Traktor/myenv/Lib/site-packages/scipy/sparse/tests/test_sparsetools.py

340 lines
10 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
import sys
import os
import gc
import threading
import numpy as np
from numpy.testing import assert_equal, assert_, assert_allclose
from scipy.sparse import (_sparsetools, coo_matrix, csr_matrix, csc_matrix,
bsr_matrix, dia_matrix)
from scipy.sparse._sputils import supported_dtypes
from scipy._lib._testutils import check_free_memory
import pytest
from pytest import raises as assert_raises
def int_to_int8(n):
"""
Wrap an integer to the interval [-128, 127].
"""
return (n + 128) % 256 - 128
def test_exception():
assert_raises(MemoryError, _sparsetools.test_throw_error)
def test_threads():
# Smoke test for parallel threaded execution; doesn't actually
# check that code runs in parallel, but just that it produces
# expected results.
nthreads = 10
niter = 100
n = 20
a = csr_matrix(np.ones([n, n]))
bres = []
class Worker(threading.Thread):
def run(self):
b = a.copy()
for j in range(niter):
_sparsetools.csr_plus_csr(n, n,
a.indptr, a.indices, a.data,
a.indptr, a.indices, a.data,
b.indptr, b.indices, b.data)
bres.append(b)
threads = [Worker() for _ in range(nthreads)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
for b in bres:
assert_(np.all(b.toarray() == 2))
def test_regression_std_vector_dtypes():
# Regression test for gh-3780, checking the std::vector typemaps
# in sparsetools.cxx are complete.
for dtype in supported_dtypes:
ad = np.array([[1, 2], [3, 4]]).astype(dtype)
a = csr_matrix(ad, dtype=dtype)
# getcol is one function using std::vector typemaps, and should not fail
assert_equal(a.getcol(0).toarray(), ad[:, :1])
@pytest.mark.slow
@pytest.mark.xfail_on_32bit("Can't create large array for test")
def test_nnz_overflow():
# Regression test for gh-7230 / gh-7871, checking that coo_toarray
# with nnz > int32max doesn't overflow.
nnz = np.iinfo(np.int32).max + 1
# Ensure ~20 GB of RAM is free to run this test.
check_free_memory((4 + 4 + 1) * nnz / 1e6 + 0.5)
# Use nnz duplicate entries to keep the dense version small.
row = np.zeros(nnz, dtype=np.int32)
col = np.zeros(nnz, dtype=np.int32)
data = np.zeros(nnz, dtype=np.int8)
data[-1] = 4
s = coo_matrix((data, (row, col)), shape=(1, 1), copy=False)
# Sums nnz duplicates to produce a 1x1 array containing 4.
d = s.toarray()
assert_allclose(d, [[4]])
@pytest.mark.skipif(
not (sys.platform.startswith('linux') and np.dtype(np.intp).itemsize >= 8),
reason="test requires 64-bit Linux"
)
class TestInt32Overflow:
"""
Some of the sparsetools routines use dense 2D matrices whose
total size is not bounded by the nnz of the sparse matrix. These
routines used to suffer from int32 wraparounds; here, we try to
check that the wraparounds don't occur any more.
"""
# choose n large enough
n = 50000
def setup_method(self):
assert self.n**2 > np.iinfo(np.int32).max
# check there's enough memory even if everything is run at the
# same time
try:
parallel_count = int(os.environ.get('PYTEST_XDIST_WORKER_COUNT', '1'))
except ValueError:
parallel_count = np.inf
check_free_memory(3000 * parallel_count)
def teardown_method(self):
gc.collect()
def test_coo_todense(self):
# Check *_todense routines (cf. gh-2179)
#
# All of them in the end call coo_matrix.todense
n = self.n
i = np.array([0, n-1])
j = np.array([0, n-1])
data = np.array([1, 2], dtype=np.int8)
m = coo_matrix((data, (i, j)))
r = m.todense()
assert_equal(r[0,0], 1)
assert_equal(r[-1,-1], 2)
del r
gc.collect()
@pytest.mark.slow
def test_matvecs(self):
# Check *_matvecs routines
n = self.n
i = np.array([0, n-1])
j = np.array([0, n-1])
data = np.array([1, 2], dtype=np.int8)
m = coo_matrix((data, (i, j)))
b = np.ones((n, n), dtype=np.int8)
for sptype in (csr_matrix, csc_matrix, bsr_matrix):
m2 = sptype(m)
r = m2.dot(b)
assert_equal(r[0,0], 1)
assert_equal(r[-1,-1], 2)
del r
gc.collect()
del b
gc.collect()
@pytest.mark.slow
def test_dia_matvec(self):
# Check: huge dia_matrix _matvec
n = self.n
data = np.ones((n, n), dtype=np.int8)
offsets = np.arange(n)
m = dia_matrix((data, offsets), shape=(n, n))
v = np.ones(m.shape[1], dtype=np.int8)
r = m.dot(v)
assert_equal(r[0], int_to_int8(n))
del data, offsets, m, v, r
gc.collect()
_bsr_ops = [pytest.param("matmat", marks=pytest.mark.xslow),
pytest.param("matvecs", marks=pytest.mark.xslow),
"matvec",
"diagonal",
"sort_indices",
pytest.param("transpose", marks=pytest.mark.xslow)]
@pytest.mark.slow
@pytest.mark.parametrize("op", _bsr_ops)
def test_bsr_1_block(self, op):
# Check: huge bsr_matrix (1-block)
#
# The point here is that indices inside a block may overflow.
def get_matrix():
n = self.n
data = np.ones((1, n, n), dtype=np.int8)
indptr = np.array([0, 1], dtype=np.int32)
indices = np.array([0], dtype=np.int32)
m = bsr_matrix((data, indices, indptr), blocksize=(n, n), copy=False)
del data, indptr, indices
return m
gc.collect()
try:
getattr(self, "_check_bsr_" + op)(get_matrix)
finally:
gc.collect()
@pytest.mark.slow
@pytest.mark.parametrize("op", _bsr_ops)
def test_bsr_n_block(self, op):
# Check: huge bsr_matrix (n-block)
#
# The point here is that while indices within a block don't
# overflow, accumulators across many block may.
def get_matrix():
n = self.n
data = np.ones((n, n, 1), dtype=np.int8)
indptr = np.array([0, n], dtype=np.int32)
indices = np.arange(n, dtype=np.int32)
m = bsr_matrix((data, indices, indptr), blocksize=(n, 1), copy=False)
del data, indptr, indices
return m
gc.collect()
try:
getattr(self, "_check_bsr_" + op)(get_matrix)
finally:
gc.collect()
def _check_bsr_matvecs(self, m): # skip name check
m = m()
n = self.n
# _matvecs
r = m.dot(np.ones((n, 2), dtype=np.int8))
assert_equal(r[0, 0], int_to_int8(n))
def _check_bsr_matvec(self, m): # skip name check
m = m()
n = self.n
# _matvec
r = m.dot(np.ones((n,), dtype=np.int8))
assert_equal(r[0], int_to_int8(n))
def _check_bsr_diagonal(self, m): # skip name check
m = m()
n = self.n
# _diagonal
r = m.diagonal()
assert_equal(r, np.ones(n))
def _check_bsr_sort_indices(self, m): # skip name check
# _sort_indices
m = m()
m.sort_indices()
def _check_bsr_transpose(self, m): # skip name check
# _transpose
m = m()
m.transpose()
def _check_bsr_matmat(self, m): # skip name check
m = m()
n = self.n
# _bsr_matmat
m2 = bsr_matrix(np.ones((n, 2), dtype=np.int8), blocksize=(m.blocksize[1], 2))
m.dot(m2) # shouldn't SIGSEGV
del m2
# _bsr_matmat
m2 = bsr_matrix(np.ones((2, n), dtype=np.int8), blocksize=(2, m.blocksize[0]))
m2.dot(m) # shouldn't SIGSEGV
@pytest.mark.skip(reason="64-bit indices in sparse matrices not available")
def test_csr_matmat_int64_overflow():
n = 3037000500
assert n**2 > np.iinfo(np.int64).max
# the test would take crazy amounts of memory
check_free_memory(n * (8*2 + 1) * 3 / 1e6)
# int64 overflow
data = np.ones((n,), dtype=np.int8)
indptr = np.arange(n+1, dtype=np.int64)
indices = np.zeros(n, dtype=np.int64)
a = csr_matrix((data, indices, indptr))
b = a.T
assert_raises(RuntimeError, a.dot, b)
def test_upcast():
a0 = csr_matrix([[np.pi, np.pi*1j], [3, 4]], dtype=complex)
b0 = np.array([256+1j, 2**32], dtype=complex)
for a_dtype in supported_dtypes:
for b_dtype in supported_dtypes:
msg = f"({a_dtype!r}, {b_dtype!r})"
if np.issubdtype(a_dtype, np.complexfloating):
a = a0.copy().astype(a_dtype)
else:
a = a0.real.copy().astype(a_dtype)
if np.issubdtype(b_dtype, np.complexfloating):
b = b0.copy().astype(b_dtype)
else:
with np.errstate(invalid="ignore"):
# Casting a large value (2**32) to int8 causes a warning in
# numpy >1.23
b = b0.real.copy().astype(b_dtype)
if not (a_dtype == np.bool_ and b_dtype == np.bool_):
c = np.zeros((2,), dtype=np.bool_)
assert_raises(ValueError, _sparsetools.csr_matvec,
2, 2, a.indptr, a.indices, a.data, b, c)
if ((np.issubdtype(a_dtype, np.complexfloating) and
not np.issubdtype(b_dtype, np.complexfloating)) or
(not np.issubdtype(a_dtype, np.complexfloating) and
np.issubdtype(b_dtype, np.complexfloating))):
c = np.zeros((2,), dtype=np.float64)
assert_raises(ValueError, _sparsetools.csr_matvec,
2, 2, a.indptr, a.indices, a.data, b, c)
c = np.zeros((2,), dtype=np.result_type(a_dtype, b_dtype))
_sparsetools.csr_matvec(2, 2, a.indptr, a.indices, a.data, b, c)
assert_allclose(c, np.dot(a.toarray(), b), err_msg=msg)
def test_endianness():
d = np.ones((3,4))
offsets = [-1,0,1]
a = dia_matrix((d.astype('<f8'), offsets), (4, 4))
b = dia_matrix((d.astype('>f8'), offsets), (4, 4))
v = np.arange(4)
assert_allclose(a.dot(v), [1, 3, 6, 5])
assert_allclose(b.dot(v), [1, 3, 6, 5])