220 lines
6.8 KiB
Python
220 lines
6.8 KiB
Python
|
# This program is public domain
|
||
|
# Authors: Paul Kienzle, Nadav Horesh
|
||
|
'''
|
||
|
A unit test module for czt.py
|
||
|
'''
|
||
|
import pytest
|
||
|
from numpy.testing import assert_allclose
|
||
|
from scipy.fft import fft
|
||
|
from scipy.signal import (czt, zoom_fft, czt_points, CZT, ZoomFFT)
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def check_czt(x):
|
||
|
# Check that czt is the equivalent of normal fft
|
||
|
y = fft(x)
|
||
|
y1 = czt(x)
|
||
|
assert_allclose(y1, y, rtol=1e-13)
|
||
|
|
||
|
# Check that interpolated czt is the equivalent of normal fft
|
||
|
y = fft(x, 100*len(x))
|
||
|
y1 = czt(x, 100*len(x))
|
||
|
assert_allclose(y1, y, rtol=1e-12)
|
||
|
|
||
|
|
||
|
def check_zoom_fft(x):
|
||
|
# Check that zoom_fft is the equivalent of normal fft
|
||
|
y = fft(x)
|
||
|
y1 = zoom_fft(x, [0, 2-2./len(y)], endpoint=True)
|
||
|
assert_allclose(y1, y, rtol=1e-11, atol=1e-14)
|
||
|
y1 = zoom_fft(x, [0, 2])
|
||
|
assert_allclose(y1, y, rtol=1e-11, atol=1e-14)
|
||
|
|
||
|
# Test fn scalar
|
||
|
y1 = zoom_fft(x, 2-2./len(y), endpoint=True)
|
||
|
assert_allclose(y1, y, rtol=1e-11, atol=1e-14)
|
||
|
y1 = zoom_fft(x, 2)
|
||
|
assert_allclose(y1, y, rtol=1e-11, atol=1e-14)
|
||
|
|
||
|
# Check that zoom_fft with oversampling is equivalent to zero padding
|
||
|
over = 10
|
||
|
yover = fft(x, over*len(x))
|
||
|
y2 = zoom_fft(x, [0, 2-2./len(yover)], m=len(yover), endpoint=True)
|
||
|
assert_allclose(y2, yover, rtol=1e-12, atol=1e-10)
|
||
|
y2 = zoom_fft(x, [0, 2], m=len(yover))
|
||
|
assert_allclose(y2, yover, rtol=1e-12, atol=1e-10)
|
||
|
|
||
|
# Check that zoom_fft works on a subrange
|
||
|
w = np.linspace(0, 2-2./len(x), len(x))
|
||
|
f1, f2 = w[3], w[6]
|
||
|
y3 = zoom_fft(x, [f1, f2], m=3*over+1, endpoint=True)
|
||
|
idx3 = slice(3*over, 6*over+1)
|
||
|
assert_allclose(y3, yover[idx3], rtol=1e-13)
|
||
|
|
||
|
|
||
|
def test_1D():
|
||
|
# Test of 1D version of the transforms
|
||
|
|
||
|
np.random.seed(0) # Deterministic randomness
|
||
|
|
||
|
# Random signals
|
||
|
lengths = np.random.randint(8, 200, 20)
|
||
|
np.append(lengths, 1)
|
||
|
for length in lengths:
|
||
|
x = np.random.random(length)
|
||
|
check_zoom_fft(x)
|
||
|
check_czt(x)
|
||
|
|
||
|
# Gauss
|
||
|
t = np.linspace(-2, 2, 128)
|
||
|
x = np.exp(-t**2/0.01)
|
||
|
check_zoom_fft(x)
|
||
|
|
||
|
# Linear
|
||
|
x = [1, 2, 3, 4, 5, 6, 7]
|
||
|
check_zoom_fft(x)
|
||
|
|
||
|
# Check near powers of two
|
||
|
check_zoom_fft(range(126-31))
|
||
|
check_zoom_fft(range(127-31))
|
||
|
check_zoom_fft(range(128-31))
|
||
|
check_zoom_fft(range(129-31))
|
||
|
check_zoom_fft(range(130-31))
|
||
|
|
||
|
# Check transform on n-D array input
|
||
|
x = np.reshape(np.arange(3*2*28), (3, 2, 28))
|
||
|
y1 = zoom_fft(x, [0, 2-2./28])
|
||
|
y2 = zoom_fft(x[2, 0, :], [0, 2-2./28])
|
||
|
assert_allclose(y1[2, 0], y2, rtol=1e-13, atol=1e-12)
|
||
|
|
||
|
y1 = zoom_fft(x, [0, 2], endpoint=False)
|
||
|
y2 = zoom_fft(x[2, 0, :], [0, 2], endpoint=False)
|
||
|
assert_allclose(y1[2, 0], y2, rtol=1e-13, atol=1e-12)
|
||
|
|
||
|
# Random (not a test condition)
|
||
|
x = np.random.rand(101)
|
||
|
check_zoom_fft(x)
|
||
|
|
||
|
# Spikes
|
||
|
t = np.linspace(0, 1, 128)
|
||
|
x = np.sin(2*np.pi*t*5)+np.sin(2*np.pi*t*13)
|
||
|
check_zoom_fft(x)
|
||
|
|
||
|
# Sines
|
||
|
x = np.zeros(100, dtype=complex)
|
||
|
x[[1, 5, 21]] = 1
|
||
|
check_zoom_fft(x)
|
||
|
|
||
|
# Sines plus complex component
|
||
|
x += 1j*np.linspace(0, 0.5, x.shape[0])
|
||
|
check_zoom_fft(x)
|
||
|
|
||
|
|
||
|
def test_large_prime_lengths():
|
||
|
np.random.seed(0) # Deterministic randomness
|
||
|
for N in (101, 1009, 10007):
|
||
|
x = np.random.rand(N)
|
||
|
y = fft(x)
|
||
|
y1 = czt(x)
|
||
|
assert_allclose(y, y1, rtol=1e-12)
|
||
|
|
||
|
|
||
|
@pytest.mark.slow
|
||
|
def test_czt_vs_fft():
|
||
|
np.random.seed(123)
|
||
|
random_lengths = np.random.exponential(100000, size=10).astype('int')
|
||
|
for n in random_lengths:
|
||
|
a = np.random.randn(n)
|
||
|
assert_allclose(czt(a), fft(a), rtol=1e-11)
|
||
|
|
||
|
|
||
|
def test_empty_input():
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
czt([])
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
zoom_fft([], 0.5)
|
||
|
|
||
|
|
||
|
def test_0_rank_input():
|
||
|
with pytest.raises(IndexError, match='tuple index out of range'):
|
||
|
czt(5)
|
||
|
with pytest.raises(IndexError, match='tuple index out of range'):
|
||
|
zoom_fft(5, 0.5)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('impulse', ([0, 0, 1], [0, 0, 1, 0, 0],
|
||
|
np.concatenate((np.array([0, 0, 1]),
|
||
|
np.zeros(100)))))
|
||
|
@pytest.mark.parametrize('m', (1, 3, 5, 8, 101, 1021))
|
||
|
@pytest.mark.parametrize('a', (1, 2, 0.5, 1.1))
|
||
|
# Step that tests away from the unit circle, but not so far it explodes from
|
||
|
# numerical error
|
||
|
@pytest.mark.parametrize('w', (None, 0.98534 + 0.17055j))
|
||
|
def test_czt_math(impulse, m, w, a):
|
||
|
# z-transform of an impulse is 1 everywhere
|
||
|
assert_allclose(czt(impulse[2:], m=m, w=w, a=a),
|
||
|
np.ones(m), rtol=1e-10)
|
||
|
|
||
|
# z-transform of a delayed impulse is z**-1
|
||
|
assert_allclose(czt(impulse[1:], m=m, w=w, a=a),
|
||
|
czt_points(m=m, w=w, a=a)**-1, rtol=1e-10)
|
||
|
|
||
|
# z-transform of a 2-delayed impulse is z**-2
|
||
|
assert_allclose(czt(impulse, m=m, w=w, a=a),
|
||
|
czt_points(m=m, w=w, a=a)**-2, rtol=1e-10)
|
||
|
|
||
|
|
||
|
def test_int_args():
|
||
|
# Integer argument `a` was producing all 0s
|
||
|
assert_allclose(abs(czt([0, 1], m=10, a=2)), 0.5*np.ones(10), rtol=1e-15)
|
||
|
assert_allclose(czt_points(11, w=2), 1/(2**np.arange(11)), rtol=1e-30)
|
||
|
|
||
|
|
||
|
def test_czt_points():
|
||
|
for N in (1, 2, 3, 8, 11, 100, 101, 10007):
|
||
|
assert_allclose(czt_points(N), np.exp(2j*np.pi*np.arange(N)/N),
|
||
|
rtol=1e-30)
|
||
|
|
||
|
assert_allclose(czt_points(7, w=1), np.ones(7), rtol=1e-30)
|
||
|
assert_allclose(czt_points(11, w=2.), 1/(2**np.arange(11)), rtol=1e-30)
|
||
|
|
||
|
func = CZT(12, m=11, w=2., a=1)
|
||
|
assert_allclose(func.points(), 1/(2**np.arange(11)), rtol=1e-30)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('cls, args', [(CZT, (100,)), (ZoomFFT, (100, 0.2))])
|
||
|
def test_CZT_size_mismatch(cls, args):
|
||
|
# Data size doesn't match function's expected size
|
||
|
myfunc = cls(*args)
|
||
|
with pytest.raises(ValueError, match='CZT defined for'):
|
||
|
myfunc(np.arange(5))
|
||
|
|
||
|
|
||
|
def test_invalid_range():
|
||
|
with pytest.raises(ValueError, match='2-length sequence'):
|
||
|
ZoomFFT(100, [1, 2, 3])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('m', [0, -11, 5.5, 4.0])
|
||
|
def test_czt_points_errors(m):
|
||
|
# Invalid number of points
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
czt_points(m)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('size', [0, -5, 3.5, 4.0])
|
||
|
def test_nonsense_size(size):
|
||
|
# Numpy and Scipy fft() give ValueError for 0 output size, so we do, too
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
CZT(size, 3)
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
ZoomFFT(size, 0.2, 3)
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
CZT(3, size)
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
ZoomFFT(3, 0.2, size)
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
czt([1, 2, 3], size)
|
||
|
with pytest.raises(ValueError, match='Invalid number of CZT'):
|
||
|
zoom_fft([1, 2, 3], 0.2, size)
|