Traktor/myenv/Lib/site-packages/scipy/sparse/_extract.py

179 lines
4.9 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
"""Functions to extract parts of sparse matrices
"""
__docformat__ = "restructuredtext en"
__all__ = ['find', 'tril', 'triu']
from ._coo import coo_matrix, coo_array
from ._base import sparray
def find(A):
"""Return the indices and values of the nonzero elements of a matrix
Parameters
----------
A : dense or sparse array or matrix
Matrix whose nonzero elements are desired.
Returns
-------
(I,J,V) : tuple of arrays
I,J, and V contain the row indices, column indices, and values
of the nonzero entries.
Examples
--------
>>> from scipy.sparse import csr_array, find
>>> A = csr_array([[7.0, 8.0, 0],[0, 0, 9.0]])
>>> find(A)
(array([0, 0, 1], dtype=int32),
array([0, 1, 2], dtype=int32),
array([ 7., 8., 9.]))
"""
A = coo_array(A, copy=True)
A.sum_duplicates()
# remove explicit zeros
nz_mask = A.data != 0
return A.row[nz_mask], A.col[nz_mask], A.data[nz_mask]
def tril(A, k=0, format=None):
"""Return the lower triangular portion of a sparse array or matrix
Returns the elements on or below the k-th diagonal of A.
- k = 0 corresponds to the main diagonal
- k > 0 is above the main diagonal
- k < 0 is below the main diagonal
Parameters
----------
A : dense or sparse array or matrix
Matrix whose lower trianglar portion is desired.
k : integer : optional
The top-most diagonal of the lower triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.
Returns
-------
L : sparse matrix
Lower triangular portion of A in sparse format.
See Also
--------
triu : upper triangle in sparse format
Examples
--------
>>> from scipy.sparse import csr_array, tril
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],
[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])
>>> tril(A).toarray()
array([[1, 0, 0, 0, 0],
[4, 5, 0, 0, 0],
[0, 0, 8, 0, 0]])
>>> tril(A).nnz
4
>>> tril(A, k=1).toarray()
array([[1, 2, 0, 0, 0],
[4, 5, 0, 0, 0],
[0, 0, 8, 9, 0]])
>>> tril(A, k=-1).toarray()
array([[0, 0, 0, 0, 0],
[4, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
>>> tril(A, format='csc')
<3x5 sparse array of type '<class 'numpy.int32'>'
with 4 stored elements in Compressed Sparse Column format>
"""
coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix
# convert to COOrdinate format where things are easy
A = coo_sparse(A, copy=False)
mask = A.row + k >= A.col
row = A.row[mask]
col = A.col[mask]
data = A.data[mask]
new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype)
return new_coo.asformat(format)
def triu(A, k=0, format=None):
"""Return the upper triangular portion of a sparse array or matrix
Returns the elements on or above the k-th diagonal of A.
- k = 0 corresponds to the main diagonal
- k > 0 is above the main diagonal
- k < 0 is below the main diagonal
Parameters
----------
A : dense or sparse array or matrix
Matrix whose upper trianglar portion is desired.
k : integer : optional
The bottom-most diagonal of the upper triangle.
format : string
Sparse format of the result, e.g. format="csr", etc.
Returns
-------
L : sparse array or matrix
Upper triangular portion of A in sparse format.
Sparse array if A is a sparse array, otherwise matrix.
See Also
--------
tril : lower triangle in sparse format
Examples
--------
>>> from scipy.sparse import csr_array, triu
>>> A = csr_array([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
... dtype='int32')
>>> A.toarray()
array([[1, 2, 0, 0, 3],
[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])
>>> triu(A).toarray()
array([[1, 2, 0, 0, 3],
[0, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])
>>> triu(A).nnz
8
>>> triu(A, k=1).toarray()
array([[0, 2, 0, 0, 3],
[0, 0, 0, 6, 7],
[0, 0, 0, 9, 0]])
>>> triu(A, k=-1).toarray()
array([[1, 2, 0, 0, 3],
[4, 5, 0, 6, 7],
[0, 0, 8, 9, 0]])
>>> triu(A, format='csc')
<3x5 sparse array of type '<class 'numpy.int32'>'
with 8 stored elements in Compressed Sparse Column format>
"""
coo_sparse = coo_array if isinstance(A, sparray) else coo_matrix
# convert to COOrdinate format where things are easy
A = coo_sparse(A, copy=False)
mask = A.row + k <= A.col
row = A.row[mask]
col = A.col[mask]
data = A.data[mask]
new_coo = coo_sparse((data, (row, col)), shape=A.shape, dtype=A.dtype)
return new_coo.asformat(format)