358 lines
11 KiB
Python
358 lines
11 KiB
Python
|
"""
|
||
|
Classes and functions useful for rewriting expressions for optimized code
|
||
|
generation. Some languages (or standards thereof), e.g. C99, offer specialized
|
||
|
math functions for better performance and/or precision.
|
||
|
|
||
|
Using the ``optimize`` function in this module, together with a collection of
|
||
|
rules (represented as instances of ``Optimization``), one can rewrite the
|
||
|
expressions for this purpose::
|
||
|
|
||
|
>>> from sympy import Symbol, exp, log
|
||
|
>>> from sympy.codegen.rewriting import optimize, optims_c99
|
||
|
>>> x = Symbol('x')
|
||
|
>>> optimize(3*exp(2*x) - 3, optims_c99)
|
||
|
3*expm1(2*x)
|
||
|
>>> optimize(exp(2*x) - 1 - exp(-33), optims_c99)
|
||
|
expm1(2*x) - exp(-33)
|
||
|
>>> optimize(log(3*x + 3), optims_c99)
|
||
|
log1p(x) + log(3)
|
||
|
>>> optimize(log(2*x + 3), optims_c99)
|
||
|
log(2*x + 3)
|
||
|
|
||
|
The ``optims_c99`` imported above is tuple containing the following instances
|
||
|
(which may be imported from ``sympy.codegen.rewriting``):
|
||
|
|
||
|
- ``expm1_opt``
|
||
|
- ``log1p_opt``
|
||
|
- ``exp2_opt``
|
||
|
- ``log2_opt``
|
||
|
- ``log2const_opt``
|
||
|
|
||
|
|
||
|
"""
|
||
|
from sympy.core.function import expand_log
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Wild
|
||
|
from sympy.functions.elementary.complexes import sign
|
||
|
from sympy.functions.elementary.exponential import (exp, log)
|
||
|
from sympy.functions.elementary.miscellaneous import (Max, Min)
|
||
|
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
|
||
|
from sympy.assumptions import Q, ask
|
||
|
from sympy.codegen.cfunctions import log1p, log2, exp2, expm1
|
||
|
from sympy.codegen.matrix_nodes import MatrixSolve
|
||
|
from sympy.core.expr import UnevaluatedExpr
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
|
||
|
from sympy.codegen.scipy_nodes import cosm1, powm1
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
||
|
from sympy.utilities.iterables import sift
|
||
|
|
||
|
|
||
|
class Optimization:
|
||
|
""" Abstract base class for rewriting optimization.
|
||
|
|
||
|
Subclasses should implement ``__call__`` taking an expression
|
||
|
as argument.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
cost_function : callable returning number
|
||
|
priority : number
|
||
|
|
||
|
"""
|
||
|
def __init__(self, cost_function=None, priority=1):
|
||
|
self.cost_function = cost_function
|
||
|
self.priority=priority
|
||
|
|
||
|
def cheapest(self, *args):
|
||
|
return sorted(args, key=self.cost_function)[0]
|
||
|
|
||
|
|
||
|
class ReplaceOptim(Optimization):
|
||
|
""" Rewriting optimization calling replace on expressions.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The instance can be used as a function on expressions for which
|
||
|
it will apply the ``replace`` method (see
|
||
|
:meth:`sympy.core.basic.Basic.replace`).
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
query :
|
||
|
First argument passed to replace.
|
||
|
value :
|
||
|
Second argument passed to replace.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol
|
||
|
>>> from sympy.codegen.rewriting import ReplaceOptim
|
||
|
>>> from sympy.codegen.cfunctions import exp2
|
||
|
>>> x = Symbol('x')
|
||
|
>>> exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2,
|
||
|
... lambda p: exp2(p.exp))
|
||
|
>>> exp2_opt(2**x)
|
||
|
exp2(x)
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, query, value, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.query = query
|
||
|
self.value = value
|
||
|
|
||
|
def __call__(self, expr):
|
||
|
return expr.replace(self.query, self.value)
|
||
|
|
||
|
|
||
|
def optimize(expr, optimizations):
|
||
|
""" Apply optimizations to an expression.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : expression
|
||
|
optimizations : iterable of ``Optimization`` instances
|
||
|
The optimizations will be sorted with respect to ``priority`` (highest first).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import log, Symbol
|
||
|
>>> from sympy.codegen.rewriting import optims_c99, optimize
|
||
|
>>> x = Symbol('x')
|
||
|
>>> optimize(log(x+3)/log(2) + log(x**2 + 1), optims_c99)
|
||
|
log1p(x**2) + log2(x + 3)
|
||
|
|
||
|
"""
|
||
|
|
||
|
for optim in sorted(optimizations, key=lambda opt: opt.priority, reverse=True):
|
||
|
new_expr = optim(expr)
|
||
|
if optim.cost_function is None:
|
||
|
expr = new_expr
|
||
|
else:
|
||
|
expr = optim.cheapest(expr, new_expr)
|
||
|
return expr
|
||
|
|
||
|
|
||
|
exp2_opt = ReplaceOptim(
|
||
|
lambda p: p.is_Pow and p.base == 2,
|
||
|
lambda p: exp2(p.exp)
|
||
|
)
|
||
|
|
||
|
|
||
|
_d = Wild('d', properties=[lambda x: x.is_Dummy])
|
||
|
_u = Wild('u', properties=[lambda x: not x.is_number and not x.is_Add])
|
||
|
_v = Wild('v')
|
||
|
_w = Wild('w')
|
||
|
_n = Wild('n', properties=[lambda x: x.is_number])
|
||
|
|
||
|
sinc_opt1 = ReplaceOptim(
|
||
|
sin(_w)/_w, sinc(_w)
|
||
|
)
|
||
|
sinc_opt2 = ReplaceOptim(
|
||
|
sin(_n*_w)/_w, _n*sinc(_n*_w)
|
||
|
)
|
||
|
sinc_opts = (sinc_opt1, sinc_opt2)
|
||
|
|
||
|
log2_opt = ReplaceOptim(_v*log(_w)/log(2), _v*log2(_w), cost_function=lambda expr: expr.count(
|
||
|
lambda e: ( # division & eval of transcendentals are expensive floating point operations...
|
||
|
e.is_Pow and e.exp.is_negative # division
|
||
|
or (isinstance(e, (log, log2)) and not e.args[0].is_number)) # transcendental
|
||
|
)
|
||
|
)
|
||
|
|
||
|
log2const_opt = ReplaceOptim(log(2)*log2(_w), log(_w))
|
||
|
|
||
|
logsumexp_2terms_opt = ReplaceOptim(
|
||
|
lambda l: (isinstance(l, log)
|
||
|
and l.args[0].is_Add
|
||
|
and len(l.args[0].args) == 2
|
||
|
and all(isinstance(t, exp) for t in l.args[0].args)),
|
||
|
lambda l: (
|
||
|
Max(*[e.args[0] for e in l.args[0].args]) +
|
||
|
log1p(exp(Min(*[e.args[0] for e in l.args[0].args])))
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
class FuncMinusOneOptim(ReplaceOptim):
|
||
|
"""Specialization of ReplaceOptim for functions evaluating "f(x) - 1".
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Numerical functions which go toward one as x go toward zero is often best
|
||
|
implemented by a dedicated function in order to avoid catastrophic
|
||
|
cancellation. One such example is ``expm1(x)`` in the C standard library
|
||
|
which evaluates ``exp(x) - 1``. Such functions preserves many more
|
||
|
significant digits when its argument is much smaller than one, compared
|
||
|
to subtracting one afterwards.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
func :
|
||
|
The function which is subtracted by one.
|
||
|
func_m_1 :
|
||
|
The specialized function evaluating ``func(x) - 1``.
|
||
|
opportunistic : bool
|
||
|
When ``True``, apply the transformation as long as the magnitude of the
|
||
|
remaining number terms decreases. When ``False``, only apply the
|
||
|
transformation if it completely eliminates the number term.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import symbols, exp
|
||
|
>>> from sympy.codegen.rewriting import FuncMinusOneOptim
|
||
|
>>> from sympy.codegen.cfunctions import expm1
|
||
|
>>> x, y = symbols('x y')
|
||
|
>>> expm1_opt = FuncMinusOneOptim(exp, expm1)
|
||
|
>>> expm1_opt(exp(x) + 2*exp(5*y) - 3)
|
||
|
expm1(x) + 2*expm1(5*y)
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, func, func_m_1, opportunistic=True):
|
||
|
weight = 10 # <-- this is an arbitrary number (heuristic)
|
||
|
super().__init__(lambda e: e.is_Add, self.replace_in_Add,
|
||
|
cost_function=lambda expr: expr.count_ops() - weight*expr.count(func_m_1))
|
||
|
self.func = func
|
||
|
self.func_m_1 = func_m_1
|
||
|
self.opportunistic = opportunistic
|
||
|
|
||
|
def _group_Add_terms(self, add):
|
||
|
numbers, non_num = sift(add.args, lambda arg: arg.is_number, binary=True)
|
||
|
numsum = sum(numbers)
|
||
|
terms_with_func, other = sift(non_num, lambda arg: arg.has(self.func), binary=True)
|
||
|
return numsum, terms_with_func, other
|
||
|
|
||
|
def replace_in_Add(self, e):
|
||
|
""" passed as second argument to Basic.replace(...) """
|
||
|
numsum, terms_with_func, other_non_num_terms = self._group_Add_terms(e)
|
||
|
if numsum == 0:
|
||
|
return e
|
||
|
substituted, untouched = [], []
|
||
|
for with_func in terms_with_func:
|
||
|
if with_func.is_Mul:
|
||
|
func, coeff = sift(with_func.args, lambda arg: arg.func == self.func, binary=True)
|
||
|
if len(func) == 1 and len(coeff) == 1:
|
||
|
func, coeff = func[0], coeff[0]
|
||
|
else:
|
||
|
coeff = None
|
||
|
elif with_func.func == self.func:
|
||
|
func, coeff = with_func, S.One
|
||
|
else:
|
||
|
coeff = None
|
||
|
|
||
|
if coeff is not None and coeff.is_number and sign(coeff) == -sign(numsum):
|
||
|
if self.opportunistic:
|
||
|
do_substitute = abs(coeff+numsum) < abs(numsum)
|
||
|
else:
|
||
|
do_substitute = coeff+numsum == 0
|
||
|
|
||
|
if do_substitute: # advantageous substitution
|
||
|
numsum += coeff
|
||
|
substituted.append(coeff*self.func_m_1(*func.args))
|
||
|
continue
|
||
|
untouched.append(with_func)
|
||
|
|
||
|
return e.func(numsum, *substituted, *untouched, *other_non_num_terms)
|
||
|
|
||
|
def __call__(self, expr):
|
||
|
alt1 = super().__call__(expr)
|
||
|
alt2 = super().__call__(expr.factor())
|
||
|
return self.cheapest(alt1, alt2)
|
||
|
|
||
|
|
||
|
expm1_opt = FuncMinusOneOptim(exp, expm1)
|
||
|
cosm1_opt = FuncMinusOneOptim(cos, cosm1)
|
||
|
powm1_opt = FuncMinusOneOptim(Pow, powm1)
|
||
|
|
||
|
log1p_opt = ReplaceOptim(
|
||
|
lambda e: isinstance(e, log),
|
||
|
lambda l: expand_log(l.replace(
|
||
|
log, lambda arg: log(arg.factor())
|
||
|
)).replace(log(_u+1), log1p(_u))
|
||
|
)
|
||
|
|
||
|
def create_expand_pow_optimization(limit, *, base_req=lambda b: b.is_symbol):
|
||
|
""" Creates an instance of :class:`ReplaceOptim` for expanding ``Pow``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The requirements for expansions are that the base needs to be a symbol
|
||
|
and the exponent needs to be an Integer (and be less than or equal to
|
||
|
``limit``).
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
limit : int
|
||
|
The highest power which is expanded into multiplication.
|
||
|
base_req : function returning bool
|
||
|
Requirement on base for expansion to happen, default is to return
|
||
|
the ``is_symbol`` attribute of the base.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Symbol, sin
|
||
|
>>> from sympy.codegen.rewriting import create_expand_pow_optimization
|
||
|
>>> x = Symbol('x')
|
||
|
>>> expand_opt = create_expand_pow_optimization(3)
|
||
|
>>> expand_opt(x**5 + x**3)
|
||
|
x**5 + x*x*x
|
||
|
>>> expand_opt(x**5 + x**3 + sin(x)**3)
|
||
|
x**5 + sin(x)**3 + x*x*x
|
||
|
>>> opt2 = create_expand_pow_optimization(3, base_req=lambda b: not b.is_Function)
|
||
|
>>> opt2((x+1)**2 + sin(x)**2)
|
||
|
sin(x)**2 + (x + 1)*(x + 1)
|
||
|
|
||
|
"""
|
||
|
return ReplaceOptim(
|
||
|
lambda e: e.is_Pow and base_req(e.base) and e.exp.is_Integer and abs(e.exp) <= limit,
|
||
|
lambda p: (
|
||
|
UnevaluatedExpr(Mul(*([p.base]*+p.exp), evaluate=False)) if p.exp > 0 else
|
||
|
1/UnevaluatedExpr(Mul(*([p.base]*-p.exp), evaluate=False))
|
||
|
))
|
||
|
|
||
|
# Optimization procedures for turning A**(-1) * x into MatrixSolve(A, x)
|
||
|
def _matinv_predicate(expr):
|
||
|
# TODO: We should be able to support more than 2 elements
|
||
|
if expr.is_MatMul and len(expr.args) == 2:
|
||
|
left, right = expr.args
|
||
|
if left.is_Inverse and right.shape[1] == 1:
|
||
|
inv_arg = left.arg
|
||
|
if isinstance(inv_arg, MatrixSymbol):
|
||
|
return bool(ask(Q.fullrank(left.arg)))
|
||
|
|
||
|
return False
|
||
|
|
||
|
def _matinv_transform(expr):
|
||
|
left, right = expr.args
|
||
|
inv_arg = left.arg
|
||
|
return MatrixSolve(inv_arg, right)
|
||
|
|
||
|
|
||
|
matinv_opt = ReplaceOptim(_matinv_predicate, _matinv_transform)
|
||
|
|
||
|
|
||
|
logaddexp_opt = ReplaceOptim(log(exp(_v)+exp(_w)), logaddexp(_v, _w))
|
||
|
logaddexp2_opt = ReplaceOptim(log(Pow(2, _v)+Pow(2, _w)), logaddexp2(_v, _w)*log(2))
|
||
|
|
||
|
# Collections of optimizations:
|
||
|
optims_c99 = (expm1_opt, log1p_opt, exp2_opt, log2_opt, log2const_opt)
|
||
|
|
||
|
optims_numpy = optims_c99 + (logaddexp_opt, logaddexp2_opt,) + sinc_opts
|
||
|
|
||
|
optims_scipy = (cosm1_opt, powm1_opt)
|