806 lines
28 KiB
Python
806 lines
28 KiB
Python
|
from sympy.core import Add, Mul, Pow, S
|
||
|
from sympy.core.basic import Basic
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.numbers import _sympifyit, oo, zoo
|
||
|
from sympy.core.relational import is_le, is_lt, is_ge, is_gt
|
||
|
from sympy.core.sympify import _sympify
|
||
|
from sympy.functions.elementary.miscellaneous import Min, Max
|
||
|
from sympy.logic.boolalg import And
|
||
|
from sympy.multipledispatch import dispatch
|
||
|
from sympy.series.order import Order
|
||
|
from sympy.sets.sets import FiniteSet
|
||
|
|
||
|
|
||
|
class AccumulationBounds(Expr):
|
||
|
r"""An accumulation bounds.
|
||
|
|
||
|
# Note AccumulationBounds has an alias: AccumBounds
|
||
|
|
||
|
AccumulationBounds represent an interval `[a, b]`, which is always closed
|
||
|
at the ends. Here `a` and `b` can be any value from extended real numbers.
|
||
|
|
||
|
The intended meaning of AccummulationBounds is to give an approximate
|
||
|
location of the accumulation points of a real function at a limit point.
|
||
|
|
||
|
Let `a` and `b` be reals such that `a \le b`.
|
||
|
|
||
|
`\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}`
|
||
|
|
||
|
`\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}`
|
||
|
|
||
|
`\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}`
|
||
|
|
||
|
`\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}`
|
||
|
|
||
|
``oo`` and ``-oo`` are added to the second and third definition respectively,
|
||
|
since if either ``-oo`` or ``oo`` is an argument, then the other one should
|
||
|
be included (though not as an end point). This is forced, since we have,
|
||
|
for example, ``1/AccumBounds(0, 1) = AccumBounds(1, oo)``, and the limit at
|
||
|
`0` is not one-sided. As `x` tends to `0-`, then `1/x \rightarrow -\infty`, so `-\infty`
|
||
|
should be interpreted as belonging to ``AccumBounds(1, oo)`` though it need
|
||
|
not appear explicitly.
|
||
|
|
||
|
In many cases it suffices to know that the limit set is bounded.
|
||
|
However, in some other cases more exact information could be useful.
|
||
|
For example, all accumulation values of `\cos(x) + 1` are non-negative.
|
||
|
(``AccumBounds(-1, 1) + 1 = AccumBounds(0, 2)``)
|
||
|
|
||
|
A AccumulationBounds object is defined to be real AccumulationBounds,
|
||
|
if its end points are finite reals.
|
||
|
|
||
|
Let `X`, `Y` be real AccumulationBounds, then their sum, difference,
|
||
|
product are defined to be the following sets:
|
||
|
|
||
|
`X + Y = \{ x+y \mid x \in X \cap y \in Y\}`
|
||
|
|
||
|
`X - Y = \{ x-y \mid x \in X \cap y \in Y\}`
|
||
|
|
||
|
`X \times Y = \{ x \times y \mid x \in X \cap y \in Y\}`
|
||
|
|
||
|
When an AccumBounds is raised to a negative power, if 0 is contained
|
||
|
between the bounds then an infinite range is returned, otherwise if an
|
||
|
endpoint is 0 then a semi-infinite range with consistent sign will be returned.
|
||
|
|
||
|
AccumBounds in expressions behave a lot like Intervals but the
|
||
|
semantics are not necessarily the same. Division (or exponentiation
|
||
|
to a negative integer power) could be handled with *intervals* by
|
||
|
returning a union of the results obtained after splitting the
|
||
|
bounds between negatives and positives, but that is not done with
|
||
|
AccumBounds. In addition, bounds are assumed to be independent of
|
||
|
each other; if the same bound is used in more than one place in an
|
||
|
expression, the result may not be the supremum or infimum of the
|
||
|
expression (see below). Finally, when a boundary is ``1``,
|
||
|
exponentiation to the power of ``oo`` yields ``oo``, neither
|
||
|
``1`` nor ``nan``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> AccumBounds(0, 1) + AccumBounds(1, 2)
|
||
|
AccumBounds(1, 3)
|
||
|
|
||
|
>>> AccumBounds(0, 1) - AccumBounds(0, 2)
|
||
|
AccumBounds(-2, 1)
|
||
|
|
||
|
>>> AccumBounds(-2, 3)*AccumBounds(-1, 1)
|
||
|
AccumBounds(-3, 3)
|
||
|
|
||
|
>>> AccumBounds(1, 2)*AccumBounds(3, 5)
|
||
|
AccumBounds(3, 10)
|
||
|
|
||
|
The exponentiation of AccumulationBounds is defined
|
||
|
as follows:
|
||
|
|
||
|
If 0 does not belong to `X` or `n > 0` then
|
||
|
|
||
|
`X^n = \{ x^n \mid x \in X\}`
|
||
|
|
||
|
>>> AccumBounds(1, 4)**(S(1)/2)
|
||
|
AccumBounds(1, 2)
|
||
|
|
||
|
otherwise, an infinite or semi-infinite result is obtained:
|
||
|
|
||
|
>>> 1/AccumBounds(-1, 1)
|
||
|
AccumBounds(-oo, oo)
|
||
|
>>> 1/AccumBounds(0, 2)
|
||
|
AccumBounds(1/2, oo)
|
||
|
>>> 1/AccumBounds(-oo, 0)
|
||
|
AccumBounds(-oo, 0)
|
||
|
|
||
|
A boundary of 1 will always generate all nonnegatives:
|
||
|
|
||
|
>>> AccumBounds(1, 2)**oo
|
||
|
AccumBounds(0, oo)
|
||
|
>>> AccumBounds(0, 1)**oo
|
||
|
AccumBounds(0, oo)
|
||
|
|
||
|
If the exponent is itself an AccumulationBounds or is not an
|
||
|
integer then unevaluated results will be returned unless the base
|
||
|
values are positive:
|
||
|
|
||
|
>>> AccumBounds(2, 3)**AccumBounds(-1, 2)
|
||
|
AccumBounds(1/3, 9)
|
||
|
>>> AccumBounds(-2, 3)**AccumBounds(-1, 2)
|
||
|
AccumBounds(-2, 3)**AccumBounds(-1, 2)
|
||
|
|
||
|
>>> AccumBounds(-2, -1)**(S(1)/2)
|
||
|
sqrt(AccumBounds(-2, -1))
|
||
|
|
||
|
Note: `\left\langle a, b\right\rangle^2` is not same as `\left\langle a, b\right\rangle \times \left\langle a, b\right\rangle`
|
||
|
|
||
|
>>> AccumBounds(-1, 1)**2
|
||
|
AccumBounds(0, 1)
|
||
|
|
||
|
>>> AccumBounds(1, 3) < 4
|
||
|
True
|
||
|
|
||
|
>>> AccumBounds(1, 3) < -1
|
||
|
False
|
||
|
|
||
|
Some elementary functions can also take AccumulationBounds as input.
|
||
|
A function `f` evaluated for some real AccumulationBounds `\left\langle a, b \right\rangle`
|
||
|
is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}`
|
||
|
|
||
|
>>> sin(AccumBounds(pi/6, pi/3))
|
||
|
AccumBounds(1/2, sqrt(3)/2)
|
||
|
|
||
|
>>> exp(AccumBounds(0, 1))
|
||
|
AccumBounds(1, E)
|
||
|
|
||
|
>>> log(AccumBounds(1, E))
|
||
|
AccumBounds(0, 1)
|
||
|
|
||
|
Some symbol in an expression can be substituted for a AccumulationBounds
|
||
|
object. But it does not necessarily evaluate the AccumulationBounds for
|
||
|
that expression.
|
||
|
|
||
|
The same expression can be evaluated to different values depending upon
|
||
|
the form it is used for substitution since each instance of an
|
||
|
AccumulationBounds is considered independent. For example:
|
||
|
|
||
|
>>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1))
|
||
|
AccumBounds(-1, 4)
|
||
|
|
||
|
>>> ((x + 1)**2).subs(x, AccumBounds(-1, 1))
|
||
|
AccumBounds(0, 4)
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Interval_arithmetic
|
||
|
|
||
|
.. [2] https://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Do not use ``AccumulationBounds`` for floating point interval arithmetic
|
||
|
calculations, use ``mpmath.iv`` instead.
|
||
|
"""
|
||
|
|
||
|
is_extended_real = True
|
||
|
is_number = False
|
||
|
|
||
|
def __new__(cls, min, max):
|
||
|
|
||
|
min = _sympify(min)
|
||
|
max = _sympify(max)
|
||
|
|
||
|
# Only allow real intervals (use symbols with 'is_extended_real=True').
|
||
|
if not min.is_extended_real or not max.is_extended_real:
|
||
|
raise ValueError("Only real AccumulationBounds are supported")
|
||
|
|
||
|
if max == min:
|
||
|
return max
|
||
|
|
||
|
# Make sure that the created AccumBounds object will be valid.
|
||
|
if max.is_number and min.is_number:
|
||
|
bad = max.is_comparable and min.is_comparable and max < min
|
||
|
else:
|
||
|
bad = (max - min).is_extended_negative
|
||
|
if bad:
|
||
|
raise ValueError(
|
||
|
"Lower limit should be smaller than upper limit")
|
||
|
|
||
|
return Basic.__new__(cls, min, max)
|
||
|
|
||
|
# setting the operation priority
|
||
|
_op_priority = 11.0
|
||
|
|
||
|
def _eval_is_real(self):
|
||
|
if self.min.is_real and self.max.is_real:
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def min(self):
|
||
|
"""
|
||
|
Returns the minimum possible value attained by AccumulationBounds
|
||
|
object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds
|
||
|
>>> AccumBounds(1, 3).min
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def max(self):
|
||
|
"""
|
||
|
Returns the maximum possible value attained by AccumulationBounds
|
||
|
object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds
|
||
|
>>> AccumBounds(1, 3).max
|
||
|
3
|
||
|
|
||
|
"""
|
||
|
return self.args[1]
|
||
|
|
||
|
@property
|
||
|
def delta(self):
|
||
|
"""
|
||
|
Returns the difference of maximum possible value attained by
|
||
|
AccumulationBounds object and minimum possible value attained
|
||
|
by AccumulationBounds object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds
|
||
|
>>> AccumBounds(1, 3).delta
|
||
|
2
|
||
|
|
||
|
"""
|
||
|
return self.max - self.min
|
||
|
|
||
|
@property
|
||
|
def mid(self):
|
||
|
"""
|
||
|
Returns the mean of maximum possible value attained by
|
||
|
AccumulationBounds object and minimum possible value
|
||
|
attained by AccumulationBounds object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds
|
||
|
>>> AccumBounds(1, 3).mid
|
||
|
2
|
||
|
|
||
|
"""
|
||
|
return (self.min + self.max) / 2
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def _eval_power(self, other):
|
||
|
return self.__pow__(other)
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __add__(self, other):
|
||
|
if isinstance(other, Expr):
|
||
|
if isinstance(other, AccumBounds):
|
||
|
return AccumBounds(
|
||
|
Add(self.min, other.min),
|
||
|
Add(self.max, other.max))
|
||
|
if other is S.Infinity and self.min is S.NegativeInfinity or \
|
||
|
other is S.NegativeInfinity and self.max is S.Infinity:
|
||
|
return AccumBounds(-oo, oo)
|
||
|
elif other.is_extended_real:
|
||
|
if self.min is S.NegativeInfinity and self.max is S.Infinity:
|
||
|
return AccumBounds(-oo, oo)
|
||
|
elif self.min is S.NegativeInfinity:
|
||
|
return AccumBounds(-oo, self.max + other)
|
||
|
elif self.max is S.Infinity:
|
||
|
return AccumBounds(self.min + other, oo)
|
||
|
else:
|
||
|
return AccumBounds(Add(self.min, other), Add(self.max, other))
|
||
|
return Add(self, other, evaluate=False)
|
||
|
return NotImplemented
|
||
|
|
||
|
__radd__ = __add__
|
||
|
|
||
|
def __neg__(self):
|
||
|
return AccumBounds(-self.max, -self.min)
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __sub__(self, other):
|
||
|
if isinstance(other, Expr):
|
||
|
if isinstance(other, AccumBounds):
|
||
|
return AccumBounds(
|
||
|
Add(self.min, -other.max),
|
||
|
Add(self.max, -other.min))
|
||
|
if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \
|
||
|
other is S.Infinity and self.max is S.Infinity:
|
||
|
return AccumBounds(-oo, oo)
|
||
|
elif other.is_extended_real:
|
||
|
if self.min is S.NegativeInfinity and self.max is S.Infinity:
|
||
|
return AccumBounds(-oo, oo)
|
||
|
elif self.min is S.NegativeInfinity:
|
||
|
return AccumBounds(-oo, self.max - other)
|
||
|
elif self.max is S.Infinity:
|
||
|
return AccumBounds(self.min - other, oo)
|
||
|
else:
|
||
|
return AccumBounds(
|
||
|
Add(self.min, -other),
|
||
|
Add(self.max, -other))
|
||
|
return Add(self, -other, evaluate=False)
|
||
|
return NotImplemented
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __rsub__(self, other):
|
||
|
return self.__neg__() + other
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __mul__(self, other):
|
||
|
if self.args == (-oo, oo):
|
||
|
return self
|
||
|
if isinstance(other, Expr):
|
||
|
if isinstance(other, AccumBounds):
|
||
|
if other.args == (-oo, oo):
|
||
|
return other
|
||
|
v = set()
|
||
|
for a in self.args:
|
||
|
vi = other*a
|
||
|
for i in vi.args or (vi,):
|
||
|
v.add(i)
|
||
|
return AccumBounds(Min(*v), Max(*v))
|
||
|
if other is S.Infinity:
|
||
|
if self.min.is_zero:
|
||
|
return AccumBounds(0, oo)
|
||
|
if self.max.is_zero:
|
||
|
return AccumBounds(-oo, 0)
|
||
|
if other is S.NegativeInfinity:
|
||
|
if self.min.is_zero:
|
||
|
return AccumBounds(-oo, 0)
|
||
|
if self.max.is_zero:
|
||
|
return AccumBounds(0, oo)
|
||
|
if other.is_extended_real:
|
||
|
if other.is_zero:
|
||
|
if self.max is S.Infinity:
|
||
|
return AccumBounds(0, oo)
|
||
|
if self.min is S.NegativeInfinity:
|
||
|
return AccumBounds(-oo, 0)
|
||
|
return S.Zero
|
||
|
if other.is_extended_positive:
|
||
|
return AccumBounds(
|
||
|
Mul(self.min, other),
|
||
|
Mul(self.max, other))
|
||
|
elif other.is_extended_negative:
|
||
|
return AccumBounds(
|
||
|
Mul(self.max, other),
|
||
|
Mul(self.min, other))
|
||
|
if isinstance(other, Order):
|
||
|
return other
|
||
|
return Mul(self, other, evaluate=False)
|
||
|
return NotImplemented
|
||
|
|
||
|
__rmul__ = __mul__
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __truediv__(self, other):
|
||
|
if isinstance(other, Expr):
|
||
|
if isinstance(other, AccumBounds):
|
||
|
if other.min.is_positive or other.max.is_negative:
|
||
|
return self * AccumBounds(1/other.max, 1/other.min)
|
||
|
|
||
|
if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative and
|
||
|
other.min.is_extended_nonpositive and other.max.is_extended_nonnegative):
|
||
|
if self.min.is_zero and other.min.is_zero:
|
||
|
return AccumBounds(0, oo)
|
||
|
if self.max.is_zero and other.min.is_zero:
|
||
|
return AccumBounds(-oo, 0)
|
||
|
return AccumBounds(-oo, oo)
|
||
|
|
||
|
if self.max.is_extended_negative:
|
||
|
if other.min.is_extended_negative:
|
||
|
if other.max.is_zero:
|
||
|
return AccumBounds(self.max / other.min, oo)
|
||
|
if other.max.is_extended_positive:
|
||
|
# if we were dealing with intervals we would return
|
||
|
# Union(Interval(-oo, self.max/other.max),
|
||
|
# Interval(self.max/other.min, oo))
|
||
|
return AccumBounds(-oo, oo)
|
||
|
|
||
|
if other.min.is_zero and other.max.is_extended_positive:
|
||
|
return AccumBounds(-oo, self.max / other.max)
|
||
|
|
||
|
if self.min.is_extended_positive:
|
||
|
if other.min.is_extended_negative:
|
||
|
if other.max.is_zero:
|
||
|
return AccumBounds(-oo, self.min / other.min)
|
||
|
if other.max.is_extended_positive:
|
||
|
# if we were dealing with intervals we would return
|
||
|
# Union(Interval(-oo, self.min/other.min),
|
||
|
# Interval(self.min/other.max, oo))
|
||
|
return AccumBounds(-oo, oo)
|
||
|
|
||
|
if other.min.is_zero and other.max.is_extended_positive:
|
||
|
return AccumBounds(self.min / other.max, oo)
|
||
|
|
||
|
elif other.is_extended_real:
|
||
|
if other in (S.Infinity, S.NegativeInfinity):
|
||
|
if self == AccumBounds(-oo, oo):
|
||
|
return AccumBounds(-oo, oo)
|
||
|
if self.max is S.Infinity:
|
||
|
return AccumBounds(Min(0, other), Max(0, other))
|
||
|
if self.min is S.NegativeInfinity:
|
||
|
return AccumBounds(Min(0, -other), Max(0, -other))
|
||
|
if other.is_extended_positive:
|
||
|
return AccumBounds(self.min / other, self.max / other)
|
||
|
elif other.is_extended_negative:
|
||
|
return AccumBounds(self.max / other, self.min / other)
|
||
|
if (1 / other) is S.ComplexInfinity:
|
||
|
return Mul(self, 1 / other, evaluate=False)
|
||
|
else:
|
||
|
return Mul(self, 1 / other)
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __rtruediv__(self, other):
|
||
|
if isinstance(other, Expr):
|
||
|
if other.is_extended_real:
|
||
|
if other.is_zero:
|
||
|
return S.Zero
|
||
|
if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative):
|
||
|
if self.min.is_zero:
|
||
|
if other.is_extended_positive:
|
||
|
return AccumBounds(Mul(other, 1 / self.max), oo)
|
||
|
if other.is_extended_negative:
|
||
|
return AccumBounds(-oo, Mul(other, 1 / self.max))
|
||
|
if self.max.is_zero:
|
||
|
if other.is_extended_positive:
|
||
|
return AccumBounds(-oo, Mul(other, 1 / self.min))
|
||
|
if other.is_extended_negative:
|
||
|
return AccumBounds(Mul(other, 1 / self.min), oo)
|
||
|
return AccumBounds(-oo, oo)
|
||
|
else:
|
||
|
return AccumBounds(Min(other / self.min, other / self.max),
|
||
|
Max(other / self.min, other / self.max))
|
||
|
return Mul(other, 1 / self, evaluate=False)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __pow__(self, other):
|
||
|
if isinstance(other, Expr):
|
||
|
if other is S.Infinity:
|
||
|
if self.min.is_extended_nonnegative:
|
||
|
if self.max < 1:
|
||
|
return S.Zero
|
||
|
if self.min > 1:
|
||
|
return S.Infinity
|
||
|
return AccumBounds(0, oo)
|
||
|
elif self.max.is_extended_negative:
|
||
|
if self.min > -1:
|
||
|
return S.Zero
|
||
|
if self.max < -1:
|
||
|
return zoo
|
||
|
return S.NaN
|
||
|
else:
|
||
|
if self.min > -1:
|
||
|
if self.max < 1:
|
||
|
return S.Zero
|
||
|
return AccumBounds(0, oo)
|
||
|
return AccumBounds(-oo, oo)
|
||
|
|
||
|
if other is S.NegativeInfinity:
|
||
|
return (1/self)**oo
|
||
|
|
||
|
# generically true
|
||
|
if (self.max - self.min).is_nonnegative:
|
||
|
# well defined
|
||
|
if self.min.is_nonnegative:
|
||
|
# no 0 to worry about
|
||
|
if other.is_nonnegative:
|
||
|
# no infinity to worry about
|
||
|
return self.func(self.min**other, self.max**other)
|
||
|
|
||
|
if other.is_zero:
|
||
|
return S.One # x**0 = 1
|
||
|
|
||
|
if other.is_Integer or other.is_integer:
|
||
|
if self.min.is_extended_positive:
|
||
|
return AccumBounds(
|
||
|
Min(self.min**other, self.max**other),
|
||
|
Max(self.min**other, self.max**other))
|
||
|
elif self.max.is_extended_negative:
|
||
|
return AccumBounds(
|
||
|
Min(self.max**other, self.min**other),
|
||
|
Max(self.max**other, self.min**other))
|
||
|
|
||
|
if other % 2 == 0:
|
||
|
if other.is_extended_negative:
|
||
|
if self.min.is_zero:
|
||
|
return AccumBounds(self.max**other, oo)
|
||
|
if self.max.is_zero:
|
||
|
return AccumBounds(self.min**other, oo)
|
||
|
return (1/self)**(-other)
|
||
|
return AccumBounds(
|
||
|
S.Zero, Max(self.min**other, self.max**other))
|
||
|
elif other % 2 == 1:
|
||
|
if other.is_extended_negative:
|
||
|
if self.min.is_zero:
|
||
|
return AccumBounds(self.max**other, oo)
|
||
|
if self.max.is_zero:
|
||
|
return AccumBounds(-oo, self.min**other)
|
||
|
return (1/self)**(-other)
|
||
|
return AccumBounds(self.min**other, self.max**other)
|
||
|
|
||
|
# non-integer exponent
|
||
|
# 0**neg or neg**frac yields complex
|
||
|
if (other.is_number or other.is_rational) and (
|
||
|
self.min.is_extended_nonnegative or (
|
||
|
other.is_extended_nonnegative and
|
||
|
self.min.is_extended_nonnegative)):
|
||
|
num, den = other.as_numer_denom()
|
||
|
if num is S.One:
|
||
|
return AccumBounds(*[i**(1/den) for i in self.args])
|
||
|
|
||
|
elif den is not S.One: # e.g. if other is not Float
|
||
|
return (self**num)**(1/den) # ok for non-negative base
|
||
|
|
||
|
if isinstance(other, AccumBounds):
|
||
|
if (self.min.is_extended_positive or
|
||
|
self.min.is_extended_nonnegative and
|
||
|
other.min.is_extended_nonnegative):
|
||
|
p = [self**i for i in other.args]
|
||
|
if not any(i.is_Pow for i in p):
|
||
|
a = [j for i in p for j in i.args or (i,)]
|
||
|
try:
|
||
|
return self.func(min(a), max(a))
|
||
|
except TypeError: # can't sort
|
||
|
pass
|
||
|
|
||
|
return Pow(self, other, evaluate=False)
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def __rpow__(self, other):
|
||
|
if other.is_real and other.is_extended_nonnegative and (
|
||
|
self.max - self.min).is_extended_positive:
|
||
|
if other is S.One:
|
||
|
return S.One
|
||
|
if other.is_extended_positive:
|
||
|
a, b = [other**i for i in self.args]
|
||
|
if min(a, b) != a:
|
||
|
a, b = b, a
|
||
|
return self.func(a, b)
|
||
|
if other.is_zero:
|
||
|
if self.min.is_zero:
|
||
|
return self.func(0, 1)
|
||
|
if self.min.is_extended_positive:
|
||
|
return S.Zero
|
||
|
|
||
|
return Pow(other, self, evaluate=False)
|
||
|
|
||
|
def __abs__(self):
|
||
|
if self.max.is_extended_negative:
|
||
|
return self.__neg__()
|
||
|
elif self.min.is_extended_negative:
|
||
|
return AccumBounds(S.Zero, Max(abs(self.min), self.max))
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
|
||
|
def __contains__(self, other):
|
||
|
"""
|
||
|
Returns ``True`` if other is contained in self, where other
|
||
|
belongs to extended real numbers, ``False`` if not contained,
|
||
|
otherwise TypeError is raised.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds, oo
|
||
|
>>> 1 in AccumBounds(-1, 3)
|
||
|
True
|
||
|
|
||
|
-oo and oo go together as limits (in AccumulationBounds).
|
||
|
|
||
|
>>> -oo in AccumBounds(1, oo)
|
||
|
True
|
||
|
|
||
|
>>> oo in AccumBounds(-oo, 0)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
other = _sympify(other)
|
||
|
|
||
|
if other in (S.Infinity, S.NegativeInfinity):
|
||
|
if self.min is S.NegativeInfinity or self.max is S.Infinity:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
rv = And(self.min <= other, self.max >= other)
|
||
|
if rv not in (True, False):
|
||
|
raise TypeError("input failed to evaluate")
|
||
|
return rv
|
||
|
|
||
|
def intersection(self, other):
|
||
|
"""
|
||
|
Returns the intersection of 'self' and 'other'.
|
||
|
Here other can be an instance of :py:class:`~.FiniteSet` or AccumulationBounds.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : AccumulationBounds
|
||
|
Another AccumulationBounds object with which the intersection
|
||
|
has to be computed.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
AccumulationBounds
|
||
|
Intersection of ``self`` and ``other``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds, FiniteSet
|
||
|
>>> AccumBounds(1, 3).intersection(AccumBounds(2, 4))
|
||
|
AccumBounds(2, 3)
|
||
|
|
||
|
>>> AccumBounds(1, 3).intersection(AccumBounds(4, 6))
|
||
|
EmptySet
|
||
|
|
||
|
>>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5))
|
||
|
{1, 2}
|
||
|
|
||
|
"""
|
||
|
if not isinstance(other, (AccumBounds, FiniteSet)):
|
||
|
raise TypeError(
|
||
|
"Input must be AccumulationBounds or FiniteSet object")
|
||
|
|
||
|
if isinstance(other, FiniteSet):
|
||
|
fin_set = S.EmptySet
|
||
|
for i in other:
|
||
|
if i in self:
|
||
|
fin_set = fin_set + FiniteSet(i)
|
||
|
return fin_set
|
||
|
|
||
|
if self.max < other.min or self.min > other.max:
|
||
|
return S.EmptySet
|
||
|
|
||
|
if self.min <= other.min:
|
||
|
if self.max <= other.max:
|
||
|
return AccumBounds(other.min, self.max)
|
||
|
if self.max > other.max:
|
||
|
return other
|
||
|
|
||
|
if other.min <= self.min:
|
||
|
if other.max < self.max:
|
||
|
return AccumBounds(self.min, other.max)
|
||
|
if other.max > self.max:
|
||
|
return self
|
||
|
|
||
|
def union(self, other):
|
||
|
# TODO : Devise a better method for Union of AccumBounds
|
||
|
# this method is not actually correct and
|
||
|
# can be made better
|
||
|
if not isinstance(other, AccumBounds):
|
||
|
raise TypeError(
|
||
|
"Input must be AccumulationBounds or FiniteSet object")
|
||
|
|
||
|
if self.min <= other.min and self.max >= other.min:
|
||
|
return AccumBounds(self.min, Max(self.max, other.max))
|
||
|
|
||
|
if other.min <= self.min and other.max >= self.min:
|
||
|
return AccumBounds(other.min, Max(self.max, other.max))
|
||
|
|
||
|
|
||
|
@dispatch(AccumulationBounds, AccumulationBounds) # type: ignore # noqa:F811
|
||
|
def _eval_is_le(lhs, rhs): # noqa:F811
|
||
|
if is_le(lhs.max, rhs.min):
|
||
|
return True
|
||
|
if is_gt(lhs.min, rhs.max):
|
||
|
return False
|
||
|
|
||
|
|
||
|
@dispatch(AccumulationBounds, Basic) # type: ignore # noqa:F811
|
||
|
def _eval_is_le(lhs, rhs): # noqa: F811
|
||
|
|
||
|
"""
|
||
|
Returns ``True `` if range of values attained by ``lhs`` AccumulationBounds
|
||
|
object is greater than the range of values attained by ``rhs``,
|
||
|
where ``rhs`` may be any value of type AccumulationBounds object or
|
||
|
extended real number value, ``False`` if ``rhs`` satisfies
|
||
|
the same property, else an unevaluated :py:class:`~.Relational`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds, oo
|
||
|
>>> AccumBounds(1, 3) > AccumBounds(4, oo)
|
||
|
False
|
||
|
>>> AccumBounds(1, 4) > AccumBounds(3, 4)
|
||
|
AccumBounds(1, 4) > AccumBounds(3, 4)
|
||
|
>>> AccumBounds(1, oo) > -1
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if not rhs.is_extended_real:
|
||
|
raise TypeError(
|
||
|
"Invalid comparison of %s %s" %
|
||
|
(type(rhs), rhs))
|
||
|
elif rhs.is_comparable:
|
||
|
if is_le(lhs.max, rhs):
|
||
|
return True
|
||
|
if is_gt(lhs.min, rhs):
|
||
|
return False
|
||
|
|
||
|
|
||
|
@dispatch(AccumulationBounds, AccumulationBounds)
|
||
|
def _eval_is_ge(lhs, rhs): # noqa:F811
|
||
|
if is_ge(lhs.min, rhs.max):
|
||
|
return True
|
||
|
if is_lt(lhs.max, rhs.min):
|
||
|
return False
|
||
|
|
||
|
|
||
|
@dispatch(AccumulationBounds, Expr) # type:ignore
|
||
|
def _eval_is_ge(lhs, rhs): # noqa: F811
|
||
|
"""
|
||
|
Returns ``True`` if range of values attained by ``lhs`` AccumulationBounds
|
||
|
object is less that the range of values attained by ``rhs``, where
|
||
|
other may be any value of type AccumulationBounds object or extended
|
||
|
real number value, ``False`` if ``rhs`` satisfies the same
|
||
|
property, else an unevaluated :py:class:`~.Relational`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import AccumBounds, oo
|
||
|
>>> AccumBounds(1, 3) >= AccumBounds(4, oo)
|
||
|
False
|
||
|
>>> AccumBounds(1, 4) >= AccumBounds(3, 4)
|
||
|
AccumBounds(1, 4) >= AccumBounds(3, 4)
|
||
|
>>> AccumBounds(1, oo) >= 1
|
||
|
True
|
||
|
"""
|
||
|
|
||
|
if not rhs.is_extended_real:
|
||
|
raise TypeError(
|
||
|
"Invalid comparison of %s %s" %
|
||
|
(type(rhs), rhs))
|
||
|
elif rhs.is_comparable:
|
||
|
if is_ge(lhs.min, rhs):
|
||
|
return True
|
||
|
if is_lt(lhs.max, rhs):
|
||
|
return False
|
||
|
|
||
|
|
||
|
@dispatch(Expr, AccumulationBounds) # type:ignore
|
||
|
def _eval_is_ge(lhs, rhs): # noqa:F811
|
||
|
if not lhs.is_extended_real:
|
||
|
raise TypeError(
|
||
|
"Invalid comparison of %s %s" %
|
||
|
(type(lhs), lhs))
|
||
|
elif lhs.is_comparable:
|
||
|
if is_le(rhs.max, lhs):
|
||
|
return True
|
||
|
if is_gt(rhs.min, lhs):
|
||
|
return False
|
||
|
|
||
|
|
||
|
@dispatch(AccumulationBounds, AccumulationBounds) # type:ignore
|
||
|
def _eval_is_ge(lhs, rhs): # noqa:F811
|
||
|
if is_ge(lhs.min, rhs.max):
|
||
|
return True
|
||
|
if is_lt(lhs.max, rhs.min):
|
||
|
return False
|
||
|
|
||
|
# setting an alias for AccumulationBounds
|
||
|
AccumBounds = AccumulationBounds
|