Traktor/myenv/Lib/site-packages/sympy/combinatorics/coset_table.py

1256 lines
42 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from sympy.combinatorics.free_groups import free_group
from sympy.printing.defaults import DefaultPrinting
from itertools import chain, product
from bisect import bisect_left
###############################################################################
# COSET TABLE #
###############################################################################
class CosetTable(DefaultPrinting):
# coset_table: Mathematically a coset table
# represented using a list of lists
# alpha: Mathematically a coset (precisely, a live coset)
# represented by an integer between i with 1 <= i <= n
# alpha in c
# x: Mathematically an element of "A" (set of generators and
# their inverses), represented using "FpGroupElement"
# fp_grp: Finitely Presented Group with < X|R > as presentation.
# H: subgroup of fp_grp.
# NOTE: We start with H as being only a list of words in generators
# of "fp_grp". Since `.subgroup` method has not been implemented.
r"""
Properties
==========
[1] `0 \in \Omega` and `\tau(1) = \epsilon`
[2] `\alpha^x = \beta \Leftrightarrow \beta^{x^{-1}} = \alpha`
[3] If `\alpha^x = \beta`, then `H \tau(\alpha)x = H \tau(\beta)`
[4] `\forall \alpha \in \Omega, 1^{\tau(\alpha)} = \alpha`
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
"Implementation and Analysis of the Todd-Coxeter Algorithm"
"""
# default limit for the number of cosets allowed in a
# coset enumeration.
coset_table_max_limit = 4096000
# limit for the current instance
coset_table_limit = None
# maximum size of deduction stack above or equal to
# which it is emptied
max_stack_size = 100
def __init__(self, fp_grp, subgroup, max_cosets=None):
if not max_cosets:
max_cosets = CosetTable.coset_table_max_limit
self.fp_group = fp_grp
self.subgroup = subgroup
self.coset_table_limit = max_cosets
# "p" is setup independent of Omega and n
self.p = [0]
# a list of the form `[gen_1, gen_1^{-1}, ... , gen_k, gen_k^{-1}]`
self.A = list(chain.from_iterable((gen, gen**-1) \
for gen in self.fp_group.generators))
#P[alpha, x] Only defined when alpha^x is defined.
self.P = [[None]*len(self.A)]
# the mathematical coset table which is a list of lists
self.table = [[None]*len(self.A)]
self.A_dict = {x: self.A.index(x) for x in self.A}
self.A_dict_inv = {}
for x, index in self.A_dict.items():
if index % 2 == 0:
self.A_dict_inv[x] = self.A_dict[x] + 1
else:
self.A_dict_inv[x] = self.A_dict[x] - 1
# used in the coset-table based method of coset enumeration. Each of
# the element is called a "deduction" which is the form (alpha, x) whenever
# a value is assigned to alpha^x during a definition or "deduction process"
self.deduction_stack = []
# Attributes for modified methods.
H = self.subgroup
self._grp = free_group(', ' .join(["a_%d" % i for i in range(len(H))]))[0]
self.P = [[None]*len(self.A)]
self.p_p = {}
@property
def omega(self):
"""Set of live cosets. """
return [coset for coset in range(len(self.p)) if self.p[coset] == coset]
def copy(self):
"""
Return a shallow copy of Coset Table instance ``self``.
"""
self_copy = self.__class__(self.fp_group, self.subgroup)
self_copy.table = [list(perm_rep) for perm_rep in self.table]
self_copy.p = list(self.p)
self_copy.deduction_stack = list(self.deduction_stack)
return self_copy
def __str__(self):
return "Coset Table on %s with %s as subgroup generators" \
% (self.fp_group, self.subgroup)
__repr__ = __str__
@property
def n(self):
"""The number `n` represents the length of the sublist containing the
live cosets.
"""
if not self.table:
return 0
return max(self.omega) + 1
# Pg. 152 [1]
def is_complete(self):
r"""
The coset table is called complete if it has no undefined entries
on the live cosets; that is, `\alpha^x` is defined for all
`\alpha \in \Omega` and `x \in A`.
"""
return not any(None in self.table[coset] for coset in self.omega)
# Pg. 153 [1]
def define(self, alpha, x, modified=False):
r"""
This routine is used in the relator-based strategy of Todd-Coxeter
algorithm if some `\alpha^x` is undefined. We check whether there is
space available for defining a new coset. If there is enough space
then we remedy this by adjoining a new coset `\beta` to `\Omega`
(i.e to set of live cosets) and put that equal to `\alpha^x`, then
make an assignment satisfying Property[1]. If there is not enough space
then we halt the Coset Table creation. The maximum amount of space that
can be used by Coset Table can be manipulated using the class variable
``CosetTable.coset_table_max_limit``.
See Also
========
define_c
"""
A = self.A
table = self.table
len_table = len(table)
if len_table >= self.coset_table_limit:
# abort the further generation of cosets
raise ValueError("the coset enumeration has defined more than "
"%s cosets. Try with a greater value max number of cosets "
% self.coset_table_limit)
table.append([None]*len(A))
self.P.append([None]*len(self.A))
# beta is the new coset generated
beta = len_table
self.p.append(beta)
table[alpha][self.A_dict[x]] = beta
table[beta][self.A_dict_inv[x]] = alpha
# P[alpha][x] = epsilon, P[beta][x**-1] = epsilon
if modified:
self.P[alpha][self.A_dict[x]] = self._grp.identity
self.P[beta][self.A_dict_inv[x]] = self._grp.identity
self.p_p[beta] = self._grp.identity
def define_c(self, alpha, x):
r"""
A variation of ``define`` routine, described on Pg. 165 [1], used in
the coset table-based strategy of Todd-Coxeter algorithm. It differs
from ``define`` routine in that for each definition it also adds the
tuple `(\alpha, x)` to the deduction stack.
See Also
========
define
"""
A = self.A
table = self.table
len_table = len(table)
if len_table >= self.coset_table_limit:
# abort the further generation of cosets
raise ValueError("the coset enumeration has defined more than "
"%s cosets. Try with a greater value max number of cosets "
% self.coset_table_limit)
table.append([None]*len(A))
# beta is the new coset generated
beta = len_table
self.p.append(beta)
table[alpha][self.A_dict[x]] = beta
table[beta][self.A_dict_inv[x]] = alpha
# append to deduction stack
self.deduction_stack.append((alpha, x))
def scan_c(self, alpha, word):
"""
A variation of ``scan`` routine, described on pg. 165 of [1], which
puts at tuple, whenever a deduction occurs, to deduction stack.
See Also
========
scan, scan_check, scan_and_fill, scan_and_fill_c
"""
# alpha is an integer representing a "coset"
# since scanning can be in two cases
# 1. for alpha=0 and w in Y (i.e generating set of H)
# 2. alpha in Omega (set of live cosets), w in R (relators)
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
f = alpha
i = 0
r = len(word)
b = alpha
j = r - 1
# list of union of generators and their inverses
while i <= j and table[f][A_dict[word[i]]] is not None:
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
if f != b:
self.coincidence_c(f, b)
return
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
# we have an incorrect completed scan with coincidence f ~ b
# run the "coincidence" routine
self.coincidence_c(f, b)
elif j == i:
# deduction process
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
self.deduction_stack.append((f, word[i]))
# otherwise scan is incomplete and yields no information
# alpha, beta coincide, i.e. alpha, beta represent the pair of cosets where
# coincidence occurs
def coincidence_c(self, alpha, beta):
"""
A variation of ``coincidence`` routine used in the coset-table based
method of coset enumeration. The only difference being on addition of
a new coset in coset table(i.e new coset introduction), then it is
appended to ``deduction_stack``.
See Also
========
coincidence
"""
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
# behaves as a queue
q = []
self.merge(alpha, beta, q)
while len(q) > 0:
gamma = q.pop(0)
for x in A_dict:
delta = table[gamma][A_dict[x]]
if delta is not None:
table[delta][A_dict_inv[x]] = None
# only line of difference from ``coincidence`` routine
self.deduction_stack.append((delta, x**-1))
mu = self.rep(gamma)
nu = self.rep(delta)
if table[mu][A_dict[x]] is not None:
self.merge(nu, table[mu][A_dict[x]], q)
elif table[nu][A_dict_inv[x]] is not None:
self.merge(mu, table[nu][A_dict_inv[x]], q)
else:
table[mu][A_dict[x]] = nu
table[nu][A_dict_inv[x]] = mu
def scan(self, alpha, word, y=None, fill=False, modified=False):
r"""
``scan`` performs a scanning process on the input ``word``.
It first locates the largest prefix ``s`` of ``word`` for which
`\alpha^s` is defined (i.e is not ``None``), ``s`` may be empty. Let
``word=sv``, let ``t`` be the longest suffix of ``v`` for which
`\alpha^{t^{-1}}` is defined, and let ``v=ut``. Then three
possibilities are there:
1. If ``t=v``, then we say that the scan completes, and if, in addition
`\alpha^s = \alpha^{t^{-1}}`, then we say that the scan completes
correctly.
2. It can also happen that scan does not complete, but `|u|=1`; that
is, the word ``u`` consists of a single generator `x \in A`. In that
case, if `\alpha^s = \beta` and `\alpha^{t^{-1}} = \gamma`, then we can
set `\beta^x = \gamma` and `\gamma^{x^{-1}} = \beta`. These assignments
are known as deductions and enable the scan to complete correctly.
3. See ``coicidence`` routine for explanation of third condition.
Notes
=====
The code for the procedure of scanning `\alpha \in \Omega`
under `w \in A*` is defined on pg. 155 [1]
See Also
========
scan_c, scan_check, scan_and_fill, scan_and_fill_c
Scan and Fill
=============
Performed when the default argument fill=True.
Modified Scan
=============
Performed when the default argument modified=True
"""
# alpha is an integer representing a "coset"
# since scanning can be in two cases
# 1. for alpha=0 and w in Y (i.e generating set of H)
# 2. alpha in Omega (set of live cosets), w in R (relators)
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
f = alpha
i = 0
r = len(word)
b = alpha
j = r - 1
b_p = y
if modified:
f_p = self._grp.identity
flag = 0
while fill or flag == 0:
flag = 1
while i <= j and table[f][A_dict[word[i]]] is not None:
if modified:
f_p = f_p*self.P[f][A_dict[word[i]]]
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
if f != b:
if modified:
self.modified_coincidence(f, b, f_p**-1*y)
else:
self.coincidence(f, b)
return
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
if modified:
b_p = b_p*self.P[b][self.A_dict_inv[word[j]]]
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
# we have an incorrect completed scan with coincidence f ~ b
# run the "coincidence" routine
if modified:
self.modified_coincidence(f, b, f_p**-1*b_p)
else:
self.coincidence(f, b)
elif j == i:
# deduction process
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
if modified:
self.P[f][self.A_dict[word[i]]] = f_p**-1*b_p
self.P[b][self.A_dict_inv[word[i]]] = b_p**-1*f_p
return
elif fill:
self.define(f, word[i], modified=modified)
# otherwise scan is incomplete and yields no information
# used in the low-index subgroups algorithm
def scan_check(self, alpha, word):
r"""
Another version of ``scan`` routine, described on, it checks whether
`\alpha` scans correctly under `word`, it is a straightforward
modification of ``scan``. ``scan_check`` returns ``False`` (rather than
calling ``coincidence``) if the scan completes incorrectly; otherwise
it returns ``True``.
See Also
========
scan, scan_c, scan_and_fill, scan_and_fill_c
"""
# alpha is an integer representing a "coset"
# since scanning can be in two cases
# 1. for alpha=0 and w in Y (i.e generating set of H)
# 2. alpha in Omega (set of live cosets), w in R (relators)
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
f = alpha
i = 0
r = len(word)
b = alpha
j = r - 1
while i <= j and table[f][A_dict[word[i]]] is not None:
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
return f == b
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
# we have an incorrect completed scan with coincidence f ~ b
# return False, instead of calling coincidence routine
return False
elif j == i:
# deduction process
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
return True
def merge(self, k, lamda, q, w=None, modified=False):
"""
Merge two classes with representatives ``k`` and ``lamda``, described
on Pg. 157 [1] (for pseudocode), start by putting ``p[k] = lamda``.
It is more efficient to choose the new representative from the larger
of the two classes being merged, i.e larger among ``k`` and ``lamda``.
procedure ``merge`` performs the merging operation, adds the deleted
class representative to the queue ``q``.
Parameters
==========
'k', 'lamda' being the two class representatives to be merged.
Notes
=====
Pg. 86-87 [1] contains a description of this method.
See Also
========
coincidence, rep
"""
p = self.p
rep = self.rep
phi = rep(k, modified=modified)
psi = rep(lamda, modified=modified)
if phi != psi:
mu = min(phi, psi)
v = max(phi, psi)
p[v] = mu
if modified:
if v == phi:
self.p_p[phi] = self.p_p[k]**-1*w*self.p_p[lamda]
else:
self.p_p[psi] = self.p_p[lamda]**-1*w**-1*self.p_p[k]
q.append(v)
def rep(self, k, modified=False):
r"""
Parameters
==========
`k \in [0 \ldots n-1]`, as for ``self`` only array ``p`` is used
Returns
=======
Representative of the class containing ``k``.
Returns the representative of `\sim` class containing ``k``, it also
makes some modification to array ``p`` of ``self`` to ease further
computations, described on Pg. 157 [1].
The information on classes under `\sim` is stored in array `p` of
``self`` argument, which will always satisfy the property:
`p[\alpha] \sim \alpha` and `p[\alpha]=\alpha \iff \alpha=rep(\alpha)`
`\forall \in [0 \ldots n-1]`.
So, for `\alpha \in [0 \ldots n-1]`, we find `rep(self, \alpha)` by
continually replacing `\alpha` by `p[\alpha]` until it becomes
constant (i.e satisfies `p[\alpha] = \alpha`):w
To increase the efficiency of later ``rep`` calculations, whenever we
find `rep(self, \alpha)=\beta`, we set
`p[\gamma] = \beta \forall \gamma \in p-chain` from `\alpha` to `\beta`
Notes
=====
``rep`` routine is also described on Pg. 85-87 [1] in Atkinson's
algorithm, this results from the fact that ``coincidence`` routine
introduces functionality similar to that introduced by the
``minimal_block`` routine on Pg. 85-87 [1].
See Also
========
coincidence, merge
"""
p = self.p
lamda = k
rho = p[lamda]
if modified:
s = p[:]
while rho != lamda:
if modified:
s[rho] = lamda
lamda = rho
rho = p[lamda]
if modified:
rho = s[lamda]
while rho != k:
mu = rho
rho = s[mu]
p[rho] = lamda
self.p_p[rho] = self.p_p[rho]*self.p_p[mu]
else:
mu = k
rho = p[mu]
while rho != lamda:
p[mu] = lamda
mu = rho
rho = p[mu]
return lamda
# alpha, beta coincide, i.e. alpha, beta represent the pair of cosets
# where coincidence occurs
def coincidence(self, alpha, beta, w=None, modified=False):
r"""
The third situation described in ``scan`` routine is handled by this
routine, described on Pg. 156-161 [1].
The unfortunate situation when the scan completes but not correctly,
then ``coincidence`` routine is run. i.e when for some `i` with
`1 \le i \le r+1`, we have `w=st` with `s = x_1 x_2 \dots x_{i-1}`,
`t = x_i x_{i+1} \dots x_r`, and `\beta = \alpha^s` and
`\gamma = \alpha^{t-1}` are defined but unequal. This means that
`\beta` and `\gamma` represent the same coset of `H` in `G`. Described
on Pg. 156 [1]. ``rep``
See Also
========
scan
"""
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
# behaves as a queue
q = []
if modified:
self.modified_merge(alpha, beta, w, q)
else:
self.merge(alpha, beta, q)
while len(q) > 0:
gamma = q.pop(0)
for x in A_dict:
delta = table[gamma][A_dict[x]]
if delta is not None:
table[delta][A_dict_inv[x]] = None
mu = self.rep(gamma, modified=modified)
nu = self.rep(delta, modified=modified)
if table[mu][A_dict[x]] is not None:
if modified:
v = self.p_p[delta]**-1*self.P[gamma][self.A_dict[x]]**-1
v = v*self.p_p[gamma]*self.P[mu][self.A_dict[x]]
self.modified_merge(nu, table[mu][self.A_dict[x]], v, q)
else:
self.merge(nu, table[mu][A_dict[x]], q)
elif table[nu][A_dict_inv[x]] is not None:
if modified:
v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]
v = v*self.p_p[delta]*self.P[mu][self.A_dict_inv[x]]
self.modified_merge(mu, table[nu][self.A_dict_inv[x]], v, q)
else:
self.merge(mu, table[nu][A_dict_inv[x]], q)
else:
table[mu][A_dict[x]] = nu
table[nu][A_dict_inv[x]] = mu
if modified:
v = self.p_p[gamma]**-1*self.P[gamma][self.A_dict[x]]*self.p_p[delta]
self.P[mu][self.A_dict[x]] = v
self.P[nu][self.A_dict_inv[x]] = v**-1
# method used in the HLT strategy
def scan_and_fill(self, alpha, word):
"""
A modified version of ``scan`` routine used in the relator-based
method of coset enumeration, described on pg. 162-163 [1], which
follows the idea that whenever the procedure is called and the scan
is incomplete then it makes new definitions to enable the scan to
complete; i.e it fills in the gaps in the scan of the relator or
subgroup generator.
"""
self.scan(alpha, word, fill=True)
def scan_and_fill_c(self, alpha, word):
"""
A modified version of ``scan`` routine, described on Pg. 165 second
para. [1], with modification similar to that of ``scan_anf_fill`` the
only difference being it calls the coincidence procedure used in the
coset-table based method i.e. the routine ``coincidence_c`` is used.
See Also
========
scan, scan_and_fill
"""
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
r = len(word)
f = alpha
i = 0
b = alpha
j = r - 1
# loop until it has filled the alpha row in the table.
while True:
# do the forward scanning
while i <= j and table[f][A_dict[word[i]]] is not None:
f = table[f][A_dict[word[i]]]
i += 1
if i > j:
if f != b:
self.coincidence_c(f, b)
return
# forward scan was incomplete, scan backwards
while j >= i and table[b][A_dict_inv[word[j]]] is not None:
b = table[b][A_dict_inv[word[j]]]
j -= 1
if j < i:
self.coincidence_c(f, b)
elif j == i:
table[f][A_dict[word[i]]] = b
table[b][A_dict_inv[word[i]]] = f
self.deduction_stack.append((f, word[i]))
else:
self.define_c(f, word[i])
# method used in the HLT strategy
def look_ahead(self):
"""
When combined with the HLT method this is known as HLT+Lookahead
method of coset enumeration, described on pg. 164 [1]. Whenever
``define`` aborts due to lack of space available this procedure is
executed. This routine helps in recovering space resulting from
"coincidence" of cosets.
"""
R = self.fp_group.relators
p = self.p
# complete scan all relators under all cosets(obviously live)
# without making new definitions
for beta in self.omega:
for w in R:
self.scan(beta, w)
if p[beta] < beta:
break
# Pg. 166
def process_deductions(self, R_c_x, R_c_x_inv):
"""
Processes the deductions that have been pushed onto ``deduction_stack``,
described on Pg. 166 [1] and is used in coset-table based enumeration.
See Also
========
deduction_stack
"""
p = self.p
table = self.table
while len(self.deduction_stack) > 0:
if len(self.deduction_stack) >= CosetTable.max_stack_size:
self.look_ahead()
del self.deduction_stack[:]
continue
else:
alpha, x = self.deduction_stack.pop()
if p[alpha] == alpha:
for w in R_c_x:
self.scan_c(alpha, w)
if p[alpha] < alpha:
break
beta = table[alpha][self.A_dict[x]]
if beta is not None and p[beta] == beta:
for w in R_c_x_inv:
self.scan_c(beta, w)
if p[beta] < beta:
break
def process_deductions_check(self, R_c_x, R_c_x_inv):
"""
A variation of ``process_deductions``, this calls ``scan_check``
wherever ``process_deductions`` calls ``scan``, described on Pg. [1].
See Also
========
process_deductions
"""
table = self.table
while len(self.deduction_stack) > 0:
alpha, x = self.deduction_stack.pop()
for w in R_c_x:
if not self.scan_check(alpha, w):
return False
beta = table[alpha][self.A_dict[x]]
if beta is not None:
for w in R_c_x_inv:
if not self.scan_check(beta, w):
return False
return True
def switch(self, beta, gamma):
r"""Switch the elements `\beta, \gamma \in \Omega` of ``self``, used
by the ``standardize`` procedure, described on Pg. 167 [1].
See Also
========
standardize
"""
A = self.A
A_dict = self.A_dict
table = self.table
for x in A:
z = table[gamma][A_dict[x]]
table[gamma][A_dict[x]] = table[beta][A_dict[x]]
table[beta][A_dict[x]] = z
for alpha in range(len(self.p)):
if self.p[alpha] == alpha:
if table[alpha][A_dict[x]] == beta:
table[alpha][A_dict[x]] = gamma
elif table[alpha][A_dict[x]] == gamma:
table[alpha][A_dict[x]] = beta
def standardize(self):
r"""
A coset table is standardized if when running through the cosets and
within each coset through the generator images (ignoring generator
inverses), the cosets appear in order of the integers
`0, 1, \dots, n`. "Standardize" reorders the elements of `\Omega`
such that, if we scan the coset table first by elements of `\Omega`
and then by elements of A, then the cosets occur in ascending order.
``standardize()`` is used at the end of an enumeration to permute the
cosets so that they occur in some sort of standard order.
Notes
=====
procedure is described on pg. 167-168 [1], it also makes use of the
``switch`` routine to replace by smaller integer value.
Examples
========
>>> from sympy.combinatorics import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
# Example 5.3 from [1]
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
>>> C = coset_enumeration_r(f, [])
>>> C.compress()
>>> C.table
[[1, 3, 1, 3], [2, 0, 2, 0], [3, 1, 3, 1], [0, 2, 0, 2]]
>>> C.standardize()
>>> C.table
[[1, 2, 1, 2], [3, 0, 3, 0], [0, 3, 0, 3], [2, 1, 2, 1]]
"""
A = self.A
A_dict = self.A_dict
gamma = 1
for alpha, x in product(range(self.n), A):
beta = self.table[alpha][A_dict[x]]
if beta >= gamma:
if beta > gamma:
self.switch(gamma, beta)
gamma += 1
if gamma == self.n:
return
# Compression of a Coset Table
def compress(self):
"""Removes the non-live cosets from the coset table, described on
pg. 167 [1].
"""
gamma = -1
A = self.A
A_dict = self.A_dict
A_dict_inv = self.A_dict_inv
table = self.table
chi = tuple([i for i in range(len(self.p)) if self.p[i] != i])
for alpha in self.omega:
gamma += 1
if gamma != alpha:
# replace alpha by gamma in coset table
for x in A:
beta = table[alpha][A_dict[x]]
table[gamma][A_dict[x]] = beta
table[beta][A_dict_inv[x]] == gamma
# all the cosets in the table are live cosets
self.p = list(range(gamma + 1))
# delete the useless columns
del table[len(self.p):]
# re-define values
for row in table:
for j in range(len(self.A)):
row[j] -= bisect_left(chi, row[j])
def conjugates(self, R):
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), \
(rel**-1).cyclic_conjugates()) for rel in R))
R_set = set()
for conjugate in R_c:
R_set = R_set.union(conjugate)
R_c_list = []
for x in self.A:
r = {word for word in R_set if word[0] == x}
R_c_list.append(r)
R_set.difference_update(r)
return R_c_list
def coset_representative(self, coset):
'''
Compute the coset representative of a given coset.
Examples
========
>>> from sympy.combinatorics import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_r(f, [x])
>>> C.compress()
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
>>> C.coset_representative(0)
<identity>
>>> C.coset_representative(1)
y
>>> C.coset_representative(2)
y**-1
'''
for x in self.A:
gamma = self.table[coset][self.A_dict[x]]
if coset == 0:
return self.fp_group.identity
if gamma < coset:
return self.coset_representative(gamma)*x**-1
##############################
# Modified Methods #
##############################
def modified_define(self, alpha, x):
r"""
Define a function p_p from from [1..n] to A* as
an additional component of the modified coset table.
Parameters
==========
\alpha \in \Omega
x \in A*
See Also
========
define
"""
self.define(alpha, x, modified=True)
def modified_scan(self, alpha, w, y, fill=False):
r"""
Parameters
==========
\alpha \in \Omega
w \in A*
y \in (YUY^-1)
fill -- `modified_scan_and_fill` when set to True.
See Also
========
scan
"""
self.scan(alpha, w, y=y, fill=fill, modified=True)
def modified_scan_and_fill(self, alpha, w, y):
self.modified_scan(alpha, w, y, fill=True)
def modified_merge(self, k, lamda, w, q):
r"""
Parameters
==========
'k', 'lamda' -- the two class representatives to be merged.
q -- queue of length l of elements to be deleted from `\Omega` *.
w -- Word in (YUY^-1)
See Also
========
merge
"""
self.merge(k, lamda, q, w=w, modified=True)
def modified_rep(self, k):
r"""
Parameters
==========
`k \in [0 \ldots n-1]`
See Also
========
rep
"""
self.rep(k, modified=True)
def modified_coincidence(self, alpha, beta, w):
r"""
Parameters
==========
A coincident pair `\alpha, \beta \in \Omega, w \in Y \cup Y^{-1}`
See Also
========
coincidence
"""
self.coincidence(alpha, beta, w=w, modified=True)
###############################################################################
# COSET ENUMERATION #
###############################################################################
# relator-based method
def coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False, modified=False):
"""
This is easier of the two implemented methods of coset enumeration.
and is often called the HLT method, after Hazelgrove, Leech, Trotter
The idea is that we make use of ``scan_and_fill`` makes new definitions
whenever the scan is incomplete to enable the scan to complete; this way
we fill in the gaps in the scan of the relator or subgroup generator,
that's why the name relator-based method.
An instance of `CosetTable` for `fp_grp` can be passed as the keyword
argument `draft` in which case the coset enumeration will start with
that instance and attempt to complete it.
When `incomplete` is `True` and the function is unable to complete for
some reason, the partially complete table will be returned.
# TODO: complete the docstring
See Also
========
scan_and_fill,
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r
>>> F, x, y = free_group("x, y")
# Example 5.1 from [1]
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_r(f, [x])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 1, 2]
[1, 1, 2, 0]
[2, 2, 0, 1]
>>> C.p
[0, 1, 2, 1, 1]
# Example from exercises Q2 [1]
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> C = coset_enumeration_r(f, [])
>>> C.compress(); C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# Example 5.2
>>> f = FpGroup(F, [x**2, y**3, (x*y)**3])
>>> Y = [x*y]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 1, 2, 1]
[0, 0, 0, 2]
[3, 3, 1, 0]
[2, 2, 3, 3]
# Example 5.3
>>> f = FpGroup(F, [x**2*y**2, x**3*y**5])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[1, 3, 1, 3]
[2, 0, 2, 0]
[3, 1, 3, 1]
[0, 2, 0, 2]
# Example 5.4
>>> F, a, b, c, d, e = free_group("a, b, c, d, e")
>>> f = FpGroup(F, [a*b*c**-1, b*c*d**-1, c*d*e**-1, d*e*a**-1, e*a*b**-1])
>>> Y = [a]
>>> C = coset_enumeration_r(f, Y)
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# example of "compress" method
>>> C.compress()
>>> C.table
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
# Exercises Pg. 161, Q2.
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
>>> Y = []
>>> C = coset_enumeration_r(f, Y)
>>> C.compress()
>>> C.standardize()
>>> C.table
[[1, 2, 3, 4],
[5, 0, 6, 7],
[0, 5, 7, 6],
[7, 6, 5, 0],
[6, 7, 0, 5],
[2, 1, 4, 3],
[3, 4, 2, 1],
[4, 3, 1, 2]]
# John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
# Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490
# from 1973chwd.pdf
# Table 1. Ex. 1
>>> F, r, s, t = free_group("r, s, t")
>>> E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
>>> C = coset_enumeration_r(E1, [r])
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... print(C.table[i])
[0, 0, 0, 0, 0, 0]
Ex. 2
>>> F, a, b = free_group("a, b")
>>> Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
>>> C = coset_enumeration_r(Cox, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
500
# Ex. 3
>>> F, a, b = free_group("a, b")
>>> B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
>>> C = coset_enumeration_r(B_2_4, [a])
>>> index = 0
>>> for i in range(len(C.p)):
... if C.p[i] == i:
... index += 1
>>> index
1024
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
# 1. Initialize a coset table C for < X|R >
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
# Define coset table methods.
if modified:
_scan_and_fill = C.modified_scan_and_fill
_define = C.modified_define
else:
_scan_and_fill = C.scan_and_fill
_define = C.define
if draft:
C.table = draft.table[:]
C.p = draft.p[:]
R = fp_grp.relators
A_dict = C.A_dict
p = C.p
for i in range(len(Y)):
if modified:
_scan_and_fill(0, Y[i], C._grp.generators[i])
else:
_scan_and_fill(0, Y[i])
alpha = 0
while alpha < C.n:
if p[alpha] == alpha:
try:
for w in R:
if modified:
_scan_and_fill(alpha, w, C._grp.identity)
else:
_scan_and_fill(alpha, w)
# if alpha was eliminated during the scan then break
if p[alpha] < alpha:
break
if p[alpha] == alpha:
for x in A_dict:
if C.table[alpha][A_dict[x]] is None:
_define(alpha, x)
except ValueError as e:
if incomplete:
return C
raise e
alpha += 1
return C
def modified_coset_enumeration_r(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False):
r"""
Introduce a new set of symbols y \in Y that correspond to the
generators of the subgroup. Store the elements of Y as a
word P[\alpha, x] and compute the coset table similar to that of
the regular coset enumeration methods.
Examples
========
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> from sympy.combinatorics.coset_table import modified_coset_enumeration_r
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = modified_coset_enumeration_r(f, [x])
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], [None, 1, None, None], [1, 3, None, None]]
See Also
========
coset_enumertation_r
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.,
"Handbook of Computational Group Theory",
Section 5.3.2
"""
return coset_enumeration_r(fp_grp, Y, max_cosets=max_cosets, draft=draft,
incomplete=incomplete, modified=True)
# Pg. 166
# coset-table based method
def coset_enumeration_c(fp_grp, Y, max_cosets=None, draft=None,
incomplete=False):
"""
>>> from sympy.combinatorics.free_groups import free_group
>>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_c
>>> F, x, y = free_group("x, y")
>>> f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
>>> C = coset_enumeration_c(f, [x])
>>> C.table
[[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
"""
# Initialize a coset table C for < X|R >
X = fp_grp.generators
R = fp_grp.relators
C = CosetTable(fp_grp, Y, max_cosets=max_cosets)
if draft:
C.table = draft.table[:]
C.p = draft.p[:]
C.deduction_stack = draft.deduction_stack
for alpha, x in product(range(len(C.table)), X):
if C.table[alpha][C.A_dict[x]] is not None:
C.deduction_stack.append((alpha, x))
A = C.A
# replace all the elements by cyclic reductions
R_cyc_red = [rel.identity_cyclic_reduction() for rel in R]
R_c = list(chain.from_iterable((rel.cyclic_conjugates(), (rel**-1).cyclic_conjugates()) \
for rel in R_cyc_red))
R_set = set()
for conjugate in R_c:
R_set = R_set.union(conjugate)
# a list of subsets of R_c whose words start with "x".
R_c_list = []
for x in C.A:
r = {word for word in R_set if word[0] == x}
R_c_list.append(r)
R_set.difference_update(r)
for w in Y:
C.scan_and_fill_c(0, w)
for x in A:
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
alpha = 0
while alpha < len(C.table):
if C.p[alpha] == alpha:
try:
for x in C.A:
if C.p[alpha] != alpha:
break
if C.table[alpha][C.A_dict[x]] is None:
C.define_c(alpha, x)
C.process_deductions(R_c_list[C.A_dict[x]], R_c_list[C.A_dict_inv[x]])
except ValueError as e:
if incomplete:
return C
raise e
alpha += 1
return C