(sa)
|
||
|
sbs = mpf_sign(sb)
|
||
|
tas = mpf_sign(ta)
|
||
|
tbs = mpf_sign(tb)
|
||
|
if sas == sbs == 0:
|
||
|
# Should maybe be undefined
|
||
|
if ta == fninf or tb == finf:
|
||
|
return fninf, finf
|
||
|
return fzero, fzero
|
||
|
if tas == tbs == 0:
|
||
|
# Should maybe be undefined
|
||
|
if sa == fninf or sb == finf:
|
||
|
return fninf, finf
|
||
|
return fzero, fzero
|
||
|
if sas >= 0:
|
||
|
# positive * positive
|
||
|
if tas >= 0:
|
||
|
a = mpf_mul(sa, ta, prec, round_floor)
|
||
|
b = mpf_mul(sb, tb, prec, round_ceiling)
|
||
|
if a == fnan: a = fzero
|
||
|
if b == fnan: b = finf
|
||
|
# positive * negative
|
||
|
elif tbs <= 0:
|
||
|
a = mpf_mul(sb, ta, prec, round_floor)
|
||
|
b = mpf_mul(sa, tb, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = fzero
|
||
|
# positive * both signs
|
||
|
else:
|
||
|
a = mpf_mul(sb, ta, prec, round_floor)
|
||
|
b = mpf_mul(sb, tb, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = finf
|
||
|
elif sbs <= 0:
|
||
|
# negative * positive
|
||
|
if tas >= 0:
|
||
|
a = mpf_mul(sa, tb, prec, round_floor)
|
||
|
b = mpf_mul(sb, ta, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = fzero
|
||
|
# negative * negative
|
||
|
elif tbs <= 0:
|
||
|
a = mpf_mul(sb, tb, prec, round_floor)
|
||
|
b = mpf_mul(sa, ta, prec, round_ceiling)
|
||
|
if a == fnan: a = fzero
|
||
|
if b == fnan: b = finf
|
||
|
# negative * both signs
|
||
|
else:
|
||
|
a = mpf_mul(sa, tb, prec, round_floor)
|
||
|
b = mpf_mul(sa, ta, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = finf
|
||
|
else:
|
||
|
# General case: perform all cross-multiplications and compare
|
||
|
# Since the multiplications can be done exactly, we need only
|
||
|
# do 4 (instead of 8: two for each rounding mode)
|
||
|
cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)]
|
||
|
if fnan in cases:
|
||
|
a, b = (fninf, finf)
|
||
|
else:
|
||
|
a, b = mpf_min_max(cases)
|
||
|
a = mpf_pos(a, prec, round_floor)
|
||
|
b = mpf_pos(b, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_square(s, prec=0):
|
||
|
sa, sb = s
|
||
|
if mpf_ge(sa, fzero):
|
||
|
a = mpf_mul(sa, sa, prec, round_floor)
|
||
|
b = mpf_mul(sb, sb, prec, round_ceiling)
|
||
|
elif mpf_le(sb, fzero):
|
||
|
a = mpf_mul(sb, sb, prec, round_floor)
|
||
|
b = mpf_mul(sa, sa, prec, round_ceiling)
|
||
|
else:
|
||
|
sa = mpf_neg(sa)
|
||
|
sa, sb = mpf_min_max([sa, sb])
|
||
|
a = fzero
|
||
|
b = mpf_mul(sb, sb, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_div(s, t, prec):
|
||
|
sa, sb = s
|
||
|
ta, tb = t
|
||
|
sas = mpf_sign(sa)
|
||
|
sbs = mpf_sign(sb)
|
||
|
tas = mpf_sign(ta)
|
||
|
tbs = mpf_sign(tb)
|
||
|
# 0 / X
|
||
|
if sas == sbs == 0:
|
||
|
# 0 / <interval containing 0>
|
||
|
if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0):
|
||
|
return fninf, finf
|
||
|
return fzero, fzero
|
||
|
# Denominator contains both negative and positive numbers;
|
||
|
# this should properly be a multi-interval, but the closest
|
||
|
# match is the entire (extended) real line
|
||
|
if tas < 0 and tbs > 0:
|
||
|
return fninf, finf
|
||
|
# Assume denominator to be nonnegative
|
||
|
if tas < 0:
|
||
|
return mpi_div(mpi_neg(s), mpi_neg(t), prec)
|
||
|
# Division by zero
|
||
|
# XXX: make sure all results make sense
|
||
|
if tas == 0:
|
||
|
# Numerator contains both signs?
|
||
|
if sas < 0 and sbs > 0:
|
||
|
return fninf, finf
|
||
|
if tas == tbs:
|
||
|
return fninf, finf
|
||
|
# Numerator positive?
|
||
|
if sas >= 0:
|
||
|
a = mpf_div(sa, tb, prec, round_floor)
|
||
|
b = finf
|
||
|
if sbs <= 0:
|
||
|
a = fninf
|
||
|
b = mpf_div(sb, tb, prec, round_ceiling)
|
||
|
# Division with positive denominator
|
||
|
# We still have to handle nans resulting from inf/0 or inf/inf
|
||
|
else:
|
||
|
# Nonnegative numerator
|
||
|
if sas >= 0:
|
||
|
a = mpf_div(sa, tb, prec, round_floor)
|
||
|
b = mpf_div(sb, ta, prec, round_ceiling)
|
||
|
if a == fnan: a = fzero
|
||
|
if b == fnan: b = finf
|
||
|
# Nonpositive numerator
|
||
|
elif sbs <= 0:
|
||
|
a = mpf_div(sa, ta, prec, round_floor)
|
||
|
b = mpf_div(sb, tb, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = fzero
|
||
|
# Numerator contains both signs?
|
||
|
else:
|
||
|
a = mpf_div(sa, ta, prec, round_floor)
|
||
|
b = mpf_div(sb, ta, prec, round_ceiling)
|
||
|
if a == fnan: a = fninf
|
||
|
if b == fnan: b = finf
|
||
|
return a, b
|
||
|
|
||
|
def mpi_pi(prec):
|
||
|
a = mpf_pi(prec, round_floor)
|
||
|
b = mpf_pi(prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_exp(s, prec):
|
||
|
sa, sb = s
|
||
|
# exp is monotonic
|
||
|
a = mpf_exp(sa, prec, round_floor)
|
||
|
b = mpf_exp(sb, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_log(s, prec):
|
||
|
sa, sb = s
|
||
|
# log is monotonic
|
||
|
a = mpf_log(sa, prec, round_floor)
|
||
|
b = mpf_log(sb, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_sqrt(s, prec):
|
||
|
sa, sb = s
|
||
|
# sqrt is monotonic
|
||
|
a = mpf_sqrt(sa, prec, round_floor)
|
||
|
b = mpf_sqrt(sb, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_atan(s, prec):
|
||
|
sa, sb = s
|
||
|
a = mpf_atan(sa, prec, round_floor)
|
||
|
b = mpf_atan(sb, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_pow_int(s, n, prec):
|
||
|
sa, sb = s
|
||
|
if n < 0:
|
||
|
return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec)
|
||
|
if n == 0:
|
||
|
return (fone, fone)
|
||
|
if n == 1:
|
||
|
return s
|
||
|
if n == 2:
|
||
|
return mpi_square(s, prec)
|
||
|
# Odd -- signs are preserved
|
||
|
if n & 1:
|
||
|
a = mpf_pow_int(sa, n, prec, round_floor)
|
||
|
b = mpf_pow_int(sb, n, prec, round_ceiling)
|
||
|
# Even -- important to ensure positivity
|
||
|
else:
|
||
|
sas = mpf_sign(sa)
|
||
|
sbs = mpf_sign(sb)
|
||
|
# Nonnegative?
|
||
|
if sas >= 0:
|
||
|
a = mpf_pow_int(sa, n, prec, round_floor)
|
||
|
b = mpf_pow_int(sb, n, prec, round_ceiling)
|
||
|
# Nonpositive?
|
||
|
elif sbs <= 0:
|
||
|
a = mpf_pow_int(sb, n, prec, round_floor)
|
||
|
b = mpf_pow_int(sa, n, prec, round_ceiling)
|
||
|
# Mixed signs?
|
||
|
else:
|
||
|
a = fzero
|
||
|
# max(-a,b)**n
|
||
|
sa = mpf_neg(sa)
|
||
|
if mpf_ge(sa, sb):
|
||
|
b = mpf_pow_int(sa, n, prec, round_ceiling)
|
||
|
else:
|
||
|
b = mpf_pow_int(sb, n, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_pow(s, t, prec):
|
||
|
ta, tb = t
|
||
|
if ta == tb and ta not in (finf, fninf):
|
||
|
if ta == from_int(to_int(ta)):
|
||
|
return mpi_pow_int(s, to_int(ta), prec)
|
||
|
if ta == fhalf:
|
||
|
return mpi_sqrt(s, prec)
|
||
|
u = mpi_log(s, prec + 20)
|
||
|
v = mpi_mul(u, t, prec + 20)
|
||
|
return mpi_exp(v, prec)
|
||
|
|
||
|
def MIN(x, y):
|
||
|
if mpf_le(x, y):
|
||
|
return x
|
||
|
return y
|
||
|
|
||
|
def MAX(x, y):
|
||
|
if mpf_ge(x, y):
|
||
|
return x
|
||
|
return y
|
||
|
|
||
|
def cos_sin_quadrant(x, wp):
|
||
|
sign, man, exp, bc = x
|
||
|
if x == fzero:
|
||
|
return fone, fzero, 0
|
||
|
# TODO: combine evaluation code to avoid duplicate modulo
|
||
|
c, s = mpf_cos_sin(x, wp)
|
||
|
t, n, wp_ = mod_pi2(man, exp, exp+bc, 15)
|
||
|
if sign:
|
||
|
n = -1-n
|
||
|
return c, s, n
|
||
|
|
||
|
def mpi_cos_sin(x, prec):
|
||
|
a, b = x
|
||
|
if a == b == fzero:
|
||
|
return (fone, fone), (fzero, fzero)
|
||
|
# Guaranteed to contain both -1 and 1
|
||
|
if (finf in x) or (fninf in x):
|
||
|
return (fnone, fone), (fnone, fone)
|
||
|
wp = prec + 20
|
||
|
ca, sa, na = cos_sin_quadrant(a, wp)
|
||
|
cb, sb, nb = cos_sin_quadrant(b, wp)
|
||
|
ca, cb = mpf_min_max([ca, cb])
|
||
|
sa, sb = mpf_min_max([sa, sb])
|
||
|
# Both functions are monotonic within one quadrant
|
||
|
if na == nb:
|
||
|
pass
|
||
|
# Guaranteed to contain both -1 and 1
|
||
|
elif nb - na >= 4:
|
||
|
return (fnone, fone), (fnone, fone)
|
||
|
else:
|
||
|
# cos has maximum between a and b
|
||
|
if na//4 != nb//4:
|
||
|
cb = fone
|
||
|
# cos has minimum
|
||
|
if (na-2)//4 != (nb-2)//4:
|
||
|
ca = fnone
|
||
|
# sin has maximum
|
||
|
if (na-1)//4 != (nb-1)//4:
|
||
|
sb = fone
|
||
|
# sin has minimum
|
||
|
if (na-3)//4 != (nb-3)//4:
|
||
|
sa = fnone
|
||
|
# Perturb to force interval rounding
|
||
|
more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp)
|
||
|
less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp)
|
||
|
def finalize(v, rounding):
|
||
|
if bool(v[0]) == (rounding == round_floor):
|
||
|
p = more
|
||
|
else:
|
||
|
p = less
|
||
|
v = mpf_mul(v, p, prec, rounding)
|
||
|
sign, man, exp, bc = v
|
||
|
if exp+bc >= 1:
|
||
|
if sign:
|
||
|
return fnone
|
||
|
return fone
|
||
|
return v
|
||
|
ca = finalize(ca, round_floor)
|
||
|
cb = finalize(cb, round_ceiling)
|
||
|
sa = finalize(sa, round_floor)
|
||
|
sb = finalize(sb, round_ceiling)
|
||
|
return (ca,cb), (sa,sb)
|
||
|
|
||
|
def mpi_cos(x, prec):
|
||
|
return mpi_cos_sin(x, prec)[0]
|
||
|
|
||
|
def mpi_sin(x, prec):
|
||
|
return mpi_cos_sin(x, prec)[1]
|
||
|
|
||
|
def mpi_tan(x, prec):
|
||
|
cos, sin = mpi_cos_sin(x, prec+20)
|
||
|
return mpi_div(sin, cos, prec)
|
||
|
|
||
|
def mpi_cot(x, prec):
|
||
|
cos, sin = mpi_cos_sin(x, prec+20)
|
||
|
return mpi_div(cos, sin, prec)
|
||
|
|
||
|
def mpi_from_str_a_b(x, y, percent, prec):
|
||
|
wp = prec + 20
|
||
|
xa = from_str(x, wp, round_floor)
|
||
|
xb = from_str(x, wp, round_ceiling)
|
||
|
#ya = from_str(y, wp, round_floor)
|
||
|
y = from_str(y, wp, round_ceiling)
|
||
|
assert mpf_ge(y, fzero)
|
||
|
if percent:
|
||
|
y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
|
||
|
y = mpf_div(y, from_int(100), wp, round_ceiling)
|
||
|
a = mpf_sub(xa, y, prec, round_floor)
|
||
|
b = mpf_add(xb, y, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_from_str(s, prec):
|
||
|
"""
|
||
|
Parse an interval number given as a string.
|
||
|
|
||
|
Allowed forms are
|
||
|
|
||
|
"-1.23e-27"
|
||
|
Any single decimal floating-point literal.
|
||
|
"a +- b" or "a (b)"
|
||
|
a is the midpoint of the interval and b is the half-width
|
||
|
"a +- b%" or "a (b%)"
|
||
|
a is the midpoint of the interval and the half-width
|
||
|
is b percent of a (`a \times b / 100`).
|
||
|
"[a, b]"
|
||
|
The interval indicated directly.
|
||
|
"x[y,z]e"
|
||
|
x are shared digits, y and z are unequal digits, e is the exponent.
|
||
|
|
||
|
"""
|
||
|
e = ValueError("Improperly formed interval number '%s'" % s)
|
||
|
s = s.replace(" ", "")
|
||
|
wp = prec + 20
|
||
|
if "+-" in s:
|
||
|
x, y = s.split("+-")
|
||
|
return mpi_from_str_a_b(x, y, False, prec)
|
||
|
# case 2
|
||
|
elif "(" in s:
|
||
|
# Don't confuse with a complex number (x,y)
|
||
|
if s[0] == "(" or ")" not in s:
|
||
|
raise e
|
||
|
s = s.replace(")", "")
|
||
|
percent = False
|
||
|
if "%" in s:
|
||
|
if s[-1] != "%":
|
||
|
raise e
|
||
|
percent = True
|
||
|
s = s.replace("%", "")
|
||
|
x, y = s.split("(")
|
||
|
return mpi_from_str_a_b(x, y, percent, prec)
|
||
|
elif "," in s:
|
||
|
if ('[' not in s) or (']' not in s):
|
||
|
raise e
|
||
|
if s[0] == '[':
|
||
|
# case 3
|
||
|
s = s.replace("[", "")
|
||
|
s = s.replace("]", "")
|
||
|
a, b = s.split(",")
|
||
|
a = from_str(a, prec, round_floor)
|
||
|
b = from_str(b, prec, round_ceiling)
|
||
|
return a, b
|
||
|
else:
|
||
|
# case 4
|
||
|
x, y = s.split('[')
|
||
|
y, z = y.split(',')
|
||
|
if 'e' in s:
|
||
|
z, e = z.split(']')
|
||
|
else:
|
||
|
z, e = z.rstrip(']'), ''
|
||
|
a = from_str(x+y+e, prec, round_floor)
|
||
|
b = from_str(x+z+e, prec, round_ceiling)
|
||
|
return a, b
|
||
|
else:
|
||
|
a = from_str(s, prec, round_floor)
|
||
|
b = from_str(s, prec, round_ceiling)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs):
|
||
|
"""
|
||
|
Convert a mpi interval to a string.
|
||
|
|
||
|
**Arguments**
|
||
|
|
||
|
*dps*
|
||
|
decimal places to use for printing
|
||
|
*use_spaces*
|
||
|
use spaces for more readable output, defaults to true
|
||
|
*brackets*
|
||
|
pair of strings (or two-character string) giving left and right brackets
|
||
|
*mode*
|
||
|
mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff'
|
||
|
*error_dps*
|
||
|
limit the error to *error_dps* digits (mode 'plusminus and 'percent')
|
||
|
|
||
|
Additional keyword arguments are forwarded to the mpf-to-string conversion
|
||
|
for the components of the output.
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
>>> from mpmath import mpi, mp
|
||
|
>>> mp.dps = 30
|
||
|
>>> x = mpi(1, 2)._mpi_
|
||
|
>>> mpi_to_str(x, 2, mode='plusminus')
|
||
|
'1.5 +- 0.5'
|
||
|
>>> mpi_to_str(x, 2, mode='percent')
|
||
|
'1.5 (33.33%)'
|
||
|
>>> mpi_to_str(x, 2, mode='brackets')
|
||
|
'[1.0, 2.0]'
|
||
|
>>> mpi_to_str(x, 2, mode='brackets' , brackets=('<', '>'))
|
||
|
'<1.0, 2.0>'
|
||
|
>>> x = mpi('5.2582327113062393041', '5.2582327113062749951')._mpi_
|
||
|
>>> mpi_to_str(x, 15, mode='diff')
|
||
|
'5.2582327113062[4, 7]'
|
||
|
>>> mpi_to_str(mpi(0)._mpi_, 2, mode='percent')
|
||
|
'0.0 (0.0%)'
|
||
|
|
||
|
"""
|
||
|
prec = dps_to_prec(dps)
|
||
|
wp = prec + 20
|
||
|
a, b = x
|
||
|
mid = mpi_mid(x, prec)
|
||
|
delta = mpi_delta(x, prec)
|
||
|
a_str = to_str(a, dps, **kwargs)
|
||
|
b_str = to_str(b, dps, **kwargs)
|
||
|
mid_str = to_str(mid, dps, **kwargs)
|
||
|
sp = ""
|
||
|
if use_spaces:
|
||
|
sp = " "
|
||
|
br1, br2 = brackets
|
||
|
if mode == 'plusminus':
|
||
|
delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs)
|
||
|
s = mid_str + sp + "+-" + sp + delta_str
|
||
|
elif mode == 'percent':
|
||
|
if mid == fzero:
|
||
|
p = fzero
|
||
|
else:
|
||
|
# p = 100 * delta(x) / (2*mid(x))
|
||
|
p = mpf_mul(delta, from_int(100))
|
||
|
p = mpf_div(p, mpf_mul(mid, from_int(2)), wp)
|
||
|
s = mid_str + sp + "(" + to_str(p, error_dps) + "%)"
|
||
|
elif mode == 'brackets':
|
||
|
s = br1 + a_str + "," + sp + b_str + br2
|
||
|
elif mode == 'diff':
|
||
|
# use more digits if str(x.a) and str(x.b) are equal
|
||
|
if a_str == b_str:
|
||
|
a_str = to_str(a, dps+3, **kwargs)
|
||
|
b_str = to_str(b, dps+3, **kwargs)
|
||
|
# separate mantissa and exponent
|
||
|
a = a_str.split('e')
|
||
|
if len(a) == 1:
|
||
|
a.append('')
|
||
|
b = b_str.split('e')
|
||
|
if len(b) == 1:
|
||
|
b.append('')
|
||
|
if a[1] == b[1]:
|
||
|
if a[0] != b[0]:
|
||
|
for i in xrange(len(a[0]) + 1):
|
||
|
if a[0][i] != b[0][i]:
|
||
|
break
|
||
|
s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2
|
||
|
+ 'e'*min(len(a[1]), 1) + a[1])
|
||
|
else: # no difference
|
||
|
s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1]
|
||
|
else:
|
||
|
s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2
|
||
|
else:
|
||
|
raise ValueError("'%s' is unknown mode for printing mpi" % mode)
|
||
|
return s
|
||
|
|
||
|
def mpci_add(x, y, prec):
|
||
|
a, b = x
|
||
|
c, d = y
|
||
|
return mpi_add(a, c, prec), mpi_add(b, d, prec)
|
||
|
|
||
|
def mpci_sub(x, y, prec):
|
||
|
a, b = x
|
||
|
c, d = y
|
||
|
return mpi_sub(a, c, prec), mpi_sub(b, d, prec)
|
||
|
|
||
|
def mpci_neg(x, prec=0):
|
||
|
a, b = x
|
||
|
return mpi_neg(a, prec), mpi_neg(b, prec)
|
||
|
|
||
|
def mpci_pos(x, prec):
|
||
|
a, b = x
|
||
|
return mpi_pos(a, prec), mpi_pos(b, prec)
|
||
|
|
||
|
def mpci_mul(x, y, prec):
|
||
|
# TODO: optimize for real/imag cases
|
||
|
a, b = x
|
||
|
c, d = y
|
||
|
r1 = mpi_mul(a,c)
|
||
|
r2 = mpi_mul(b,d)
|
||
|
re = mpi_sub(r1,r2,prec)
|
||
|
i1 = mpi_mul(a,d)
|
||
|
i2 = mpi_mul(b,c)
|
||
|
im = mpi_add(i1,i2,prec)
|
||
|
return re, im
|
||
|
|
||
|
def mpci_div(x, y, prec):
|
||
|
# TODO: optimize for real/imag cases
|
||
|
a, b = x
|
||
|
c, d = y
|
||
|
wp = prec+20
|
||
|
m1 = mpi_square(c)
|
||
|
m2 = mpi_square(d)
|
||
|
m = mpi_add(m1,m2,wp)
|
||
|
re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp)
|
||
|
im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp)
|
||
|
re = mpi_div(re, m, prec)
|
||
|
im = mpi_div(im, m, prec)
|
||
|
return re, im
|
||
|
|
||
|
def mpci_exp(x, prec):
|
||
|
a, b = x
|
||
|
wp = prec+20
|
||
|
r = mpi_exp(a, wp)
|
||
|
c, s = mpi_cos_sin(b, wp)
|
||
|
a = mpi_mul(r, c, prec)
|
||
|
b = mpi_mul(r, s, prec)
|
||
|
return a, b
|
||
|
|
||
|
def mpi_shift(x, n):
|
||
|
a, b = x
|
||
|
return mpf_shift(a,n), mpf_shift(b,n)
|
||
|
|
||
|
def mpi_cosh_sinh(x, prec):
|
||
|
# TODO: accuracy for small x
|
||
|
wp = prec+20
|
||
|
e1 = mpi_exp(x, wp)
|
||
|
e2 = mpi_div(mpi_one, e1, wp)
|
||
|
c = mpi_add(e1, e2, prec)
|
||
|
s = mpi_sub(e1, e2, prec)
|
||
|
c = mpi_shift(c, -1)
|
||
|
s = mpi_shift(s, -1)
|
||
|
return c, s
|
||
|
|
||
|
def mpci_cos(x, prec):
|
||
|
a, b = x
|
||
|
wp = prec+10
|
||
|
c, s = mpi_cos_sin(a, wp)
|
||
|
ch, sh = mpi_cosh_sinh(b, wp)
|
||
|
re = mpi_mul(c, ch, prec)
|
||
|
im = mpi_mul(s, sh, prec)
|
||
|
return re, mpi_neg(im)
|
||
|
|
||
|
def mpci_sin(x, prec):
|
||
|
a, b = x
|
||
|
wp = prec+10
|
||
|
c, s = mpi_cos_sin(a, wp)
|
||
|
ch, sh = mpi_cosh_sinh(b, wp)
|
||
|
re = mpi_mul(s, ch, prec)
|
||
|
im = mpi_mul(c, sh, prec)
|
||
|
return re, im
|
||
|
|
||
|
def mpci_abs(x, prec):
|
||
|
a, b = x
|
||
|
if a == mpi_zero:
|
||
|
return mpi_abs(b)
|
||
|
if b == mpi_zero:
|
||
|
return mpi_abs(a)
|
||
|
# Important: nonnegative
|
||
|
a = mpi_square(a)
|
||
|
b = mpi_square(b)
|
||
|
t = mpi_add(a, b, prec+20)
|
||
|
return mpi_sqrt(t, prec)
|
||
|
|
||
|
def mpi_atan2(y, x, prec):
|
||
|
ya, yb = y
|
||
|
xa, xb = x
|
||
|
# Constrained to the real line
|
||
|
if ya == yb == fzero:
|
||
|
if mpf_ge(xa, fzero):
|
||
|
return mpi_zero
|
||
|
return mpi_pi(prec)
|
||
|
# Right half-plane
|
||
|
if mpf_ge(xa, fzero):
|
||
|
if mpf_ge(ya, fzero):
|
||
|
a = mpf_atan2(ya, xb, prec, round_floor)
|
||
|
else:
|
||
|
a = mpf_atan2(ya, xa, prec, round_floor)
|
||
|
if mpf_ge(yb, fzero):
|
||
|
b = mpf_atan2(yb, xa, prec, round_ceiling)
|
||
|
else:
|
||
|
b = mpf_atan2(yb, xb, prec, round_ceiling)
|
||
|
# Upper half-plane
|
||
|
elif mpf_ge(ya, fzero):
|
||
|
b = mpf_atan2(ya, xa, prec, round_ceiling)
|
||
|
if mpf_le(xb, fzero):
|
||
|
a = mpf_atan2(yb, xb, prec, round_floor)
|
||
|
else:
|
||
|
a = mpf_atan2(ya, xb, prec, round_floor)
|
||
|
# Lower half-plane
|
||
|
elif mpf_le(yb, fzero):
|
||
|
a = mpf_atan2(yb, xa, prec, round_floor)
|
||
|
if mpf_le(xb, fzero):
|
||
|
b = mpf_atan2(ya, xb, prec, round_ceiling)
|
||
|
else:
|
||
|
b = mpf_atan2(yb, xb, prec, round_ceiling)
|
||
|
# Covering the origin
|
||
|
else:
|
||
|
b = mpf_pi(prec, round_ceiling)
|
||
|
a = mpf_neg(b)
|
||
|
return a, b
|
||
|
|
||
|
def mpci_arg(z, prec):
|
||
|
x, y = z
|
||
|
return mpi_atan2(y, x, prec)
|
||
|
|
||
|
def mpci_log(z, prec):
|
||
|
x, y = z
|
||
|
re = mpi_log(mpci_abs(z, prec+20), prec)
|
||
|
im = mpci_arg(z, prec)
|
||
|
return re, im
|
||
|
|
||
|
def mpci_pow(x, y, prec):
|
||
|
# TODO: recognize/speed up real cases, integer y
|
||
|
yre, yim = y
|
||
|
if yim == mpi_zero:
|
||
|
ya, yb = yre
|
||
|
if ya == yb:
|
||
|
sign, man, exp, bc = yb
|
||
|
if man and exp >= 0:
|
||
|
return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec)
|
||
|
# x^0
|
||
|
if yb == fzero:
|
||
|
return mpci_pow_int(x, 0, prec)
|
||
|
wp = prec+20
|
||
|
return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec)
|
||
|
|
||
|
def mpci_square(x, prec):
|
||
|
a, b = x
|
||
|
# (a+bi)^2 = (a^2-b^2) + 2abi
|
||
|
re = mpi_sub(mpi_square(a), mpi_square(b), prec)
|
||
|
im = mpi_mul(a, b, prec)
|
||
|
im = mpi_shift(im, 1)
|
||
|
return re, im
|
||
|
|
||
|
def mpci_pow_int(x, n, prec):
|
||
|
if n < 0:
|
||
|
return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec)
|
||
|
if n == 0:
|
||
|
return mpi_one, mpi_zero
|
||
|
if n == 1:
|
||
|
return mpci_pos(x, prec)
|
||
|
if n == 2:
|
||
|
return mpci_square(x, prec)
|
||
|
wp = prec + 20
|
||
|
result = (mpi_one, mpi_zero)
|
||
|
while n:
|
||
|
if n & 1:
|
||
|
result = mpci_mul(result, x, wp)
|
||
|
n -= 1
|
||
|
x = mpci_square(x, wp)
|
||
|
n >>= 1
|
||
|
return mpci_pos(result, prec)
|
||
|
|
||
|
gamma_min_a = from_float(1.46163214496)
|
||
|
gamma_min_b = from_float(1.46163214497)
|
||
|
gamma_min = (gamma_min_a, gamma_min_b)
|
||
|
gamma_mono_imag_a = from_float(-1.1)
|
||
|
gamma_mono_imag_b = from_float(1.1)
|
||
|
|
||
|
def mpi_overlap(x, y):
|
||
|
a, b = x
|
||
|
c, d = y
|
||
|
if mpf_lt(d, a): return False
|
||
|
if mpf_gt(c, b): return False
|
||
|
return True
|
||
|
|
||
|
# type = 0 -- gamma
|
||
|
# type = 1 -- factorial
|
||
|
# type = 2 -- 1/gamma
|
||
|
# type = 3 -- log-gamma
|
||
|
|
||
|
def mpi_gamma(z, prec, type=0):
|
||
|
a, b = z
|
||
|
wp = prec+20
|
||
|
|
||
|
if type == 1:
|
||
|
return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0)
|
||
|
|
||
|
# increasing
|
||
|
if mpf_gt(a, gamma_min_b):
|
||
|
if type == 0:
|
||
|
c = mpf_gamma(a, prec, round_floor)
|
||
|
d = mpf_gamma(b, prec, round_ceiling)
|
||
|
elif type == 2:
|
||
|
c = mpf_rgamma(b, prec, round_floor)
|
||
|
d = mpf_rgamma(a, prec, round_ceiling)
|
||
|
elif type == 3:
|
||
|
c = mpf_loggamma(a, prec, round_floor)
|
||
|
d = mpf_loggamma(b, prec, round_ceiling)
|
||
|
# decreasing
|
||
|
elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a):
|
||
|
if type == 0:
|
||
|
c = mpf_gamma(b, prec, round_floor)
|
||
|
d = mpf_gamma(a, prec, round_ceiling)
|
||
|
elif type == 2:
|
||
|
c = mpf_rgamma(a, prec, round_floor)
|
||
|
d = mpf_rgamma(b, prec, round_ceiling)
|
||
|
elif type == 3:
|
||
|
c = mpf_loggamma(b, prec, round_floor)
|
||
|
d = mpf_loggamma(a, prec, round_ceiling)
|
||
|
else:
|
||
|
# TODO: reflection formula
|
||
|
znew = mpi_add(z, mpi_one, wp)
|
||
|
if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec)
|
||
|
if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec)
|
||
|
if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec)
|
||
|
return c, d
|
||
|
|
||
|
def mpci_gamma(z, prec, type=0):
|
||
|
(a1,a2), (b1,b2) = z
|
||
|
|
||
|
# Real case
|
||
|
if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)):
|
||
|
return mpi_gamma(z, prec, type), mpi_zero
|
||
|
|
||
|
# Estimate precision
|
||
|
wp = prec+20
|
||
|
if type != 3:
|
||
|
amag = a2[2]+a2[3]
|
||
|
bmag = b2[2]+b2[3]
|
||
|
if a2 != fzero:
|
||
|
mag = max(amag, bmag)
|
||
|
else:
|
||
|
mag = bmag
|
||
|
an = abs(to_int(a2))
|
||
|
bn = abs(to_int(b2))
|
||
|
absn = max(an, bn)
|
||
|
gamma_size = max(0,absn*mag)
|
||
|
wp += bitcount(gamma_size)
|
||
|
|
||
|
# Assume type != 1
|
||
|
if type == 1:
|
||
|
(a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2)
|
||
|
type = 0
|
||
|
|
||
|
# Avoid non-monotonic region near the negative real axis
|
||
|
if mpf_lt(a1, gamma_min_b):
|
||
|
if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)):
|
||
|
# TODO: reflection formula
|
||
|
#if mpf_lt(a2, mpf_shift(fone,-1)):
|
||
|
# znew = mpci_sub((mpi_one,mpi_zero),z,wp)
|
||
|
# ...
|
||
|
# Recurrence:
|
||
|
# gamma(z) = gamma(z+1)/z
|
||
|
znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2)
|
||
|
if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec)
|
||
|
if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec)
|
||
|
if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec)
|
||
|
|
||
|
# Use monotonicity (except for a small region close to the
|
||
|
# origin and near poles)
|
||
|
# upper half-plane
|
||
|
if mpf_ge(b1, fzero):
|
||
|
minre = mpc_loggamma((a1,b2), wp, round_floor)
|
||
|
maxre = mpc_loggamma((a2,b1), wp, round_ceiling)
|
||
|
minim = mpc_loggamma((a1,b1), wp, round_floor)
|
||
|
maxim = mpc_loggamma((a2,b2), wp, round_ceiling)
|
||
|
# lower half-plane
|
||
|
elif mpf_le(b2, fzero):
|
||
|
minre = mpc_loggamma((a1,b1), wp, round_floor)
|
||
|
maxre = mpc_loggamma((a2,b2), wp, round_ceiling)
|
||
|
minim = mpc_loggamma((a2,b1), wp, round_floor)
|
||
|
maxim = mpc_loggamma((a1,b2), wp, round_ceiling)
|
||
|
# crosses real axis
|
||
|
else:
|
||
|
maxre = mpc_loggamma((a2,fzero), wp, round_ceiling)
|
||
|
# stretches more into the lower half-plane
|
||
|
if mpf_gt(mpf_neg(b1), b2):
|
||
|
minre = mpc_loggamma((a1,b1), wp, round_ceiling)
|
||
|
else:
|
||
|
minre = mpc_loggamma((a1,b2), wp, round_ceiling)
|
||
|
minim = mpc_loggamma((a2,b1), wp, round_floor)
|
||
|
maxim = mpc_loggamma((a2,b2), wp, round_floor)
|
||
|
|
||
|
w = (minre[0], maxre[0]), (minim[1], maxim[1])
|
||
|
if type == 3:
|
||
|
return mpi_pos(w[0], prec), mpi_pos(w[1], prec)
|
||
|
if type == 2:
|
||
|
w = mpci_neg(w)
|
||
|
return mpci_exp(w, prec)
|
||
|
|
||
|
def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3)
|
||
|
def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3)
|
||
|
|
||
|
def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2)
|
||
|
def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2)
|
||
|
|
||
|
def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1)
|
||
|
def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1)
|