33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
|
import numpy as np
|
||
|
from numpy import sqrt, log, pi
|
||
|
from scipy.special._testutils import FuncData
|
||
|
from scipy.special import spence
|
||
|
|
||
|
|
||
|
def test_consistency():
|
||
|
# Make sure the implementation of spence for real arguments
|
||
|
# agrees with the implementation of spence for imaginary arguments.
|
||
|
|
||
|
x = np.logspace(-30, 300, 200)
|
||
|
dataset = np.vstack((x + 0j, spence(x))).T
|
||
|
FuncData(spence, dataset, 0, 1, rtol=1e-14).check()
|
||
|
|
||
|
|
||
|
def test_special_points():
|
||
|
# Check against known values of Spence's function.
|
||
|
|
||
|
phi = (1 + sqrt(5))/2
|
||
|
dataset = [(1, 0),
|
||
|
(2, -pi**2/12),
|
||
|
(0.5, pi**2/12 - log(2)**2/2),
|
||
|
(0, pi**2/6),
|
||
|
(-1, pi**2/4 - 1j*pi*log(2)),
|
||
|
((-1 + sqrt(5))/2, pi**2/15 - log(phi)**2),
|
||
|
((3 - sqrt(5))/2, pi**2/10 - log(phi)**2),
|
||
|
(phi, -pi**2/15 + log(phi)**2/2),
|
||
|
# Corrected from Zagier, "The Dilogarithm Function"
|
||
|
((3 + sqrt(5))/2, -pi**2/10 - log(phi)**2)]
|
||
|
|
||
|
dataset = np.asarray(dataset)
|
||
|
FuncData(spence, dataset, 0, 1, rtol=1e-14).check()
|