Traktor/myenv/Lib/site-packages/pandas/tests/extension/base/ops.py

300 lines
11 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from __future__ import annotations
from typing import final
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas.core.dtypes.common import is_string_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core import ops
class BaseOpsUtil:
series_scalar_exc: type[Exception] | None = TypeError
frame_scalar_exc: type[Exception] | None = TypeError
series_array_exc: type[Exception] | None = TypeError
divmod_exc: type[Exception] | None = TypeError
def _get_expected_exception(
self, op_name: str, obj, other
) -> type[Exception] | None:
# Find the Exception, if any we expect to raise calling
# obj.__op_name__(other)
# The self.obj_bar_exc pattern isn't great in part because it can depend
# on op_name or dtypes, but we use it here for backward-compatibility.
if op_name in ["__divmod__", "__rdivmod__"]:
result = self.divmod_exc
elif isinstance(obj, pd.Series) and isinstance(other, pd.Series):
result = self.series_array_exc
elif isinstance(obj, pd.Series):
result = self.series_scalar_exc
else:
result = self.frame_scalar_exc
if using_pyarrow_string_dtype() and result is not None:
import pyarrow as pa
result = ( # type: ignore[assignment]
result,
pa.lib.ArrowNotImplementedError,
NotImplementedError,
)
return result
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
# In _check_op we check that the result of a pointwise operation
# (found via _combine) matches the result of the vectorized
# operation obj.__op_name__(other).
# In some cases pandas dtype inference on the scalar result may not
# give a matching dtype even if both operations are behaving "correctly".
# In these cases, do extra required casting here.
return pointwise_result
def get_op_from_name(self, op_name: str):
return tm.get_op_from_name(op_name)
# Subclasses are not expected to need to override check_opname, _check_op,
# _check_divmod_op, or _combine.
# Ideally any relevant overriding can be done in _cast_pointwise_result,
# get_op_from_name, and the specification of `exc`. If you find a use
# case that still requires overriding _check_op or _combine, please let
# us know at github.com/pandas-dev/pandas/issues
@final
def check_opname(self, ser: pd.Series, op_name: str, other):
exc = self._get_expected_exception(op_name, ser, other)
op = self.get_op_from_name(op_name)
self._check_op(ser, op, other, op_name, exc)
# see comment on check_opname
@final
def _combine(self, obj, other, op):
if isinstance(obj, pd.DataFrame):
if len(obj.columns) != 1:
raise NotImplementedError
expected = obj.iloc[:, 0].combine(other, op).to_frame()
else:
expected = obj.combine(other, op)
return expected
# see comment on check_opname
@final
def _check_op(
self, ser: pd.Series, op, other, op_name: str, exc=NotImplementedError
):
# Check that the Series/DataFrame arithmetic/comparison method matches
# the pointwise result from _combine.
if exc is None:
result = op(ser, other)
expected = self._combine(ser, other, op)
expected = self._cast_pointwise_result(op_name, ser, other, expected)
assert isinstance(result, type(ser))
tm.assert_equal(result, expected)
else:
with pytest.raises(exc):
op(ser, other)
# see comment on check_opname
@final
def _check_divmod_op(self, ser: pd.Series, op, other):
# check that divmod behavior matches behavior of floordiv+mod
if op is divmod:
exc = self._get_expected_exception("__divmod__", ser, other)
else:
exc = self._get_expected_exception("__rdivmod__", ser, other)
if exc is None:
result_div, result_mod = op(ser, other)
if op is divmod:
expected_div, expected_mod = ser // other, ser % other
else:
expected_div, expected_mod = other // ser, other % ser
tm.assert_series_equal(result_div, expected_div)
tm.assert_series_equal(result_mod, expected_mod)
else:
with pytest.raises(exc):
divmod(ser, other)
class BaseArithmeticOpsTests(BaseOpsUtil):
"""
Various Series and DataFrame arithmetic ops methods.
Subclasses supporting various ops should set the class variables
to indicate that they support ops of that kind
* series_scalar_exc = TypeError
* frame_scalar_exc = TypeError
* series_array_exc = TypeError
* divmod_exc = TypeError
"""
series_scalar_exc: type[Exception] | None = TypeError
frame_scalar_exc: type[Exception] | None = TypeError
series_array_exc: type[Exception] | None = TypeError
divmod_exc: type[Exception] | None = TypeError
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
# series & scalar
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
pytest.skip("Skip testing Python string formatting")
op_name = all_arithmetic_operators
ser = pd.Series(data)
self.check_opname(ser, op_name, ser.iloc[0])
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
# frame & scalar
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
pytest.skip("Skip testing Python string formatting")
op_name = all_arithmetic_operators
df = pd.DataFrame({"A": data})
self.check_opname(df, op_name, data[0])
def test_arith_series_with_array(self, data, all_arithmetic_operators):
# ndarray & other series
op_name = all_arithmetic_operators
ser = pd.Series(data)
self.check_opname(ser, op_name, pd.Series([ser.iloc[0]] * len(ser)))
def test_divmod(self, data):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, 1)
self._check_divmod_op(1, ops.rdivmod, ser)
def test_divmod_series_array(self, data, data_for_twos):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, data)
other = data_for_twos
self._check_divmod_op(other, ops.rdivmod, ser)
other = pd.Series(other)
self._check_divmod_op(other, ops.rdivmod, ser)
def test_add_series_with_extension_array(self, data):
# Check adding an ExtensionArray to a Series of the same dtype matches
# the behavior of adding the arrays directly and then wrapping in a
# Series.
ser = pd.Series(data)
exc = self._get_expected_exception("__add__", ser, data)
if exc is not None:
with pytest.raises(exc):
ser + data
return
result = ser + data
expected = pd.Series(data + data)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame, pd.Index])
@pytest.mark.parametrize(
"op_name",
[
x
for x in tm.arithmetic_dunder_methods + tm.comparison_dunder_methods
if not x.startswith("__r")
],
)
def test_direct_arith_with_ndframe_returns_not_implemented(
self, data, box, op_name
):
# EAs should return NotImplemented for ops with Series/DataFrame/Index
# Pandas takes care of unboxing the series and calling the EA's op.
other = box(data)
if hasattr(data, op_name):
result = getattr(data, op_name)(other)
assert result is NotImplemented
class BaseComparisonOpsTests(BaseOpsUtil):
"""Various Series and DataFrame comparison ops methods."""
def _compare_other(self, ser: pd.Series, data, op, other):
if op.__name__ in ["eq", "ne"]:
# comparison should match point-wise comparisons
result = op(ser, other)
expected = ser.combine(other, op)
expected = self._cast_pointwise_result(op.__name__, ser, other, expected)
tm.assert_series_equal(result, expected)
else:
exc = None
try:
result = op(ser, other)
except Exception as err:
exc = err
if exc is None:
# Didn't error, then should match pointwise behavior
expected = ser.combine(other, op)
expected = self._cast_pointwise_result(
op.__name__, ser, other, expected
)
tm.assert_series_equal(result, expected)
else:
with pytest.raises(type(exc)):
ser.combine(other, op)
def test_compare_scalar(self, data, comparison_op):
ser = pd.Series(data)
self._compare_other(ser, data, comparison_op, 0)
def test_compare_array(self, data, comparison_op):
ser = pd.Series(data)
other = pd.Series([data[0]] * len(data), dtype=data.dtype)
self._compare_other(ser, data, comparison_op, other)
class BaseUnaryOpsTests(BaseOpsUtil):
def test_invert(self, data):
ser = pd.Series(data, name="name")
try:
# 10 is an arbitrary choice here, just avoid iterating over
# the whole array to trim test runtime
[~x for x in data[:10]]
except TypeError:
# scalars don't support invert -> we don't expect the vectorized
# operation to succeed
with pytest.raises(TypeError):
~ser
with pytest.raises(TypeError):
~data
else:
# Note we do not reuse the pointwise result to construct expected
# because python semantics for negating bools are weird see GH#54569
result = ~ser
expected = pd.Series(~data, name="name")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
# the dunder __pos__ works if and only if np.positive works,
# same for __neg__/np.negative and __abs__/np.abs
attr = {np.positive: "__pos__", np.negative: "__neg__", np.abs: "__abs__"}[
ufunc
]
exc = None
try:
result = getattr(data, attr)()
except Exception as err:
exc = err
# if __pos__ raised, then so should the ufunc
with pytest.raises((type(exc), TypeError)):
ufunc(data)
else:
alt = ufunc(data)
tm.assert_extension_array_equal(result, alt)