2900 lines
93 KiB
Python
2900 lines
93 KiB
Python
|
"""
|
||
|
This module implements Holonomic Functions and
|
||
|
various operations on them.
|
||
|
"""
|
||
|
|
||
|
from sympy.core import Add, Mul, Pow
|
||
|
from sympy.core.numbers import (NaN, Infinity, NegativeInfinity, Float, I, pi,
|
||
|
equal_valued)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.sorting import ordered
|
||
|
from sympy.core.symbol import Dummy, Symbol
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.functions.combinatorial.factorials import binomial, factorial, rf
|
||
|
from sympy.functions.elementary.exponential import exp_polar, exp, log
|
||
|
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
|
||
|
from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi)
|
||
|
from sympy.functions.special.gamma_functions import gamma
|
||
|
from sympy.functions.special.hyper import hyper, meijerg
|
||
|
from sympy.integrals import meijerint
|
||
|
from sympy.matrices import Matrix
|
||
|
from sympy.polys.rings import PolyElement
|
||
|
from sympy.polys.fields import FracElement
|
||
|
from sympy.polys.domains import QQ, RR
|
||
|
from sympy.polys.polyclasses import DMF
|
||
|
from sympy.polys.polyroots import roots
|
||
|
from sympy.polys.polytools import Poly
|
||
|
from sympy.polys.matrices import DomainMatrix
|
||
|
from sympy.printing import sstr
|
||
|
from sympy.series.limits import limit
|
||
|
from sympy.series.order import Order
|
||
|
from sympy.simplify.hyperexpand import hyperexpand
|
||
|
from sympy.simplify.simplify import nsimplify
|
||
|
from sympy.solvers.solvers import solve
|
||
|
|
||
|
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
|
||
|
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
|
||
|
SingularityError, NotHolonomicError)
|
||
|
|
||
|
|
||
|
def _find_nonzero_solution(r, homosys):
|
||
|
ones = lambda shape: DomainMatrix.ones(shape, r.domain)
|
||
|
particular, nullspace = r._solve(homosys)
|
||
|
nullity = nullspace.shape[0]
|
||
|
nullpart = ones((1, nullity)) * nullspace
|
||
|
sol = (particular + nullpart).transpose()
|
||
|
return sol
|
||
|
|
||
|
|
||
|
|
||
|
def DifferentialOperators(base, generator):
|
||
|
r"""
|
||
|
This function is used to create annihilators using ``Dx``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Returns an Algebra of Differential Operators also called Weyl Algebra
|
||
|
and the operator for differentiation i.e. the ``Dx`` operator.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
base:
|
||
|
Base polynomial ring for the algebra.
|
||
|
The base polynomial ring is the ring of polynomials in :math:`x` that
|
||
|
will appear as coefficients in the operators.
|
||
|
generator:
|
||
|
Generator of the algebra which can
|
||
|
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import ZZ
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.holonomic.holonomic import DifferentialOperators
|
||
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
|
||
|
>>> R
|
||
|
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
|
||
|
>>> Dx*x
|
||
|
(1) + (x)*Dx
|
||
|
"""
|
||
|
|
||
|
ring = DifferentialOperatorAlgebra(base, generator)
|
||
|
return (ring, ring.derivative_operator)
|
||
|
|
||
|
|
||
|
class DifferentialOperatorAlgebra:
|
||
|
r"""
|
||
|
An Ore Algebra is a set of noncommutative polynomials in the
|
||
|
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
|
||
|
It follows the commutation rule:
|
||
|
|
||
|
.. math ::
|
||
|
Dxa = \sigma(a)Dx + \delta(a)
|
||
|
|
||
|
for :math:`a \subset A`.
|
||
|
|
||
|
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
|
||
|
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.
|
||
|
|
||
|
If one takes the sigma as identity map and delta as the standard derivation
|
||
|
then it becomes the algebra of Differential Operators also called
|
||
|
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
|
||
|
|
||
|
This class represents a Weyl Algebra and serves as the parent ring for
|
||
|
Differential Operators.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import ZZ
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.holonomic.holonomic import DifferentialOperators
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
|
||
|
>>> R
|
||
|
Univariate Differential Operator Algebra in intermediate Dx over the base ring
|
||
|
ZZ[x]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
DifferentialOperator
|
||
|
"""
|
||
|
|
||
|
def __init__(self, base, generator):
|
||
|
# the base polynomial ring for the algebra
|
||
|
self.base = base
|
||
|
# the operator representing differentiation i.e. `Dx`
|
||
|
self.derivative_operator = DifferentialOperator(
|
||
|
[base.zero, base.one], self)
|
||
|
|
||
|
if generator is None:
|
||
|
self.gen_symbol = Symbol('Dx', commutative=False)
|
||
|
else:
|
||
|
if isinstance(generator, str):
|
||
|
self.gen_symbol = Symbol(generator, commutative=False)
|
||
|
elif isinstance(generator, Symbol):
|
||
|
self.gen_symbol = generator
|
||
|
|
||
|
def __str__(self):
|
||
|
string = 'Univariate Differential Operator Algebra in intermediate '\
|
||
|
+ sstr(self.gen_symbol) + ' over the base ring ' + \
|
||
|
(self.base).__str__()
|
||
|
|
||
|
return string
|
||
|
|
||
|
__repr__ = __str__
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if self.base == other.base and self.gen_symbol == other.gen_symbol:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
class DifferentialOperator:
|
||
|
"""
|
||
|
Differential Operators are elements of Weyl Algebra. The Operators
|
||
|
are defined by a list of polynomials in the base ring and the
|
||
|
parent ring of the Operator i.e. the algebra it belongs to.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Takes a list of polynomials for each power of ``Dx`` and the
|
||
|
parent ring which must be an instance of DifferentialOperatorAlgebra.
|
||
|
|
||
|
A Differential Operator can be created easily using
|
||
|
the operator ``Dx``. See examples below.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
|
||
|
>>> from sympy import ZZ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
|
||
|
|
||
|
>>> DifferentialOperator([0, 1, x**2], R)
|
||
|
(1)*Dx + (x**2)*Dx**2
|
||
|
|
||
|
>>> (x*Dx*x + 1 - Dx**2)**2
|
||
|
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
DifferentialOperatorAlgebra
|
||
|
"""
|
||
|
|
||
|
_op_priority = 20
|
||
|
|
||
|
def __init__(self, list_of_poly, parent):
|
||
|
"""
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
list_of_poly:
|
||
|
List of polynomials belonging to the base ring of the algebra.
|
||
|
parent:
|
||
|
Parent algebra of the operator.
|
||
|
"""
|
||
|
|
||
|
# the parent ring for this operator
|
||
|
# must be an DifferentialOperatorAlgebra object
|
||
|
self.parent = parent
|
||
|
base = self.parent.base
|
||
|
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
|
||
|
# sequence of polynomials in x for each power of Dx
|
||
|
# the list should not have trailing zeroes
|
||
|
# represents the operator
|
||
|
# convert the expressions into ring elements using from_sympy
|
||
|
for i, j in enumerate(list_of_poly):
|
||
|
if not isinstance(j, base.dtype):
|
||
|
list_of_poly[i] = base.from_sympy(sympify(j))
|
||
|
else:
|
||
|
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
|
||
|
|
||
|
self.listofpoly = list_of_poly
|
||
|
# highest power of `Dx`
|
||
|
self.order = len(self.listofpoly) - 1
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
"""
|
||
|
Multiplies two DifferentialOperator and returns another
|
||
|
DifferentialOperator instance using the commutation rule
|
||
|
Dx*a = a*Dx + a'
|
||
|
"""
|
||
|
|
||
|
listofself = self.listofpoly
|
||
|
|
||
|
if not isinstance(other, DifferentialOperator):
|
||
|
if not isinstance(other, self.parent.base.dtype):
|
||
|
listofother = [self.parent.base.from_sympy(sympify(other))]
|
||
|
|
||
|
else:
|
||
|
listofother = [other]
|
||
|
else:
|
||
|
listofother = other.listofpoly
|
||
|
|
||
|
# multiplies a polynomial `b` with a list of polynomials
|
||
|
def _mul_dmp_diffop(b, listofother):
|
||
|
if isinstance(listofother, list):
|
||
|
sol = []
|
||
|
for i in listofother:
|
||
|
sol.append(i * b)
|
||
|
return sol
|
||
|
else:
|
||
|
return [b * listofother]
|
||
|
|
||
|
sol = _mul_dmp_diffop(listofself[0], listofother)
|
||
|
|
||
|
# compute Dx^i * b
|
||
|
def _mul_Dxi_b(b):
|
||
|
sol1 = [self.parent.base.zero]
|
||
|
sol2 = []
|
||
|
|
||
|
if isinstance(b, list):
|
||
|
for i in b:
|
||
|
sol1.append(i)
|
||
|
sol2.append(i.diff())
|
||
|
else:
|
||
|
sol1.append(self.parent.base.from_sympy(b))
|
||
|
sol2.append(self.parent.base.from_sympy(b).diff())
|
||
|
|
||
|
return _add_lists(sol1, sol2)
|
||
|
|
||
|
for i in range(1, len(listofself)):
|
||
|
# find Dx^i * b in ith iteration
|
||
|
listofother = _mul_Dxi_b(listofother)
|
||
|
# solution = solution + listofself[i] * (Dx^i * b)
|
||
|
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
|
||
|
|
||
|
return DifferentialOperator(sol, self.parent)
|
||
|
|
||
|
def __rmul__(self, other):
|
||
|
if not isinstance(other, DifferentialOperator):
|
||
|
|
||
|
if not isinstance(other, self.parent.base.dtype):
|
||
|
other = (self.parent.base).from_sympy(sympify(other))
|
||
|
|
||
|
sol = []
|
||
|
for j in self.listofpoly:
|
||
|
sol.append(other * j)
|
||
|
|
||
|
return DifferentialOperator(sol, self.parent)
|
||
|
|
||
|
def __add__(self, other):
|
||
|
if isinstance(other, DifferentialOperator):
|
||
|
|
||
|
sol = _add_lists(self.listofpoly, other.listofpoly)
|
||
|
return DifferentialOperator(sol, self.parent)
|
||
|
|
||
|
else:
|
||
|
list_self = self.listofpoly
|
||
|
if not isinstance(other, self.parent.base.dtype):
|
||
|
list_other = [((self.parent).base).from_sympy(sympify(other))]
|
||
|
else:
|
||
|
list_other = [other]
|
||
|
sol = []
|
||
|
sol.append(list_self[0] + list_other[0])
|
||
|
sol += list_self[1:]
|
||
|
|
||
|
return DifferentialOperator(sol, self.parent)
|
||
|
|
||
|
__radd__ = __add__
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
return self + (-1) * other
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
return (-1) * self + other
|
||
|
|
||
|
def __neg__(self):
|
||
|
return -1 * self
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
return self * (S.One / other)
|
||
|
|
||
|
def __pow__(self, n):
|
||
|
if n == 1:
|
||
|
return self
|
||
|
if n == 0:
|
||
|
return DifferentialOperator([self.parent.base.one], self.parent)
|
||
|
|
||
|
# if self is `Dx`
|
||
|
if self.listofpoly == self.parent.derivative_operator.listofpoly:
|
||
|
sol = [self.parent.base.zero]*n
|
||
|
sol.append(self.parent.base.one)
|
||
|
return DifferentialOperator(sol, self.parent)
|
||
|
|
||
|
# the general case
|
||
|
else:
|
||
|
if n % 2 == 1:
|
||
|
powreduce = self**(n - 1)
|
||
|
return powreduce * self
|
||
|
elif n % 2 == 0:
|
||
|
powreduce = self**(n / 2)
|
||
|
return powreduce * powreduce
|
||
|
|
||
|
def __str__(self):
|
||
|
listofpoly = self.listofpoly
|
||
|
print_str = ''
|
||
|
|
||
|
for i, j in enumerate(listofpoly):
|
||
|
if j == self.parent.base.zero:
|
||
|
continue
|
||
|
|
||
|
if i == 0:
|
||
|
print_str += '(' + sstr(j) + ')'
|
||
|
continue
|
||
|
|
||
|
if print_str:
|
||
|
print_str += ' + '
|
||
|
|
||
|
if i == 1:
|
||
|
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
|
||
|
continue
|
||
|
|
||
|
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
|
||
|
|
||
|
return print_str
|
||
|
|
||
|
__repr__ = __str__
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if isinstance(other, DifferentialOperator):
|
||
|
if self.listofpoly == other.listofpoly and self.parent == other.parent:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
else:
|
||
|
if self.listofpoly[0] == other:
|
||
|
for i in self.listofpoly[1:]:
|
||
|
if i is not self.parent.base.zero:
|
||
|
return False
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
def is_singular(self, x0):
|
||
|
"""
|
||
|
Checks if the differential equation is singular at x0.
|
||
|
"""
|
||
|
|
||
|
base = self.parent.base
|
||
|
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
|
||
|
|
||
|
|
||
|
class HolonomicFunction:
|
||
|
r"""
|
||
|
A Holonomic Function is a solution to a linear homogeneous ordinary
|
||
|
differential equation with polynomial coefficients. This differential
|
||
|
equation can also be represented by an annihilator i.e. a Differential
|
||
|
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
|
||
|
initial conditions can also be provided along with the annihilator.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Holonomic functions have closure properties and thus forms a ring.
|
||
|
Given two Holonomic Functions f and g, their sum, product,
|
||
|
integral and derivative is also a Holonomic Function.
|
||
|
|
||
|
For ordinary points initial condition should be a vector of values of
|
||
|
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
|
||
|
|
||
|
For regular singular points initial conditions can also be provided in this
|
||
|
format:
|
||
|
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
|
||
|
where s0, s1, ... are the roots of indicial equation and vectors
|
||
|
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
|
||
|
terms of the associated power series. See Examples below.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import QQ
|
||
|
>>> from sympy import symbols, S
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
|
||
|
|
||
|
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
|
||
|
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
|
||
|
|
||
|
>>> p + q # annihilator of e^x + sin(x)
|
||
|
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
|
||
|
|
||
|
>>> p * q # annihilator of e^x * sin(x)
|
||
|
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
|
||
|
|
||
|
An example of initial conditions for regular singular points,
|
||
|
the indicial equation has only one root `1/2`.
|
||
|
|
||
|
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
|
||
|
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
|
||
|
|
||
|
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
|
||
|
sqrt(x)
|
||
|
|
||
|
To plot a Holonomic Function, one can use `.evalf()` for numerical
|
||
|
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
|
||
|
|
||
|
>>> import sympy.holonomic # doctest: +SKIP
|
||
|
>>> from sympy import var, sin # doctest: +SKIP
|
||
|
>>> import matplotlib.pyplot as plt # doctest: +SKIP
|
||
|
>>> import numpy as np # doctest: +SKIP
|
||
|
>>> var("x") # doctest: +SKIP
|
||
|
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
|
||
|
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
|
||
|
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
|
||
|
>>> plt.show() # doctest: +SKIP
|
||
|
|
||
|
"""
|
||
|
|
||
|
_op_priority = 20
|
||
|
|
||
|
def __init__(self, annihilator, x, x0=0, y0=None):
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
annihilator:
|
||
|
Annihilator of the Holonomic Function, represented by a
|
||
|
`DifferentialOperator` object.
|
||
|
x:
|
||
|
Variable of the function.
|
||
|
x0:
|
||
|
The point at which initial conditions are stored.
|
||
|
Generally an integer.
|
||
|
y0:
|
||
|
The initial condition. The proper format for the initial condition
|
||
|
is described in class docstring. To make the function unique,
|
||
|
length of the vector `y0` should be equal to or greater than the
|
||
|
order of differential equation.
|
||
|
"""
|
||
|
|
||
|
# initial condition
|
||
|
self.y0 = y0
|
||
|
# the point for initial conditions, default is zero.
|
||
|
self.x0 = x0
|
||
|
# differential operator L such that L.f = 0
|
||
|
self.annihilator = annihilator
|
||
|
self.x = x
|
||
|
|
||
|
def __str__(self):
|
||
|
if self._have_init_cond():
|
||
|
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
|
||
|
sstr(self.x), sstr(self.x0), sstr(self.y0))
|
||
|
else:
|
||
|
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
|
||
|
sstr(self.x))
|
||
|
|
||
|
return str_sol
|
||
|
|
||
|
__repr__ = __str__
|
||
|
|
||
|
def unify(self, other):
|
||
|
"""
|
||
|
Unifies the base polynomial ring of a given two Holonomic
|
||
|
Functions.
|
||
|
"""
|
||
|
|
||
|
R1 = self.annihilator.parent.base
|
||
|
R2 = other.annihilator.parent.base
|
||
|
|
||
|
dom1 = R1.dom
|
||
|
dom2 = R2.dom
|
||
|
|
||
|
if R1 == R2:
|
||
|
return (self, other)
|
||
|
|
||
|
R = (dom1.unify(dom2)).old_poly_ring(self.x)
|
||
|
|
||
|
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
|
||
|
|
||
|
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
|
||
|
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
|
||
|
|
||
|
sol1 = DifferentialOperator(sol1, newparent)
|
||
|
sol2 = DifferentialOperator(sol2, newparent)
|
||
|
|
||
|
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
|
||
|
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
|
||
|
|
||
|
return (sol1, sol2)
|
||
|
|
||
|
def is_singularics(self):
|
||
|
"""
|
||
|
Returns True if the function have singular initial condition
|
||
|
in the dictionary format.
|
||
|
|
||
|
Returns False if the function have ordinary initial condition
|
||
|
in the list format.
|
||
|
|
||
|
Returns None for all other cases.
|
||
|
"""
|
||
|
|
||
|
if isinstance(self.y0, dict):
|
||
|
return True
|
||
|
elif isinstance(self.y0, list):
|
||
|
return False
|
||
|
|
||
|
def _have_init_cond(self):
|
||
|
"""
|
||
|
Checks if the function have initial condition.
|
||
|
"""
|
||
|
return bool(self.y0)
|
||
|
|
||
|
def _singularics_to_ord(self):
|
||
|
"""
|
||
|
Converts a singular initial condition to ordinary if possible.
|
||
|
"""
|
||
|
a = list(self.y0)[0]
|
||
|
b = self.y0[a]
|
||
|
|
||
|
if len(self.y0) == 1 and a == int(a) and a > 0:
|
||
|
y0 = []
|
||
|
a = int(a)
|
||
|
for i in range(a):
|
||
|
y0.append(S.Zero)
|
||
|
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
|
||
|
|
||
|
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
|
||
|
|
||
|
def __add__(self, other):
|
||
|
# if the ground domains are different
|
||
|
if self.annihilator.parent.base != other.annihilator.parent.base:
|
||
|
a, b = self.unify(other)
|
||
|
return a + b
|
||
|
|
||
|
deg1 = self.annihilator.order
|
||
|
deg2 = other.annihilator.order
|
||
|
dim = max(deg1, deg2)
|
||
|
R = self.annihilator.parent.base
|
||
|
K = R.get_field()
|
||
|
|
||
|
rowsself = [self.annihilator]
|
||
|
rowsother = [other.annihilator]
|
||
|
gen = self.annihilator.parent.derivative_operator
|
||
|
|
||
|
# constructing annihilators up to order dim
|
||
|
for i in range(dim - deg1):
|
||
|
diff1 = (gen * rowsself[-1])
|
||
|
rowsself.append(diff1)
|
||
|
|
||
|
for i in range(dim - deg2):
|
||
|
diff2 = (gen * rowsother[-1])
|
||
|
rowsother.append(diff2)
|
||
|
|
||
|
row = rowsself + rowsother
|
||
|
|
||
|
# constructing the matrix of the ansatz
|
||
|
r = []
|
||
|
|
||
|
for expr in row:
|
||
|
p = []
|
||
|
for i in range(dim + 1):
|
||
|
if i >= len(expr.listofpoly):
|
||
|
p.append(K.zero)
|
||
|
else:
|
||
|
p.append(K.new(expr.listofpoly[i].rep))
|
||
|
r.append(p)
|
||
|
|
||
|
# solving the linear system using gauss jordan solver
|
||
|
r = DomainMatrix(r, (len(row), dim+1), K).transpose()
|
||
|
homosys = DomainMatrix.zeros((dim+1, 1), K)
|
||
|
sol = _find_nonzero_solution(r, homosys)
|
||
|
|
||
|
# if a solution is not obtained then increasing the order by 1 in each
|
||
|
# iteration
|
||
|
while sol.is_zero_matrix:
|
||
|
dim += 1
|
||
|
|
||
|
diff1 = (gen * rowsself[-1])
|
||
|
rowsself.append(diff1)
|
||
|
|
||
|
diff2 = (gen * rowsother[-1])
|
||
|
rowsother.append(diff2)
|
||
|
|
||
|
row = rowsself + rowsother
|
||
|
r = []
|
||
|
|
||
|
for expr in row:
|
||
|
p = []
|
||
|
for i in range(dim + 1):
|
||
|
if i >= len(expr.listofpoly):
|
||
|
p.append(K.zero)
|
||
|
else:
|
||
|
p.append(K.new(expr.listofpoly[i].rep))
|
||
|
r.append(p)
|
||
|
|
||
|
# solving the linear system using gauss jordan solver
|
||
|
r = DomainMatrix(r, (len(row), dim+1), K).transpose()
|
||
|
homosys = DomainMatrix.zeros((dim+1, 1), K)
|
||
|
sol = _find_nonzero_solution(r, homosys)
|
||
|
|
||
|
# taking only the coefficients needed to multiply with `self`
|
||
|
# can be also be done the other way by taking R.H.S and multiplying with
|
||
|
# `other`
|
||
|
sol = sol.flat()[:dim + 1 - deg1]
|
||
|
sol1 = _normalize(sol, self.annihilator.parent)
|
||
|
# annihilator of the solution
|
||
|
sol = sol1 * (self.annihilator)
|
||
|
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
|
||
|
|
||
|
if not (self._have_init_cond() and other._have_init_cond()):
|
||
|
return HolonomicFunction(sol, self.x)
|
||
|
|
||
|
# both the functions have ordinary initial conditions
|
||
|
if self.is_singularics() == False and other.is_singularics() == False:
|
||
|
|
||
|
# directly add the corresponding value
|
||
|
if self.x0 == other.x0:
|
||
|
# try to extended the initial conditions
|
||
|
# using the annihilator
|
||
|
y1 = _extend_y0(self, sol.order)
|
||
|
y2 = _extend_y0(other, sol.order)
|
||
|
y0 = [a + b for a, b in zip(y1, y2)]
|
||
|
return HolonomicFunction(sol, self.x, self.x0, y0)
|
||
|
|
||
|
else:
|
||
|
# change the initial conditions to a same point
|
||
|
selfat0 = self.annihilator.is_singular(0)
|
||
|
otherat0 = other.annihilator.is_singular(0)
|
||
|
|
||
|
if self.x0 == 0 and not selfat0 and not otherat0:
|
||
|
return self + other.change_ics(0)
|
||
|
|
||
|
elif other.x0 == 0 and not selfat0 and not otherat0:
|
||
|
return self.change_ics(0) + other
|
||
|
|
||
|
else:
|
||
|
selfatx0 = self.annihilator.is_singular(self.x0)
|
||
|
otheratx0 = other.annihilator.is_singular(self.x0)
|
||
|
|
||
|
if not selfatx0 and not otheratx0:
|
||
|
return self + other.change_ics(self.x0)
|
||
|
|
||
|
else:
|
||
|
return self.change_ics(other.x0) + other
|
||
|
|
||
|
if self.x0 != other.x0:
|
||
|
return HolonomicFunction(sol, self.x)
|
||
|
|
||
|
# if the functions have singular_ics
|
||
|
y1 = None
|
||
|
y2 = None
|
||
|
|
||
|
if self.is_singularics() == False and other.is_singularics() == True:
|
||
|
# convert the ordinary initial condition to singular.
|
||
|
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
|
||
|
y1 = {S.Zero: _y0}
|
||
|
y2 = other.y0
|
||
|
elif self.is_singularics() == True and other.is_singularics() == False:
|
||
|
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
|
||
|
y1 = self.y0
|
||
|
y2 = {S.Zero: _y0}
|
||
|
elif self.is_singularics() == True and other.is_singularics() == True:
|
||
|
y1 = self.y0
|
||
|
y2 = other.y0
|
||
|
|
||
|
# computing singular initial condition for the result
|
||
|
# taking union of the series terms of both functions
|
||
|
y0 = {}
|
||
|
for i in y1:
|
||
|
# add corresponding initial terms if the power
|
||
|
# on `x` is same
|
||
|
if i in y2:
|
||
|
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
|
||
|
else:
|
||
|
y0[i] = y1[i]
|
||
|
for i in y2:
|
||
|
if i not in y1:
|
||
|
y0[i] = y2[i]
|
||
|
return HolonomicFunction(sol, self.x, self.x0, y0)
|
||
|
|
||
|
def integrate(self, limits, initcond=False):
|
||
|
"""
|
||
|
Integrates the given holonomic function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import QQ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
|
||
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
|
||
|
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
|
||
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
|
||
|
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
|
||
|
"""
|
||
|
|
||
|
# to get the annihilator, just multiply by Dx from right
|
||
|
D = self.annihilator.parent.derivative_operator
|
||
|
|
||
|
# if the function have initial conditions of the series format
|
||
|
if self.is_singularics() == True:
|
||
|
|
||
|
r = self._singularics_to_ord()
|
||
|
if r:
|
||
|
return r.integrate(limits, initcond=initcond)
|
||
|
|
||
|
# computing singular initial condition for the function
|
||
|
# produced after integration.
|
||
|
y0 = {}
|
||
|
for i in self.y0:
|
||
|
c = self.y0[i]
|
||
|
c2 = []
|
||
|
for j, cj in enumerate(c):
|
||
|
if cj == 0:
|
||
|
c2.append(S.Zero)
|
||
|
|
||
|
# if power on `x` is -1, the integration becomes log(x)
|
||
|
# TODO: Implement this case
|
||
|
elif i + j + 1 == 0:
|
||
|
raise NotImplementedError("logarithmic terms in the series are not supported")
|
||
|
else:
|
||
|
c2.append(cj / S(i + j + 1))
|
||
|
y0[i + 1] = c2
|
||
|
|
||
|
if hasattr(limits, "__iter__"):
|
||
|
raise NotImplementedError("Definite integration for singular initial conditions")
|
||
|
|
||
|
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
|
||
|
|
||
|
# if no initial conditions are available for the function
|
||
|
if not self._have_init_cond():
|
||
|
if initcond:
|
||
|
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
|
||
|
return HolonomicFunction(self.annihilator * D, self.x)
|
||
|
|
||
|
# definite integral
|
||
|
# initial conditions for the answer will be stored at point `a`,
|
||
|
# where `a` is the lower limit of the integrand
|
||
|
if hasattr(limits, "__iter__"):
|
||
|
|
||
|
if len(limits) == 3 and limits[0] == self.x:
|
||
|
x0 = self.x0
|
||
|
a = limits[1]
|
||
|
b = limits[2]
|
||
|
definite = True
|
||
|
|
||
|
else:
|
||
|
definite = False
|
||
|
|
||
|
y0 = [S.Zero]
|
||
|
y0 += self.y0
|
||
|
|
||
|
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
|
||
|
|
||
|
if not definite:
|
||
|
return indefinite_integral
|
||
|
|
||
|
# use evalf to get the values at `a`
|
||
|
if x0 != a:
|
||
|
try:
|
||
|
indefinite_expr = indefinite_integral.to_expr()
|
||
|
except (NotHyperSeriesError, NotPowerSeriesError):
|
||
|
indefinite_expr = None
|
||
|
|
||
|
if indefinite_expr:
|
||
|
lower = indefinite_expr.subs(self.x, a)
|
||
|
if isinstance(lower, NaN):
|
||
|
lower = indefinite_expr.limit(self.x, a)
|
||
|
else:
|
||
|
lower = indefinite_integral.evalf(a)
|
||
|
|
||
|
if b == self.x:
|
||
|
y0[0] = y0[0] - lower
|
||
|
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
|
||
|
|
||
|
elif S(b).is_Number:
|
||
|
if indefinite_expr:
|
||
|
upper = indefinite_expr.subs(self.x, b)
|
||
|
if isinstance(upper, NaN):
|
||
|
upper = indefinite_expr.limit(self.x, b)
|
||
|
else:
|
||
|
upper = indefinite_integral.evalf(b)
|
||
|
|
||
|
return upper - lower
|
||
|
|
||
|
|
||
|
# if the upper limit is `x`, the answer will be a function
|
||
|
if b == self.x:
|
||
|
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
|
||
|
|
||
|
# if the upper limits is a Number, a numerical value will be returned
|
||
|
elif S(b).is_Number:
|
||
|
try:
|
||
|
s = HolonomicFunction(self.annihilator * D, self.x, a,\
|
||
|
y0).to_expr()
|
||
|
indefinite = s.subs(self.x, b)
|
||
|
if not isinstance(indefinite, NaN):
|
||
|
return indefinite
|
||
|
else:
|
||
|
return s.limit(self.x, b)
|
||
|
except (NotHyperSeriesError, NotPowerSeriesError):
|
||
|
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
|
||
|
|
||
|
return HolonomicFunction(self.annihilator * D, self.x)
|
||
|
|
||
|
def diff(self, *args, **kwargs):
|
||
|
r"""
|
||
|
Differentiation of the given Holonomic function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import ZZ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
|
||
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
|
||
|
cos(x)
|
||
|
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
|
||
|
2*exp(2*x)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
integrate
|
||
|
"""
|
||
|
kwargs.setdefault('evaluate', True)
|
||
|
if args:
|
||
|
if args[0] != self.x:
|
||
|
return S.Zero
|
||
|
elif len(args) == 2:
|
||
|
sol = self
|
||
|
for i in range(args[1]):
|
||
|
sol = sol.diff(args[0])
|
||
|
return sol
|
||
|
|
||
|
ann = self.annihilator
|
||
|
|
||
|
# if the function is constant.
|
||
|
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
|
||
|
return S.Zero
|
||
|
|
||
|
# if the coefficient of y in the differential equation is zero.
|
||
|
# a shifting is done to compute the answer in this case.
|
||
|
elif ann.listofpoly[0] == ann.parent.base.zero:
|
||
|
|
||
|
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
|
||
|
|
||
|
if self._have_init_cond():
|
||
|
# if ordinary initial condition
|
||
|
if self.is_singularics() == False:
|
||
|
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
|
||
|
# TODO: support for singular initial condition
|
||
|
return HolonomicFunction(sol, self.x)
|
||
|
else:
|
||
|
return HolonomicFunction(sol, self.x)
|
||
|
|
||
|
# the general algorithm
|
||
|
R = ann.parent.base
|
||
|
K = R.get_field()
|
||
|
|
||
|
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
|
||
|
|
||
|
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
|
||
|
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
|
||
|
rhs.insert(0, K.zero)
|
||
|
|
||
|
# differentiate both lhs and rhs
|
||
|
sol = _derivate_diff_eq(rhs)
|
||
|
|
||
|
# add the term y' in lhs to rhs
|
||
|
sol = _add_lists(sol, [K.zero, K.one])
|
||
|
|
||
|
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
|
||
|
|
||
|
if not self._have_init_cond() or self.is_singularics() == True:
|
||
|
return HolonomicFunction(sol, self.x)
|
||
|
|
||
|
y0 = _extend_y0(self, sol.order + 1)[1:]
|
||
|
return HolonomicFunction(sol, self.x, self.x0, y0)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if self.annihilator == other.annihilator:
|
||
|
if self.x == other.x:
|
||
|
if self._have_init_cond() and other._have_init_cond():
|
||
|
if self.x0 == other.x0 and self.y0 == other.y0:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
else:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
ann_self = self.annihilator
|
||
|
|
||
|
if not isinstance(other, HolonomicFunction):
|
||
|
other = sympify(other)
|
||
|
|
||
|
if other.has(self.x):
|
||
|
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
|
||
|
|
||
|
if not self._have_init_cond():
|
||
|
return self
|
||
|
else:
|
||
|
y0 = _extend_y0(self, ann_self.order)
|
||
|
y1 = []
|
||
|
|
||
|
for j in y0:
|
||
|
y1.append((Poly.new(j, self.x) * other).rep)
|
||
|
|
||
|
return HolonomicFunction(ann_self, self.x, self.x0, y1)
|
||
|
|
||
|
if self.annihilator.parent.base != other.annihilator.parent.base:
|
||
|
a, b = self.unify(other)
|
||
|
return a * b
|
||
|
|
||
|
ann_other = other.annihilator
|
||
|
|
||
|
list_self = []
|
||
|
list_other = []
|
||
|
|
||
|
a = ann_self.order
|
||
|
b = ann_other.order
|
||
|
|
||
|
R = ann_self.parent.base
|
||
|
K = R.get_field()
|
||
|
|
||
|
for j in ann_self.listofpoly:
|
||
|
list_self.append(K.new(j.rep))
|
||
|
|
||
|
for j in ann_other.listofpoly:
|
||
|
list_other.append(K.new(j.rep))
|
||
|
|
||
|
# will be used to reduce the degree
|
||
|
self_red = [-list_self[i] / list_self[a] for i in range(a)]
|
||
|
|
||
|
other_red = [-list_other[i] / list_other[b] for i in range(b)]
|
||
|
|
||
|
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
|
||
|
coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)]
|
||
|
coeff_mul[0][0] = K.one
|
||
|
|
||
|
# making the ansatz
|
||
|
lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
|
||
|
lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose()
|
||
|
|
||
|
homo_sys = DomainMatrix.zeros((a*b, 1), K)
|
||
|
|
||
|
sol = _find_nonzero_solution(lin_sys, homo_sys)
|
||
|
|
||
|
# until a non trivial solution is found
|
||
|
while sol.is_zero_matrix:
|
||
|
|
||
|
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
|
||
|
for i in range(a - 1, -1, -1):
|
||
|
for j in range(b - 1, -1, -1):
|
||
|
coeff_mul[i][j + 1] += coeff_mul[i][j]
|
||
|
coeff_mul[i + 1][j] += coeff_mul[i][j]
|
||
|
if isinstance(coeff_mul[i][j], K.dtype):
|
||
|
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
|
||
|
else:
|
||
|
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
|
||
|
|
||
|
# reduce the terms to lower power using annihilators of f, g
|
||
|
for i in range(a + 1):
|
||
|
if not coeff_mul[i][b].is_zero:
|
||
|
for j in range(b):
|
||
|
coeff_mul[i][j] += other_red[j] * \
|
||
|
coeff_mul[i][b]
|
||
|
coeff_mul[i][b] = K.zero
|
||
|
|
||
|
# not d2 + 1, as that is already covered in previous loop
|
||
|
for j in range(b):
|
||
|
if not coeff_mul[a][j] == 0:
|
||
|
for i in range(a):
|
||
|
coeff_mul[i][j] += self_red[i] * \
|
||
|
coeff_mul[a][j]
|
||
|
coeff_mul[a][j] = K.zero
|
||
|
|
||
|
lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)])
|
||
|
lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose()
|
||
|
|
||
|
sol = _find_nonzero_solution(lin_sys, homo_sys)
|
||
|
|
||
|
sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False)
|
||
|
|
||
|
if not (self._have_init_cond() and other._have_init_cond()):
|
||
|
return HolonomicFunction(sol_ann, self.x)
|
||
|
|
||
|
if self.is_singularics() == False and other.is_singularics() == False:
|
||
|
|
||
|
# if both the conditions are at same point
|
||
|
if self.x0 == other.x0:
|
||
|
|
||
|
# try to find more initial conditions
|
||
|
y0_self = _extend_y0(self, sol_ann.order)
|
||
|
y0_other = _extend_y0(other, sol_ann.order)
|
||
|
# h(x0) = f(x0) * g(x0)
|
||
|
y0 = [y0_self[0] * y0_other[0]]
|
||
|
|
||
|
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
|
||
|
for i in range(1, min(len(y0_self), len(y0_other))):
|
||
|
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
|
||
|
for j in range(i + 1):
|
||
|
for k in range(i + 1):
|
||
|
if j + k == i:
|
||
|
coeff[j][k] = binomial(i, j)
|
||
|
|
||
|
sol = 0
|
||
|
for j in range(i + 1):
|
||
|
for k in range(i + 1):
|
||
|
sol += coeff[j][k]* y0_self[j] * y0_other[k]
|
||
|
|
||
|
y0.append(sol)
|
||
|
|
||
|
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
|
||
|
|
||
|
# if the points are different, consider one
|
||
|
else:
|
||
|
|
||
|
selfat0 = self.annihilator.is_singular(0)
|
||
|
otherat0 = other.annihilator.is_singular(0)
|
||
|
|
||
|
if self.x0 == 0 and not selfat0 and not otherat0:
|
||
|
return self * other.change_ics(0)
|
||
|
|
||
|
elif other.x0 == 0 and not selfat0 and not otherat0:
|
||
|
return self.change_ics(0) * other
|
||
|
|
||
|
else:
|
||
|
selfatx0 = self.annihilator.is_singular(self.x0)
|
||
|
otheratx0 = other.annihilator.is_singular(self.x0)
|
||
|
|
||
|
if not selfatx0 and not otheratx0:
|
||
|
return self * other.change_ics(self.x0)
|
||
|
|
||
|
else:
|
||
|
return self.change_ics(other.x0) * other
|
||
|
|
||
|
if self.x0 != other.x0:
|
||
|
return HolonomicFunction(sol_ann, self.x)
|
||
|
|
||
|
# if the functions have singular_ics
|
||
|
y1 = None
|
||
|
y2 = None
|
||
|
|
||
|
if self.is_singularics() == False and other.is_singularics() == True:
|
||
|
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
|
||
|
y1 = {S.Zero: _y0}
|
||
|
y2 = other.y0
|
||
|
elif self.is_singularics() == True and other.is_singularics() == False:
|
||
|
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
|
||
|
y1 = self.y0
|
||
|
y2 = {S.Zero: _y0}
|
||
|
elif self.is_singularics() == True and other.is_singularics() == True:
|
||
|
y1 = self.y0
|
||
|
y2 = other.y0
|
||
|
|
||
|
y0 = {}
|
||
|
# multiply every possible pair of the series terms
|
||
|
for i in y1:
|
||
|
for j in y2:
|
||
|
k = min(len(y1[i]), len(y2[j]))
|
||
|
c = []
|
||
|
for a in range(k):
|
||
|
s = S.Zero
|
||
|
for b in range(a + 1):
|
||
|
s += y1[i][b] * y2[j][a - b]
|
||
|
c.append(s)
|
||
|
if not i + j in y0:
|
||
|
y0[i + j] = c
|
||
|
else:
|
||
|
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
|
||
|
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
|
||
|
|
||
|
__rmul__ = __mul__
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
return self + other * -1
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
return self * -1 + other
|
||
|
|
||
|
def __neg__(self):
|
||
|
return -1 * self
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
return self * (S.One / other)
|
||
|
|
||
|
def __pow__(self, n):
|
||
|
if self.annihilator.order <= 1:
|
||
|
ann = self.annihilator
|
||
|
parent = ann.parent
|
||
|
|
||
|
if self.y0 is None:
|
||
|
y0 = None
|
||
|
else:
|
||
|
y0 = [list(self.y0)[0] ** n]
|
||
|
|
||
|
p0 = ann.listofpoly[0]
|
||
|
p1 = ann.listofpoly[1]
|
||
|
|
||
|
p0 = (Poly.new(p0, self.x) * n).rep
|
||
|
|
||
|
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
|
||
|
dd = DifferentialOperator(sol, parent)
|
||
|
return HolonomicFunction(dd, self.x, self.x0, y0)
|
||
|
if n < 0:
|
||
|
raise NotHolonomicError("Negative Power on a Holonomic Function")
|
||
|
if n == 0:
|
||
|
Dx = self.annihilator.parent.derivative_operator
|
||
|
return HolonomicFunction(Dx, self.x, S.Zero, [S.One])
|
||
|
if n == 1:
|
||
|
return self
|
||
|
else:
|
||
|
if n % 2 == 1:
|
||
|
powreduce = self**(n - 1)
|
||
|
return powreduce * self
|
||
|
elif n % 2 == 0:
|
||
|
powreduce = self**(n / 2)
|
||
|
return powreduce * powreduce
|
||
|
|
||
|
def degree(self):
|
||
|
"""
|
||
|
Returns the highest power of `x` in the annihilator.
|
||
|
"""
|
||
|
sol = [i.degree() for i in self.annihilator.listofpoly]
|
||
|
return max(sol)
|
||
|
|
||
|
def composition(self, expr, *args, **kwargs):
|
||
|
"""
|
||
|
Returns function after composition of a holonomic
|
||
|
function with an algebraic function. The method cannot compute
|
||
|
initial conditions for the result by itself, so they can be also be
|
||
|
provided.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import QQ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
|
||
|
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
|
||
|
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
|
||
|
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
|
||
|
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
from_hyper
|
||
|
"""
|
||
|
|
||
|
R = self.annihilator.parent
|
||
|
a = self.annihilator.order
|
||
|
diff = expr.diff(self.x)
|
||
|
listofpoly = self.annihilator.listofpoly
|
||
|
|
||
|
for i, j in enumerate(listofpoly):
|
||
|
if isinstance(j, self.annihilator.parent.base.dtype):
|
||
|
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
|
||
|
|
||
|
r = listofpoly[a].subs({self.x:expr})
|
||
|
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
|
||
|
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
|
||
|
coeffs[0] = S.One
|
||
|
system = [coeffs]
|
||
|
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
|
||
|
while True:
|
||
|
coeffs_next = [p.diff(self.x) for p in coeffs]
|
||
|
for i in range(a - 1):
|
||
|
coeffs_next[i + 1] += (coeffs[i] * diff)
|
||
|
for i in range(a):
|
||
|
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
|
||
|
coeffs = coeffs_next
|
||
|
# check for linear relations
|
||
|
system.append(coeffs)
|
||
|
sol, taus = (Matrix(system).transpose()
|
||
|
).gauss_jordan_solve(homogeneous)
|
||
|
if sol.is_zero_matrix is not True:
|
||
|
break
|
||
|
|
||
|
tau = list(taus)[0]
|
||
|
sol = sol.subs(tau, 1)
|
||
|
sol = _normalize(sol[0:], R, negative=False)
|
||
|
|
||
|
# if initial conditions are given for the resulting function
|
||
|
if args:
|
||
|
return HolonomicFunction(sol, self.x, args[0], args[1])
|
||
|
return HolonomicFunction(sol, self.x)
|
||
|
|
||
|
def to_sequence(self, lb=True):
|
||
|
r"""
|
||
|
Finds recurrence relation for the coefficients in the series expansion
|
||
|
of the function about :math:`x_0`, where :math:`x_0` is the point at
|
||
|
which the initial condition is stored.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
|
||
|
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
|
||
|
smallest ``n`` for which the recurrence holds true.
|
||
|
|
||
|
If the point :math:`x_0` is regular singular, a list of solutions in
|
||
|
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
|
||
|
Each tuple in this vector represents a recurrence relation :math:`R`
|
||
|
associated with a root of the indicial equation ``p``. Conditions of
|
||
|
a different format can also be provided in this case, see the
|
||
|
docstring of HolonomicFunction class.
|
||
|
|
||
|
If it's not possible to numerically compute a initial condition,
|
||
|
it is returned as a symbol :math:`C_j`, denoting the coefficient of
|
||
|
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import QQ
|
||
|
>>> from sympy import symbols, S
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
|
||
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
|
||
|
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
|
||
|
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
|
||
|
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
|
||
|
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
|
||
|
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
HolonomicFunction.series
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://hal.inria.fr/inria-00070025/document
|
||
|
.. [2] https://www3.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
|
||
|
|
||
|
"""
|
||
|
|
||
|
if self.x0 != 0:
|
||
|
return self.shift_x(self.x0).to_sequence()
|
||
|
|
||
|
# check whether a power series exists if the point is singular
|
||
|
if self.annihilator.is_singular(self.x0):
|
||
|
return self._frobenius(lb=lb)
|
||
|
|
||
|
dict1 = {}
|
||
|
n = Symbol('n', integer=True)
|
||
|
dom = self.annihilator.parent.base.dom
|
||
|
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
|
||
|
|
||
|
# substituting each term of the form `x^k Dx^j` in the
|
||
|
# annihilator, according to the formula below:
|
||
|
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
|
||
|
# for explanation see [2].
|
||
|
for i, j in enumerate(self.annihilator.listofpoly):
|
||
|
|
||
|
listofdmp = j.all_coeffs()
|
||
|
degree = len(listofdmp) - 1
|
||
|
|
||
|
for k in range(degree + 1):
|
||
|
coeff = listofdmp[degree - k]
|
||
|
|
||
|
if coeff == 0:
|
||
|
continue
|
||
|
|
||
|
if (i - k, k) in dict1:
|
||
|
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
|
||
|
else:
|
||
|
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
|
||
|
|
||
|
|
||
|
sol = []
|
||
|
keylist = [i[0] for i in dict1]
|
||
|
lower = min(keylist)
|
||
|
upper = max(keylist)
|
||
|
degree = self.degree()
|
||
|
|
||
|
# the recurrence relation holds for all values of
|
||
|
# n greater than smallest_n, i.e. n >= smallest_n
|
||
|
smallest_n = lower + degree
|
||
|
dummys = {}
|
||
|
eqs = []
|
||
|
unknowns = []
|
||
|
|
||
|
# an appropriate shift of the recurrence
|
||
|
for j in range(lower, upper + 1):
|
||
|
if j in keylist:
|
||
|
temp = S.Zero
|
||
|
for k in dict1.keys():
|
||
|
if k[0] == j:
|
||
|
temp += dict1[k].subs(n, n - lower)
|
||
|
sol.append(temp)
|
||
|
else:
|
||
|
sol.append(S.Zero)
|
||
|
|
||
|
# the recurrence relation
|
||
|
sol = RecurrenceOperator(sol, R)
|
||
|
|
||
|
# computing the initial conditions for recurrence
|
||
|
order = sol.order
|
||
|
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
|
||
|
all_roots = all_roots.keys()
|
||
|
|
||
|
if all_roots:
|
||
|
max_root = max(all_roots) + 1
|
||
|
smallest_n = max(max_root, smallest_n)
|
||
|
order += smallest_n
|
||
|
|
||
|
y0 = _extend_y0(self, order)
|
||
|
u0 = []
|
||
|
|
||
|
# u(n) = y^n(0)/factorial(n)
|
||
|
for i, j in enumerate(y0):
|
||
|
u0.append(j / factorial(i))
|
||
|
|
||
|
# if sufficient conditions can't be computed then
|
||
|
# try to use the series method i.e.
|
||
|
# equate the coefficients of x^k in the equation formed by
|
||
|
# substituting the series in differential equation, to zero.
|
||
|
if len(u0) < order:
|
||
|
|
||
|
for i in range(degree):
|
||
|
eq = S.Zero
|
||
|
|
||
|
for j in dict1:
|
||
|
|
||
|
if i + j[0] < 0:
|
||
|
dummys[i + j[0]] = S.Zero
|
||
|
|
||
|
elif i + j[0] < len(u0):
|
||
|
dummys[i + j[0]] = u0[i + j[0]]
|
||
|
|
||
|
elif not i + j[0] in dummys:
|
||
|
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
|
||
|
unknowns.append(dummys[i + j[0]])
|
||
|
|
||
|
if j[1] <= i:
|
||
|
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
|
||
|
|
||
|
eqs.append(eq)
|
||
|
|
||
|
# solve the system of equations formed
|
||
|
soleqs = solve(eqs, *unknowns)
|
||
|
|
||
|
if isinstance(soleqs, dict):
|
||
|
|
||
|
for i in range(len(u0), order):
|
||
|
|
||
|
if i not in dummys:
|
||
|
dummys[i] = Symbol('C_%s' %i)
|
||
|
|
||
|
if dummys[i] in soleqs:
|
||
|
u0.append(soleqs[dummys[i]])
|
||
|
|
||
|
else:
|
||
|
u0.append(dummys[i])
|
||
|
|
||
|
if lb:
|
||
|
return [(HolonomicSequence(sol, u0), smallest_n)]
|
||
|
return [HolonomicSequence(sol, u0)]
|
||
|
|
||
|
for i in range(len(u0), order):
|
||
|
|
||
|
if i not in dummys:
|
||
|
dummys[i] = Symbol('C_%s' %i)
|
||
|
|
||
|
s = False
|
||
|
for j in soleqs:
|
||
|
if dummys[i] in j:
|
||
|
u0.append(j[dummys[i]])
|
||
|
s = True
|
||
|
if not s:
|
||
|
u0.append(dummys[i])
|
||
|
|
||
|
if lb:
|
||
|
return [(HolonomicSequence(sol, u0), smallest_n)]
|
||
|
|
||
|
return [HolonomicSequence(sol, u0)]
|
||
|
|
||
|
def _frobenius(self, lb=True):
|
||
|
# compute the roots of indicial equation
|
||
|
indicialroots = self._indicial()
|
||
|
|
||
|
reals = []
|
||
|
compl = []
|
||
|
for i in ordered(indicialroots.keys()):
|
||
|
if i.is_real:
|
||
|
reals.extend([i] * indicialroots[i])
|
||
|
else:
|
||
|
a, b = i.as_real_imag()
|
||
|
compl.extend([(i, a, b)] * indicialroots[i])
|
||
|
|
||
|
# sort the roots for a fixed ordering of solution
|
||
|
compl.sort(key=lambda x : x[1])
|
||
|
compl.sort(key=lambda x : x[2])
|
||
|
reals.sort()
|
||
|
|
||
|
# grouping the roots, roots differ by an integer are put in the same group.
|
||
|
grp = []
|
||
|
|
||
|
for i in reals:
|
||
|
intdiff = False
|
||
|
if len(grp) == 0:
|
||
|
grp.append([i])
|
||
|
continue
|
||
|
for j in grp:
|
||
|
if int(j[0] - i) == j[0] - i:
|
||
|
j.append(i)
|
||
|
intdiff = True
|
||
|
break
|
||
|
if not intdiff:
|
||
|
grp.append([i])
|
||
|
|
||
|
# True if none of the roots differ by an integer i.e.
|
||
|
# each element in group have only one member
|
||
|
independent = True if all(len(i) == 1 for i in grp) else False
|
||
|
|
||
|
allpos = all(i >= 0 for i in reals)
|
||
|
allint = all(int(i) == i for i in reals)
|
||
|
|
||
|
# if initial conditions are provided
|
||
|
# then use them.
|
||
|
if self.is_singularics() == True:
|
||
|
rootstoconsider = []
|
||
|
for i in ordered(self.y0.keys()):
|
||
|
for j in ordered(indicialroots.keys()):
|
||
|
if equal_valued(j, i):
|
||
|
rootstoconsider.append(i)
|
||
|
|
||
|
elif allpos and allint:
|
||
|
rootstoconsider = [min(reals)]
|
||
|
|
||
|
elif independent:
|
||
|
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
|
||
|
|
||
|
elif not allint:
|
||
|
rootstoconsider = []
|
||
|
for i in reals:
|
||
|
if not int(i) == i:
|
||
|
rootstoconsider.append(i)
|
||
|
|
||
|
elif not allpos:
|
||
|
|
||
|
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
|
||
|
rootstoconsider = [min(reals)]
|
||
|
|
||
|
else:
|
||
|
posroots = []
|
||
|
for i in reals:
|
||
|
if i >= 0:
|
||
|
posroots.append(i)
|
||
|
rootstoconsider = [min(posroots)]
|
||
|
|
||
|
n = Symbol('n', integer=True)
|
||
|
dom = self.annihilator.parent.base.dom
|
||
|
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
|
||
|
|
||
|
finalsol = []
|
||
|
char = ord('C')
|
||
|
|
||
|
for p in rootstoconsider:
|
||
|
dict1 = {}
|
||
|
|
||
|
for i, j in enumerate(self.annihilator.listofpoly):
|
||
|
|
||
|
listofdmp = j.all_coeffs()
|
||
|
degree = len(listofdmp) - 1
|
||
|
|
||
|
for k in range(degree + 1):
|
||
|
coeff = listofdmp[degree - k]
|
||
|
|
||
|
if coeff == 0:
|
||
|
continue
|
||
|
|
||
|
if (i - k, k - i) in dict1:
|
||
|
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
|
||
|
else:
|
||
|
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
|
||
|
|
||
|
sol = []
|
||
|
keylist = [i[0] for i in dict1]
|
||
|
lower = min(keylist)
|
||
|
upper = max(keylist)
|
||
|
degree = max([i[1] for i in dict1])
|
||
|
degree2 = min([i[1] for i in dict1])
|
||
|
|
||
|
smallest_n = lower + degree
|
||
|
dummys = {}
|
||
|
eqs = []
|
||
|
unknowns = []
|
||
|
|
||
|
for j in range(lower, upper + 1):
|
||
|
if j in keylist:
|
||
|
temp = S.Zero
|
||
|
for k in dict1.keys():
|
||
|
if k[0] == j:
|
||
|
temp += dict1[k].subs(n, n - lower)
|
||
|
sol.append(temp)
|
||
|
else:
|
||
|
sol.append(S.Zero)
|
||
|
|
||
|
# the recurrence relation
|
||
|
sol = RecurrenceOperator(sol, R)
|
||
|
|
||
|
# computing the initial conditions for recurrence
|
||
|
order = sol.order
|
||
|
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
|
||
|
all_roots = all_roots.keys()
|
||
|
|
||
|
if all_roots:
|
||
|
max_root = max(all_roots) + 1
|
||
|
smallest_n = max(max_root, smallest_n)
|
||
|
order += smallest_n
|
||
|
|
||
|
u0 = []
|
||
|
|
||
|
if self.is_singularics() == True:
|
||
|
u0 = self.y0[p]
|
||
|
|
||
|
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
|
||
|
y0 = _extend_y0(self, order + int(p))
|
||
|
# u(n) = y^n(0)/factorial(n)
|
||
|
if len(y0) > int(p):
|
||
|
for i in range(int(p), len(y0)):
|
||
|
u0.append(y0[i] / factorial(i))
|
||
|
|
||
|
if len(u0) < order:
|
||
|
|
||
|
for i in range(degree2, degree):
|
||
|
eq = S.Zero
|
||
|
|
||
|
for j in dict1:
|
||
|
if i + j[0] < 0:
|
||
|
dummys[i + j[0]] = S.Zero
|
||
|
|
||
|
elif i + j[0] < len(u0):
|
||
|
dummys[i + j[0]] = u0[i + j[0]]
|
||
|
|
||
|
elif not i + j[0] in dummys:
|
||
|
letter = chr(char) + '_%s' %(i + j[0])
|
||
|
dummys[i + j[0]] = Symbol(letter)
|
||
|
unknowns.append(dummys[i + j[0]])
|
||
|
|
||
|
if j[1] <= i:
|
||
|
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
|
||
|
|
||
|
eqs.append(eq)
|
||
|
|
||
|
# solve the system of equations formed
|
||
|
soleqs = solve(eqs, *unknowns)
|
||
|
|
||
|
if isinstance(soleqs, dict):
|
||
|
|
||
|
for i in range(len(u0), order):
|
||
|
|
||
|
if i not in dummys:
|
||
|
letter = chr(char) + '_%s' %i
|
||
|
dummys[i] = Symbol(letter)
|
||
|
|
||
|
if dummys[i] in soleqs:
|
||
|
u0.append(soleqs[dummys[i]])
|
||
|
|
||
|
else:
|
||
|
u0.append(dummys[i])
|
||
|
|
||
|
if lb:
|
||
|
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
|
||
|
continue
|
||
|
else:
|
||
|
finalsol.append((HolonomicSequence(sol, u0), p))
|
||
|
continue
|
||
|
|
||
|
for i in range(len(u0), order):
|
||
|
|
||
|
if i not in dummys:
|
||
|
letter = chr(char) + '_%s' %i
|
||
|
dummys[i] = Symbol(letter)
|
||
|
|
||
|
s = False
|
||
|
for j in soleqs:
|
||
|
if dummys[i] in j:
|
||
|
u0.append(j[dummys[i]])
|
||
|
s = True
|
||
|
if not s:
|
||
|
u0.append(dummys[i])
|
||
|
if lb:
|
||
|
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
|
||
|
|
||
|
else:
|
||
|
finalsol.append((HolonomicSequence(sol, u0), p))
|
||
|
char += 1
|
||
|
return finalsol
|
||
|
|
||
|
def series(self, n=6, coefficient=False, order=True, _recur=None):
|
||
|
r"""
|
||
|
Finds the power series expansion of given holonomic function about :math:`x_0`.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A list of series might be returned if :math:`x_0` is a regular point with
|
||
|
multiple roots of the indicial equation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import QQ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
|
||
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
|
||
|
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
|
||
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
|
||
|
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
HolonomicFunction.to_sequence
|
||
|
"""
|
||
|
|
||
|
if _recur is None:
|
||
|
recurrence = self.to_sequence()
|
||
|
else:
|
||
|
recurrence = _recur
|
||
|
|
||
|
if isinstance(recurrence, tuple) and len(recurrence) == 2:
|
||
|
recurrence = recurrence[0]
|
||
|
constantpower = 0
|
||
|
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
|
||
|
constantpower = recurrence[1]
|
||
|
recurrence = recurrence[0]
|
||
|
|
||
|
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
|
||
|
recurrence = recurrence[0][0]
|
||
|
constantpower = 0
|
||
|
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
|
||
|
constantpower = recurrence[0][1]
|
||
|
recurrence = recurrence[0][0]
|
||
|
else:
|
||
|
sol = []
|
||
|
for i in recurrence:
|
||
|
sol.append(self.series(_recur=i))
|
||
|
return sol
|
||
|
|
||
|
n = n - int(constantpower)
|
||
|
l = len(recurrence.u0) - 1
|
||
|
k = recurrence.recurrence.order
|
||
|
x = self.x
|
||
|
x0 = self.x0
|
||
|
seq_dmp = recurrence.recurrence.listofpoly
|
||
|
R = recurrence.recurrence.parent.base
|
||
|
K = R.get_field()
|
||
|
seq = []
|
||
|
|
||
|
for i, j in enumerate(seq_dmp):
|
||
|
seq.append(K.new(j.rep))
|
||
|
|
||
|
sub = [-seq[i] / seq[k] for i in range(k)]
|
||
|
sol = list(recurrence.u0)
|
||
|
|
||
|
if l + 1 >= n:
|
||
|
pass
|
||
|
else:
|
||
|
# use the initial conditions to find the next term
|
||
|
for i in range(l + 1 - k, n - k):
|
||
|
coeff = S.Zero
|
||
|
for j in range(k):
|
||
|
if i + j >= 0:
|
||
|
coeff += DMFsubs(sub[j], i) * sol[i + j]
|
||
|
sol.append(coeff)
|
||
|
|
||
|
if coefficient:
|
||
|
return sol
|
||
|
|
||
|
ser = S.Zero
|
||
|
for i, j in enumerate(sol):
|
||
|
ser += x**(i + constantpower) * j
|
||
|
if order:
|
||
|
ser += Order(x**(n + int(constantpower)), x)
|
||
|
if x0 != 0:
|
||
|
return ser.subs(x, x - x0)
|
||
|
return ser
|
||
|
|
||
|
def _indicial(self):
|
||
|
"""
|
||
|
Computes roots of the Indicial equation.
|
||
|
"""
|
||
|
|
||
|
if self.x0 != 0:
|
||
|
return self.shift_x(self.x0)._indicial()
|
||
|
|
||
|
list_coeff = self.annihilator.listofpoly
|
||
|
R = self.annihilator.parent.base
|
||
|
x = self.x
|
||
|
s = R.zero
|
||
|
y = R.one
|
||
|
|
||
|
def _pole_degree(poly):
|
||
|
root_all = roots(R.to_sympy(poly), x, filter='Z')
|
||
|
if 0 in root_all.keys():
|
||
|
return root_all[0]
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
degree = [j.degree() for j in list_coeff]
|
||
|
degree = max(degree)
|
||
|
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
|
||
|
|
||
|
deg = lambda q: inf if q.is_zero else _pole_degree(q)
|
||
|
b = deg(list_coeff[0])
|
||
|
|
||
|
for j in range(1, len(list_coeff)):
|
||
|
b = min(b, deg(list_coeff[j]) - j)
|
||
|
|
||
|
for i, j in enumerate(list_coeff):
|
||
|
listofdmp = j.all_coeffs()
|
||
|
degree = len(listofdmp) - 1
|
||
|
if - i - b <= 0 and degree - i - b >= 0:
|
||
|
s = s + listofdmp[degree - i - b] * y
|
||
|
y *= x - i
|
||
|
|
||
|
return roots(R.to_sympy(s), x)
|
||
|
|
||
|
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
|
||
|
r"""
|
||
|
Finds numerical value of a holonomic function using numerical methods.
|
||
|
(RK4 by default). A set of points (real or complex) must be provided
|
||
|
which will be the path for the numerical integration.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical
|
||
|
values will be computed at each point in this order
|
||
|
:math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`.
|
||
|
|
||
|
Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import QQ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
|
||
|
|
||
|
A straight line on the real axis from (0 to 1)
|
||
|
|
||
|
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
|
||
|
|
||
|
Runge-Kutta 4th order on e^x from 0.1 to 1.
|
||
|
Exact solution at 1 is 2.71828182845905
|
||
|
|
||
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
|
||
|
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
|
||
|
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
|
||
|
2.45960141378007, 2.71827974413517]
|
||
|
|
||
|
Euler's method for the same
|
||
|
|
||
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
|
||
|
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
|
||
|
2.357947691, 2.5937424601]
|
||
|
|
||
|
One can also observe that the value obtained using Runge-Kutta 4th order
|
||
|
is much more accurate than Euler's method.
|
||
|
"""
|
||
|
|
||
|
from sympy.holonomic.numerical import _evalf
|
||
|
lp = False
|
||
|
|
||
|
# if a point `b` is given instead of a mesh
|
||
|
if not hasattr(points, "__iter__"):
|
||
|
lp = True
|
||
|
b = S(points)
|
||
|
if self.x0 == b:
|
||
|
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
|
||
|
|
||
|
if not b.is_Number:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
a = self.x0
|
||
|
if a > b:
|
||
|
h = -h
|
||
|
n = int((b - a) / h)
|
||
|
points = [a + h]
|
||
|
for i in range(n - 1):
|
||
|
points.append(points[-1] + h)
|
||
|
|
||
|
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
|
||
|
if i == self.x0 or i in points:
|
||
|
raise SingularityError(self, i)
|
||
|
|
||
|
if lp:
|
||
|
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
|
||
|
return _evalf(self, points, method=method, derivatives=derivatives)
|
||
|
|
||
|
def change_x(self, z):
|
||
|
"""
|
||
|
Changes only the variable of Holonomic Function, for internal
|
||
|
purposes. For composition use HolonomicFunction.composition()
|
||
|
"""
|
||
|
|
||
|
dom = self.annihilator.parent.base.dom
|
||
|
R = dom.old_poly_ring(z)
|
||
|
parent, _ = DifferentialOperators(R, 'Dx')
|
||
|
sol = []
|
||
|
for j in self.annihilator.listofpoly:
|
||
|
sol.append(R(j.rep))
|
||
|
sol = DifferentialOperator(sol, parent)
|
||
|
return HolonomicFunction(sol, z, self.x0, self.y0)
|
||
|
|
||
|
def shift_x(self, a):
|
||
|
"""
|
||
|
Substitute `x + a` for `x`.
|
||
|
"""
|
||
|
|
||
|
x = self.x
|
||
|
listaftershift = self.annihilator.listofpoly
|
||
|
base = self.annihilator.parent.base
|
||
|
|
||
|
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
|
||
|
sol = DifferentialOperator(sol, self.annihilator.parent)
|
||
|
x0 = self.x0 - a
|
||
|
if not self._have_init_cond():
|
||
|
return HolonomicFunction(sol, x)
|
||
|
return HolonomicFunction(sol, x, x0, self.y0)
|
||
|
|
||
|
def to_hyper(self, as_list=False, _recur=None):
|
||
|
r"""
|
||
|
Returns a hypergeometric function (or linear combination of them)
|
||
|
representing the given holonomic function.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Returns an answer of the form:
|
||
|
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots`
|
||
|
|
||
|
This is very useful as one can now use ``hyperexpand`` to find the
|
||
|
symbolic expressions/functions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import ZZ
|
||
|
>>> from sympy import symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
|
||
|
>>> # sin(x)
|
||
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
|
||
|
x*hyper((), (3/2,), -x**2/4)
|
||
|
>>> # exp(x)
|
||
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
|
||
|
hyper((), (), x)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
from_hyper, from_meijerg
|
||
|
"""
|
||
|
|
||
|
if _recur is None:
|
||
|
recurrence = self.to_sequence()
|
||
|
else:
|
||
|
recurrence = _recur
|
||
|
|
||
|
if isinstance(recurrence, tuple) and len(recurrence) == 2:
|
||
|
smallest_n = recurrence[1]
|
||
|
recurrence = recurrence[0]
|
||
|
constantpower = 0
|
||
|
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
|
||
|
smallest_n = recurrence[2]
|
||
|
constantpower = recurrence[1]
|
||
|
recurrence = recurrence[0]
|
||
|
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
|
||
|
smallest_n = recurrence[0][1]
|
||
|
recurrence = recurrence[0][0]
|
||
|
constantpower = 0
|
||
|
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
|
||
|
smallest_n = recurrence[0][2]
|
||
|
constantpower = recurrence[0][1]
|
||
|
recurrence = recurrence[0][0]
|
||
|
else:
|
||
|
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
|
||
|
for i in recurrence[1:]:
|
||
|
sol += self.to_hyper(as_list=as_list, _recur=i)
|
||
|
return sol
|
||
|
|
||
|
u0 = recurrence.u0
|
||
|
r = recurrence.recurrence
|
||
|
x = self.x
|
||
|
x0 = self.x0
|
||
|
|
||
|
# order of the recurrence relation
|
||
|
m = r.order
|
||
|
|
||
|
# when no recurrence exists, and the power series have finite terms
|
||
|
if m == 0:
|
||
|
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
|
||
|
|
||
|
sol = S.Zero
|
||
|
for j, i in enumerate(nonzeroterms):
|
||
|
|
||
|
if i < 0 or int(i) != i:
|
||
|
continue
|
||
|
|
||
|
i = int(i)
|
||
|
if i < len(u0):
|
||
|
if isinstance(u0[i], (PolyElement, FracElement)):
|
||
|
u0[i] = u0[i].as_expr()
|
||
|
sol += u0[i] * x**i
|
||
|
|
||
|
else:
|
||
|
sol += Symbol('C_%s' %j) * x**i
|
||
|
|
||
|
if isinstance(sol, (PolyElement, FracElement)):
|
||
|
sol = sol.as_expr() * x**constantpower
|
||
|
else:
|
||
|
sol = sol * x**constantpower
|
||
|
if as_list:
|
||
|
if x0 != 0:
|
||
|
return [(sol.subs(x, x - x0), )]
|
||
|
return [(sol, )]
|
||
|
if x0 != 0:
|
||
|
return sol.subs(x, x - x0)
|
||
|
return sol
|
||
|
|
||
|
if smallest_n + m > len(u0):
|
||
|
raise NotImplementedError("Can't compute sufficient Initial Conditions")
|
||
|
|
||
|
# check if the recurrence represents a hypergeometric series
|
||
|
is_hyper = True
|
||
|
|
||
|
for i in range(1, len(r.listofpoly)-1):
|
||
|
if r.listofpoly[i] != r.parent.base.zero:
|
||
|
is_hyper = False
|
||
|
break
|
||
|
|
||
|
if not is_hyper:
|
||
|
raise NotHyperSeriesError(self, self.x0)
|
||
|
|
||
|
a = r.listofpoly[0]
|
||
|
b = r.listofpoly[-1]
|
||
|
|
||
|
# the constant multiple of argument of hypergeometric function
|
||
|
if isinstance(a.rep[0], (PolyElement, FracElement)):
|
||
|
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
|
||
|
else:
|
||
|
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
|
||
|
|
||
|
sol = 0
|
||
|
|
||
|
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
|
||
|
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
|
||
|
|
||
|
# iterate through the initial conditions to find
|
||
|
# the hypergeometric representation of the given
|
||
|
# function.
|
||
|
# The answer will be a linear combination
|
||
|
# of different hypergeometric series which satisfies
|
||
|
# the recurrence.
|
||
|
if as_list:
|
||
|
listofsol = []
|
||
|
for i in range(smallest_n + m):
|
||
|
|
||
|
# if the recurrence relation doesn't hold for `n = i`,
|
||
|
# then a Hypergeometric representation doesn't exist.
|
||
|
# add the algebraic term a * x**i to the solution,
|
||
|
# where a is u0[i]
|
||
|
if i < smallest_n:
|
||
|
if as_list:
|
||
|
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
|
||
|
else:
|
||
|
sol += S(u0[i]) * x**i
|
||
|
continue
|
||
|
|
||
|
# if the coefficient u0[i] is zero, then the
|
||
|
# independent hypergeomtric series starting with
|
||
|
# x**i is not a part of the answer.
|
||
|
if S(u0[i]) == 0:
|
||
|
continue
|
||
|
|
||
|
ap = []
|
||
|
bq = []
|
||
|
|
||
|
# substitute m * n + i for n
|
||
|
for k in ordered(arg1.keys()):
|
||
|
ap.extend([nsimplify((i - k) / m)] * arg1[k])
|
||
|
|
||
|
for k in ordered(arg2.keys()):
|
||
|
bq.extend([nsimplify((i - k) / m)] * arg2[k])
|
||
|
|
||
|
# convention of (k + 1) in the denominator
|
||
|
if 1 in bq:
|
||
|
bq.remove(1)
|
||
|
else:
|
||
|
ap.append(1)
|
||
|
if as_list:
|
||
|
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
|
||
|
else:
|
||
|
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
|
||
|
if as_list:
|
||
|
return listofsol
|
||
|
sol = sol * x**constantpower
|
||
|
if x0 != 0:
|
||
|
return sol.subs(x, x - x0)
|
||
|
|
||
|
return sol
|
||
|
|
||
|
def to_expr(self):
|
||
|
"""
|
||
|
Converts a Holonomic Function back to elementary functions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
|
||
|
>>> from sympy import ZZ
|
||
|
>>> from sympy import symbols, S
|
||
|
>>> x = symbols('x')
|
||
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
|
||
|
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
|
||
|
besselj(1, x)
|
||
|
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
|
||
|
x*log(x + 1) + log(x + 1) + 1
|
||
|
|
||
|
"""
|
||
|
|
||
|
return hyperexpand(self.to_hyper()).simplify()
|
||
|
|
||
|
def change_ics(self, b, lenics=None):
|
||
|
"""
|
||
|
Changes the point `x0` to ``b`` for initial conditions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic import expr_to_holonomic
|
||
|
>>> from sympy import symbols, sin, exp
|
||
|
>>> x = symbols('x')
|
||
|
|
||
|
>>> expr_to_holonomic(sin(x)).change_ics(1)
|
||
|
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
|
||
|
|
||
|
>>> expr_to_holonomic(exp(x)).change_ics(2)
|
||
|
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
|
||
|
"""
|
||
|
|
||
|
symbolic = True
|
||
|
|
||
|
if lenics is None and len(self.y0) > self.annihilator.order:
|
||
|
lenics = len(self.y0)
|
||
|
dom = self.annihilator.parent.base.domain
|
||
|
|
||
|
try:
|
||
|
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
|
||
|
except (NotPowerSeriesError, NotHyperSeriesError):
|
||
|
symbolic = False
|
||
|
|
||
|
if symbolic and sol.x0 == b:
|
||
|
return sol
|
||
|
|
||
|
y0 = self.evalf(b, derivatives=True)
|
||
|
return HolonomicFunction(self.annihilator, self.x, b, y0)
|
||
|
|
||
|
def to_meijerg(self):
|
||
|
"""
|
||
|
Returns a linear combination of Meijer G-functions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic import expr_to_holonomic
|
||
|
>>> from sympy import sin, cos, hyperexpand, log, symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
|
||
|
sin(x) + cos(x)
|
||
|
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
|
||
|
log(x)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
to_hyper
|
||
|
"""
|
||
|
|
||
|
# convert to hypergeometric first
|
||
|
rep = self.to_hyper(as_list=True)
|
||
|
sol = S.Zero
|
||
|
|
||
|
for i in rep:
|
||
|
if len(i) == 1:
|
||
|
sol += i[0]
|
||
|
|
||
|
elif len(i) == 2:
|
||
|
sol += i[0] * _hyper_to_meijerg(i[1])
|
||
|
|
||
|
return sol
|
||
|
|
||
|
|
||
|
def from_hyper(func, x0=0, evalf=False):
|
||
|
r"""
|
||
|
Converts a hypergeometric function to holonomic.
|
||
|
``func`` is the Hypergeometric Function and ``x0`` is the point at
|
||
|
which initial conditions are required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import from_hyper
|
||
|
>>> from sympy import symbols, hyper, S
|
||
|
>>> x = symbols('x')
|
||
|
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
|
||
|
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
|
||
|
"""
|
||
|
|
||
|
a = func.ap
|
||
|
b = func.bq
|
||
|
z = func.args[2]
|
||
|
x = z.atoms(Symbol).pop()
|
||
|
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
|
||
|
|
||
|
# generalized hypergeometric differential equation
|
||
|
xDx = x*Dx
|
||
|
r1 = 1
|
||
|
for ai in a: # XXX gives sympify error if Mul is used with list of all factors
|
||
|
r1 *= xDx + ai
|
||
|
xDx_1 = xDx - 1
|
||
|
# r2 = Mul(*([Dx] + [xDx_1 + bi for bi in b])) # XXX gives sympify error
|
||
|
r2 = Dx
|
||
|
for bi in b:
|
||
|
r2 *= xDx_1 + bi
|
||
|
sol = r1 - r2
|
||
|
|
||
|
simp = hyperexpand(func)
|
||
|
|
||
|
if simp in (Infinity, NegativeInfinity):
|
||
|
return HolonomicFunction(sol, x).composition(z)
|
||
|
|
||
|
def _find_conditions(simp, x, x0, order, evalf=False):
|
||
|
y0 = []
|
||
|
for i in range(order):
|
||
|
if evalf:
|
||
|
val = simp.subs(x, x0).evalf()
|
||
|
else:
|
||
|
val = simp.subs(x, x0)
|
||
|
# return None if it is Infinite or NaN
|
||
|
if val.is_finite is False or isinstance(val, NaN):
|
||
|
return None
|
||
|
y0.append(val)
|
||
|
simp = simp.diff(x)
|
||
|
return y0
|
||
|
|
||
|
# if the function is known symbolically
|
||
|
if not isinstance(simp, hyper):
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order)
|
||
|
while not y0:
|
||
|
# if values don't exist at 0, then try to find initial
|
||
|
# conditions at 1. If it doesn't exist at 1 too then
|
||
|
# try 2 and so on.
|
||
|
x0 += 1
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order)
|
||
|
|
||
|
return HolonomicFunction(sol, x).composition(z, x0, y0)
|
||
|
|
||
|
if isinstance(simp, hyper):
|
||
|
x0 = 1
|
||
|
# use evalf if the function can't be simplified
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
|
||
|
while not y0:
|
||
|
x0 += 1
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
|
||
|
return HolonomicFunction(sol, x).composition(z, x0, y0)
|
||
|
|
||
|
return HolonomicFunction(sol, x).composition(z)
|
||
|
|
||
|
|
||
|
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
|
||
|
"""
|
||
|
Converts a Meijer G-function to Holonomic.
|
||
|
``func`` is the G-Function and ``x0`` is the point at
|
||
|
which initial conditions are required.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import from_meijerg
|
||
|
>>> from sympy import symbols, meijerg, S
|
||
|
>>> x = symbols('x')
|
||
|
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
|
||
|
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
|
||
|
"""
|
||
|
|
||
|
a = func.ap
|
||
|
b = func.bq
|
||
|
n = len(func.an)
|
||
|
m = len(func.bm)
|
||
|
p = len(a)
|
||
|
z = func.args[2]
|
||
|
x = z.atoms(Symbol).pop()
|
||
|
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
|
||
|
|
||
|
# compute the differential equation satisfied by the
|
||
|
# Meijer G-function.
|
||
|
xDx = x*Dx
|
||
|
xDx1 = xDx + 1
|
||
|
r1 = x*(-1)**(m + n - p)
|
||
|
for ai in a: # XXX gives sympify error if args given in list
|
||
|
r1 *= xDx1 - ai
|
||
|
# r2 = Mul(*[xDx - bi for bi in b]) # gives sympify error
|
||
|
r2 = 1
|
||
|
for bi in b:
|
||
|
r2 *= xDx - bi
|
||
|
sol = r1 - r2
|
||
|
|
||
|
if not initcond:
|
||
|
return HolonomicFunction(sol, x).composition(z)
|
||
|
|
||
|
simp = hyperexpand(func)
|
||
|
|
||
|
if simp in (Infinity, NegativeInfinity):
|
||
|
return HolonomicFunction(sol, x).composition(z)
|
||
|
|
||
|
def _find_conditions(simp, x, x0, order, evalf=False):
|
||
|
y0 = []
|
||
|
for i in range(order):
|
||
|
if evalf:
|
||
|
val = simp.subs(x, x0).evalf()
|
||
|
else:
|
||
|
val = simp.subs(x, x0)
|
||
|
if val.is_finite is False or isinstance(val, NaN):
|
||
|
return None
|
||
|
y0.append(val)
|
||
|
simp = simp.diff(x)
|
||
|
return y0
|
||
|
|
||
|
# computing initial conditions
|
||
|
if not isinstance(simp, meijerg):
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order)
|
||
|
while not y0:
|
||
|
x0 += 1
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order)
|
||
|
|
||
|
return HolonomicFunction(sol, x).composition(z, x0, y0)
|
||
|
|
||
|
if isinstance(simp, meijerg):
|
||
|
x0 = 1
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
|
||
|
while not y0:
|
||
|
x0 += 1
|
||
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
|
||
|
|
||
|
return HolonomicFunction(sol, x).composition(z, x0, y0)
|
||
|
|
||
|
return HolonomicFunction(sol, x).composition(z)
|
||
|
|
||
|
|
||
|
x_1 = Dummy('x_1')
|
||
|
_lookup_table = None
|
||
|
domain_for_table = None
|
||
|
from sympy.integrals.meijerint import _mytype
|
||
|
|
||
|
|
||
|
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
|
||
|
"""
|
||
|
Converts a function or an expression to a holonomic function.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
func:
|
||
|
The expression to be converted.
|
||
|
x:
|
||
|
variable for the function.
|
||
|
x0:
|
||
|
point at which initial condition must be computed.
|
||
|
y0:
|
||
|
One can optionally provide initial condition if the method
|
||
|
is not able to do it automatically.
|
||
|
lenics:
|
||
|
Number of terms in the initial condition. By default it is
|
||
|
equal to the order of the annihilator.
|
||
|
domain:
|
||
|
Ground domain for the polynomials in ``x`` appearing as coefficients
|
||
|
in the annihilator.
|
||
|
initcond:
|
||
|
Set it false if you do not want the initial conditions to be computed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.holonomic.holonomic import expr_to_holonomic
|
||
|
>>> from sympy import sin, exp, symbols
|
||
|
>>> x = symbols('x')
|
||
|
>>> expr_to_holonomic(sin(x))
|
||
|
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
|
||
|
>>> expr_to_holonomic(exp(x))
|
||
|
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
|
||
|
"""
|
||
|
func = sympify(func)
|
||
|
syms = func.free_symbols
|
||
|
|
||
|
if not x:
|
||
|
if len(syms) == 1:
|
||
|
x= syms.pop()
|
||
|
else:
|
||
|
raise ValueError("Specify the variable for the function")
|
||
|
elif x in syms:
|
||
|
syms.remove(x)
|
||
|
|
||
|
extra_syms = list(syms)
|
||
|
|
||
|
if domain is None:
|
||
|
if func.has(Float):
|
||
|
domain = RR
|
||
|
else:
|
||
|
domain = QQ
|
||
|
if len(extra_syms) != 0:
|
||
|
domain = domain[extra_syms].get_field()
|
||
|
|
||
|
# try to convert if the function is polynomial or rational
|
||
|
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
|
||
|
if solpoly:
|
||
|
return solpoly
|
||
|
|
||
|
# create the lookup table
|
||
|
global _lookup_table, domain_for_table
|
||
|
if not _lookup_table:
|
||
|
domain_for_table = domain
|
||
|
_lookup_table = {}
|
||
|
_create_table(_lookup_table, domain=domain)
|
||
|
elif domain != domain_for_table:
|
||
|
domain_for_table = domain
|
||
|
_lookup_table = {}
|
||
|
_create_table(_lookup_table, domain=domain)
|
||
|
|
||
|
# use the table directly to convert to Holonomic
|
||
|
if func.is_Function:
|
||
|
f = func.subs(x, x_1)
|
||
|
t = _mytype(f, x_1)
|
||
|
if t in _lookup_table:
|
||
|
l = _lookup_table[t]
|
||
|
sol = l[0][1].change_x(x)
|
||
|
else:
|
||
|
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
|
||
|
if not sol:
|
||
|
raise NotImplementedError
|
||
|
if y0:
|
||
|
sol.y0 = y0
|
||
|
if y0 or not initcond:
|
||
|
sol.x0 = x0
|
||
|
return sol
|
||
|
if not lenics:
|
||
|
lenics = sol.annihilator.order
|
||
|
_y0 = _find_conditions(func, x, x0, lenics)
|
||
|
while not _y0:
|
||
|
x0 += 1
|
||
|
_y0 = _find_conditions(func, x, x0, lenics)
|
||
|
return HolonomicFunction(sol.annihilator, x, x0, _y0)
|
||
|
|
||
|
if y0 or not initcond:
|
||
|
sol = sol.composition(func.args[0])
|
||
|
if y0:
|
||
|
sol.y0 = y0
|
||
|
sol.x0 = x0
|
||
|
return sol
|
||
|
if not lenics:
|
||
|
lenics = sol.annihilator.order
|
||
|
|
||
|
_y0 = _find_conditions(func, x, x0, lenics)
|
||
|
while not _y0:
|
||
|
x0 += 1
|
||
|
_y0 = _find_conditions(func, x, x0, lenics)
|
||
|
return sol.composition(func.args[0], x0, _y0)
|
||
|
|
||
|
# iterate through the expression recursively
|
||
|
args = func.args
|
||
|
f = func.func
|
||
|
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
|
||
|
|
||
|
if f is Add:
|
||
|
for i in range(1, len(args)):
|
||
|
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
|
||
|
|
||
|
elif f is Mul:
|
||
|
for i in range(1, len(args)):
|
||
|
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
|
||
|
|
||
|
elif f is Pow:
|
||
|
sol = sol**args[1]
|
||
|
sol.x0 = x0
|
||
|
if not sol:
|
||
|
raise NotImplementedError
|
||
|
if y0:
|
||
|
sol.y0 = y0
|
||
|
if y0 or not initcond:
|
||
|
return sol
|
||
|
if sol.y0:
|
||
|
return sol
|
||
|
if not lenics:
|
||
|
lenics = sol.annihilator.order
|
||
|
if sol.annihilator.is_singular(x0):
|
||
|
r = sol._indicial()
|
||
|
l = list(r)
|
||
|
if len(r) == 1 and r[l[0]] == S.One:
|
||
|
r = l[0]
|
||
|
g = func / (x - x0)**r
|
||
|
singular_ics = _find_conditions(g, x, x0, lenics)
|
||
|
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
|
||
|
y0 = {r:singular_ics}
|
||
|
return HolonomicFunction(sol.annihilator, x, x0, y0)
|
||
|
|
||
|
_y0 = _find_conditions(func, x, x0, lenics)
|
||
|
while not _y0:
|
||
|
x0 += 1
|
||
|
_y0 = _find_conditions(func, x, x0, lenics)
|
||
|
|
||
|
return HolonomicFunction(sol.annihilator, x, x0, _y0)
|
||
|
|
||
|
|
||
|
## Some helper functions ##
|
||
|
|
||
|
def _normalize(list_of, parent, negative=True):
|
||
|
"""
|
||
|
Normalize a given annihilator
|
||
|
"""
|
||
|
|
||
|
num = []
|
||
|
denom = []
|
||
|
base = parent.base
|
||
|
K = base.get_field()
|
||
|
lcm_denom = base.from_sympy(S.One)
|
||
|
list_of_coeff = []
|
||
|
|
||
|
# convert polynomials to the elements of associated
|
||
|
# fraction field
|
||
|
for i, j in enumerate(list_of):
|
||
|
if isinstance(j, base.dtype):
|
||
|
list_of_coeff.append(K.new(j.rep))
|
||
|
elif not isinstance(j, K.dtype):
|
||
|
list_of_coeff.append(K.from_sympy(sympify(j)))
|
||
|
else:
|
||
|
list_of_coeff.append(j)
|
||
|
|
||
|
# corresponding numerators of the sequence of polynomials
|
||
|
num.append(list_of_coeff[i].numer())
|
||
|
|
||
|
# corresponding denominators
|
||
|
denom.append(list_of_coeff[i].denom())
|
||
|
|
||
|
# lcm of denominators in the coefficients
|
||
|
for i in denom:
|
||
|
lcm_denom = i.lcm(lcm_denom)
|
||
|
|
||
|
if negative:
|
||
|
lcm_denom = -lcm_denom
|
||
|
|
||
|
lcm_denom = K.new(lcm_denom.rep)
|
||
|
|
||
|
# multiply the coefficients with lcm
|
||
|
for i, j in enumerate(list_of_coeff):
|
||
|
list_of_coeff[i] = j * lcm_denom
|
||
|
|
||
|
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
|
||
|
|
||
|
# gcd of numerators in the coefficients
|
||
|
for i in num:
|
||
|
gcd_numer = i.gcd(gcd_numer)
|
||
|
|
||
|
gcd_numer = K.new(gcd_numer.rep)
|
||
|
|
||
|
# divide all the coefficients by the gcd
|
||
|
for i, j in enumerate(list_of_coeff):
|
||
|
frac_ans = j / gcd_numer
|
||
|
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
|
||
|
|
||
|
return DifferentialOperator(list_of_coeff, parent)
|
||
|
|
||
|
|
||
|
def _derivate_diff_eq(listofpoly):
|
||
|
"""
|
||
|
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
|
||
|
where a0, a1,... are polynomials or rational functions. The function
|
||
|
returns b0, b1, b2... such that the differential equation
|
||
|
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
|
||
|
former equation.
|
||
|
"""
|
||
|
|
||
|
sol = []
|
||
|
a = len(listofpoly) - 1
|
||
|
sol.append(DMFdiff(listofpoly[0]))
|
||
|
|
||
|
for i, j in enumerate(listofpoly[1:]):
|
||
|
sol.append(DMFdiff(j) + listofpoly[i])
|
||
|
|
||
|
sol.append(listofpoly[a])
|
||
|
return sol
|
||
|
|
||
|
|
||
|
def _hyper_to_meijerg(func):
|
||
|
"""
|
||
|
Converts a `hyper` to meijerg.
|
||
|
"""
|
||
|
ap = func.ap
|
||
|
bq = func.bq
|
||
|
|
||
|
ispoly = any(i <= 0 and int(i) == i for i in ap)
|
||
|
if ispoly:
|
||
|
return hyperexpand(func)
|
||
|
|
||
|
z = func.args[2]
|
||
|
|
||
|
# parameters of the `meijerg` function.
|
||
|
an = (1 - i for i in ap)
|
||
|
anp = ()
|
||
|
bm = (S.Zero, )
|
||
|
bmq = (1 - i for i in bq)
|
||
|
|
||
|
k = S.One
|
||
|
|
||
|
for i in bq:
|
||
|
k = k * gamma(i)
|
||
|
|
||
|
for i in ap:
|
||
|
k = k / gamma(i)
|
||
|
|
||
|
return k * meijerg(an, anp, bm, bmq, -z)
|
||
|
|
||
|
|
||
|
def _add_lists(list1, list2):
|
||
|
"""Takes polynomial sequences of two annihilators a and b and returns
|
||
|
the list of polynomials of sum of a and b.
|
||
|
"""
|
||
|
if len(list1) <= len(list2):
|
||
|
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
|
||
|
else:
|
||
|
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
|
||
|
return sol
|
||
|
|
||
|
|
||
|
def _extend_y0(Holonomic, n):
|
||
|
"""
|
||
|
Tries to find more initial conditions by substituting the initial
|
||
|
value point in the differential equation.
|
||
|
"""
|
||
|
|
||
|
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
|
||
|
return Holonomic.y0
|
||
|
|
||
|
annihilator = Holonomic.annihilator
|
||
|
a = annihilator.order
|
||
|
|
||
|
listofpoly = []
|
||
|
|
||
|
y0 = Holonomic.y0
|
||
|
R = annihilator.parent.base
|
||
|
K = R.get_field()
|
||
|
|
||
|
for i, j in enumerate(annihilator.listofpoly):
|
||
|
if isinstance(j, annihilator.parent.base.dtype):
|
||
|
listofpoly.append(K.new(j.rep))
|
||
|
|
||
|
if len(y0) < a or n <= len(y0):
|
||
|
return y0
|
||
|
else:
|
||
|
list_red = [-listofpoly[i] / listofpoly[a]
|
||
|
for i in range(a)]
|
||
|
if len(y0) > a:
|
||
|
y1 = [y0[i] for i in range(a)]
|
||
|
else:
|
||
|
y1 = list(y0)
|
||
|
for i in range(n - a):
|
||
|
sol = 0
|
||
|
for a, b in zip(y1, list_red):
|
||
|
r = DMFsubs(b, Holonomic.x0)
|
||
|
if not getattr(r, 'is_finite', True):
|
||
|
return y0
|
||
|
if isinstance(r, (PolyElement, FracElement)):
|
||
|
r = r.as_expr()
|
||
|
sol += a * r
|
||
|
y1.append(sol)
|
||
|
list_red = _derivate_diff_eq(list_red)
|
||
|
|
||
|
return y0 + y1[len(y0):]
|
||
|
|
||
|
|
||
|
def DMFdiff(frac):
|
||
|
# differentiate a DMF object represented as p/q
|
||
|
if not isinstance(frac, DMF):
|
||
|
return frac.diff()
|
||
|
|
||
|
K = frac.ring
|
||
|
p = K.numer(frac)
|
||
|
q = K.denom(frac)
|
||
|
sol_num = - p * q.diff() + q * p.diff()
|
||
|
sol_denom = q**2
|
||
|
return K((sol_num.rep, sol_denom.rep))
|
||
|
|
||
|
|
||
|
def DMFsubs(frac, x0, mpm=False):
|
||
|
# substitute the point x0 in DMF object of the form p/q
|
||
|
if not isinstance(frac, DMF):
|
||
|
return frac
|
||
|
|
||
|
p = frac.num
|
||
|
q = frac.den
|
||
|
sol_p = S.Zero
|
||
|
sol_q = S.Zero
|
||
|
|
||
|
if mpm:
|
||
|
from mpmath import mp
|
||
|
|
||
|
for i, j in enumerate(reversed(p)):
|
||
|
if mpm:
|
||
|
j = sympify(j)._to_mpmath(mp.prec)
|
||
|
sol_p += j * x0**i
|
||
|
|
||
|
for i, j in enumerate(reversed(q)):
|
||
|
if mpm:
|
||
|
j = sympify(j)._to_mpmath(mp.prec)
|
||
|
sol_q += j * x0**i
|
||
|
|
||
|
if isinstance(sol_p, (PolyElement, FracElement)):
|
||
|
sol_p = sol_p.as_expr()
|
||
|
if isinstance(sol_q, (PolyElement, FracElement)):
|
||
|
sol_q = sol_q.as_expr()
|
||
|
|
||
|
return sol_p / sol_q
|
||
|
|
||
|
|
||
|
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
|
||
|
"""
|
||
|
Converts polynomials, rationals and algebraic functions to holonomic.
|
||
|
"""
|
||
|
|
||
|
ispoly = func.is_polynomial()
|
||
|
if not ispoly:
|
||
|
israt = func.is_rational_function()
|
||
|
else:
|
||
|
israt = True
|
||
|
|
||
|
if not (ispoly or israt):
|
||
|
basepoly, ratexp = func.as_base_exp()
|
||
|
if basepoly.is_polynomial() and ratexp.is_Number:
|
||
|
if isinstance(ratexp, Float):
|
||
|
ratexp = nsimplify(ratexp)
|
||
|
m, n = ratexp.p, ratexp.q
|
||
|
is_alg = True
|
||
|
else:
|
||
|
is_alg = False
|
||
|
else:
|
||
|
is_alg = True
|
||
|
|
||
|
if not (ispoly or israt or is_alg):
|
||
|
return None
|
||
|
|
||
|
R = domain.old_poly_ring(x)
|
||
|
_, Dx = DifferentialOperators(R, 'Dx')
|
||
|
|
||
|
# if the function is constant
|
||
|
if not func.has(x):
|
||
|
return HolonomicFunction(Dx, x, 0, [func])
|
||
|
|
||
|
if ispoly:
|
||
|
# differential equation satisfied by polynomial
|
||
|
sol = func * Dx - func.diff(x)
|
||
|
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
|
||
|
is_singular = sol.is_singular(x0)
|
||
|
|
||
|
# try to compute the conditions for singular points
|
||
|
if y0 is None and x0 == 0 and is_singular:
|
||
|
rep = R.from_sympy(func).rep
|
||
|
for i, j in enumerate(reversed(rep)):
|
||
|
if j == 0:
|
||
|
continue
|
||
|
else:
|
||
|
coeff = list(reversed(rep))[i:]
|
||
|
indicial = i
|
||
|
break
|
||
|
for i, j in enumerate(coeff):
|
||
|
if isinstance(j, (PolyElement, FracElement)):
|
||
|
coeff[i] = j.as_expr()
|
||
|
y0 = {indicial: S(coeff)}
|
||
|
|
||
|
elif israt:
|
||
|
p, q = func.as_numer_denom()
|
||
|
# differential equation satisfied by rational
|
||
|
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
|
||
|
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
|
||
|
|
||
|
elif is_alg:
|
||
|
sol = n * (x / m) * Dx - 1
|
||
|
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
|
||
|
is_singular = sol.is_singular(x0)
|
||
|
|
||
|
# try to compute the conditions for singular points
|
||
|
if y0 is None and x0 == 0 and is_singular and \
|
||
|
(lenics is None or lenics <= 1):
|
||
|
rep = R.from_sympy(basepoly).rep
|
||
|
for i, j in enumerate(reversed(rep)):
|
||
|
if j == 0:
|
||
|
continue
|
||
|
if isinstance(j, (PolyElement, FracElement)):
|
||
|
j = j.as_expr()
|
||
|
|
||
|
coeff = S(j)**ratexp
|
||
|
indicial = S(i) * ratexp
|
||
|
break
|
||
|
if isinstance(coeff, (PolyElement, FracElement)):
|
||
|
coeff = coeff.as_expr()
|
||
|
y0 = {indicial: S([coeff])}
|
||
|
|
||
|
if y0 or not initcond:
|
||
|
return HolonomicFunction(sol, x, x0, y0)
|
||
|
|
||
|
if not lenics:
|
||
|
lenics = sol.order
|
||
|
|
||
|
if sol.is_singular(x0):
|
||
|
r = HolonomicFunction(sol, x, x0)._indicial()
|
||
|
l = list(r)
|
||
|
if len(r) == 1 and r[l[0]] == S.One:
|
||
|
r = l[0]
|
||
|
g = func / (x - x0)**r
|
||
|
singular_ics = _find_conditions(g, x, x0, lenics)
|
||
|
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
|
||
|
y0 = {r:singular_ics}
|
||
|
return HolonomicFunction(sol, x, x0, y0)
|
||
|
|
||
|
y0 = _find_conditions(func, x, x0, lenics)
|
||
|
while not y0:
|
||
|
x0 += 1
|
||
|
y0 = _find_conditions(func, x, x0, lenics)
|
||
|
|
||
|
return HolonomicFunction(sol, x, x0, y0)
|
||
|
|
||
|
|
||
|
def _convert_meijerint(func, x, initcond=True, domain=QQ):
|
||
|
args = meijerint._rewrite1(func, x)
|
||
|
|
||
|
if args:
|
||
|
fac, po, g, _ = args
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
# lists for sum of meijerg functions
|
||
|
fac_list = [fac * i[0] for i in g]
|
||
|
t = po.as_base_exp()
|
||
|
s = t[1] if t[0] == x else S.Zero
|
||
|
po_list = [s + i[1] for i in g]
|
||
|
G_list = [i[2] for i in g]
|
||
|
|
||
|
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
|
||
|
def _shift(func, s):
|
||
|
z = func.args[-1]
|
||
|
if z.has(I):
|
||
|
z = z.subs(exp_polar, exp)
|
||
|
|
||
|
d = z.collect(x, evaluate=False)
|
||
|
b = list(d)[0]
|
||
|
a = d[b]
|
||
|
|
||
|
t = b.as_base_exp()
|
||
|
b = t[1] if t[0] == x else S.Zero
|
||
|
r = s / b
|
||
|
an = (i + r for i in func.args[0][0])
|
||
|
ap = (i + r for i in func.args[0][1])
|
||
|
bm = (i + r for i in func.args[1][0])
|
||
|
bq = (i + r for i in func.args[1][1])
|
||
|
|
||
|
return a**-r, meijerg((an, ap), (bm, bq), z)
|
||
|
|
||
|
coeff, m = _shift(G_list[0], po_list[0])
|
||
|
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
|
||
|
|
||
|
# add all the meijerg functions after converting to holonomic
|
||
|
for i in range(1, len(G_list)):
|
||
|
coeff, m = _shift(G_list[i], po_list[i])
|
||
|
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
|
||
|
|
||
|
return sol
|
||
|
|
||
|
|
||
|
def _create_table(table, domain=QQ):
|
||
|
"""
|
||
|
Creates the look-up table. For a similar implementation
|
||
|
see meijerint._create_lookup_table.
|
||
|
"""
|
||
|
|
||
|
def add(formula, annihilator, arg, x0=0, y0=()):
|
||
|
"""
|
||
|
Adds a formula in the dictionary
|
||
|
"""
|
||
|
table.setdefault(_mytype(formula, x_1), []).append((formula,
|
||
|
HolonomicFunction(annihilator, arg, x0, y0)))
|
||
|
|
||
|
R = domain.old_poly_ring(x_1)
|
||
|
_, Dx = DifferentialOperators(R, 'Dx')
|
||
|
|
||
|
# add some basic functions
|
||
|
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
|
||
|
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
|
||
|
add(exp(x_1), Dx - 1, x_1, 0, 1)
|
||
|
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
|
||
|
|
||
|
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
|
||
|
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
|
||
|
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
|
||
|
|
||
|
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
|
||
|
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
|
||
|
|
||
|
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
|
||
|
|
||
|
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
|
||
|
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
|
||
|
|
||
|
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
|
||
|
|
||
|
|
||
|
def _find_conditions(func, x, x0, order):
|
||
|
y0 = []
|
||
|
for i in range(order):
|
||
|
val = func.subs(x, x0)
|
||
|
if isinstance(val, NaN):
|
||
|
val = limit(func, x, x0)
|
||
|
if val.is_finite is False or isinstance(val, NaN):
|
||
|
return None
|
||
|
y0.append(val)
|
||
|
func = func.diff(x)
|
||
|
return y0
|