203 lines
9.3 KiB
Python
203 lines
9.3 KiB
Python
|
"""Most of these tests come from the examples in Bronstein's book."""
|
||
|
from sympy.core.numbers import (I, Rational, oo)
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.polys.polytools import Poly
|
||
|
from sympy.integrals.risch import (DifferentialExtension,
|
||
|
NonElementaryIntegralException)
|
||
|
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
|
||
|
normal_denom, special_denom, bound_degree, spde, solve_poly_rde,
|
||
|
no_cancel_equal, cancel_primitive, cancel_exp, rischDE)
|
||
|
|
||
|
from sympy.testing.pytest import raises
|
||
|
from sympy.abc import x, t, z, n
|
||
|
|
||
|
t0, t1, t2, k = symbols('t:3 k')
|
||
|
|
||
|
|
||
|
def test_order_at():
|
||
|
a = Poly(t**4, t)
|
||
|
b = Poly((t**2 + 1)**3*t, t)
|
||
|
c = Poly((t**2 + 1)**6*t, t)
|
||
|
d = Poly((t**2 + 1)**10*t**10, t)
|
||
|
e = Poly((t**2 + 1)**100*t**37, t)
|
||
|
p1 = Poly(t, t)
|
||
|
p2 = Poly(1 + t**2, t)
|
||
|
assert order_at(a, p1, t) == 4
|
||
|
assert order_at(b, p1, t) == 1
|
||
|
assert order_at(c, p1, t) == 1
|
||
|
assert order_at(d, p1, t) == 10
|
||
|
assert order_at(e, p1, t) == 37
|
||
|
assert order_at(a, p2, t) == 0
|
||
|
assert order_at(b, p2, t) == 3
|
||
|
assert order_at(c, p2, t) == 6
|
||
|
assert order_at(d, p1, t) == 10
|
||
|
assert order_at(e, p2, t) == 100
|
||
|
assert order_at(Poly(0, t), Poly(t, t), t) is oo
|
||
|
assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
|
||
|
order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
|
||
|
assert order_at_oo(Poly(0, t), Poly(1, t), t) is oo
|
||
|
|
||
|
def test_weak_normalizer():
|
||
|
a = Poly((1 + x)*t**5 + 4*t**4 + (-1 - 3*x)*t**3 - 4*t**2 + (-2 + 2*x)*t, t)
|
||
|
d = Poly(t**4 - 3*t**2 + 2, t)
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
|
||
|
r = weak_normalizer(a, d, DE, z)
|
||
|
assert r == (Poly(t**5 - t**4 - 4*t**3 + 4*t**2 + 4*t - 4, t, domain='ZZ[x]'),
|
||
|
(Poly((1 + x)*t**2 + x*t, t, domain='ZZ[x]'),
|
||
|
Poly(t + 1, t, domain='ZZ[x]')))
|
||
|
assert weak_normalizer(r[1][0], r[1][1], DE) == (Poly(1, t), r[1])
|
||
|
r = weak_normalizer(Poly(1 + t**2), Poly(t**2 - 1, t), DE, z)
|
||
|
assert r == (Poly(t**4 - 2*t**2 + 1, t), (Poly(-3*t**2 + 1, t), Poly(t**2 - 1, t)))
|
||
|
assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1])
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2)]})
|
||
|
r = weak_normalizer(Poly(1 + t**2), Poly(t, t), DE, z)
|
||
|
assert r == (Poly(t, t), (Poly(0, t), Poly(1, t)))
|
||
|
assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1])
|
||
|
|
||
|
|
||
|
def test_normal_denom():
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
|
||
|
raises(NonElementaryIntegralException, lambda: normal_denom(Poly(1, x), Poly(1, x),
|
||
|
Poly(1, x), Poly(x, x), DE))
|
||
|
fa, fd = Poly(t**2 + 1, t), Poly(1, t)
|
||
|
ga, gd = Poly(1, t), Poly(t**2, t)
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
|
||
|
assert normal_denom(fa, fd, ga, gd, DE) == \
|
||
|
(Poly(t, t), (Poly(t**3 - t**2 + t - 1, t), Poly(1, t)), (Poly(1, t),
|
||
|
Poly(1, t)), Poly(t, t))
|
||
|
|
||
|
|
||
|
def test_special_denom():
|
||
|
# TODO: add more tests here
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
|
||
|
assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t),
|
||
|
Poly(t, t), DE) == \
|
||
|
(Poly(1, t), Poly(t**2 - 1, t), Poly(t**2 - 1, t), Poly(t, t))
|
||
|
# assert special_denom(Poly(1, t), Poly(2*x, t), Poly((1 + 2*x)*t, t), DE) == 1
|
||
|
|
||
|
# issue 3940
|
||
|
# Note, this isn't a very good test, because the denominator is just 1,
|
||
|
# but at least it tests the exp cancellation case
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0),
|
||
|
Poly(I*k*t1, t1)]})
|
||
|
DE.decrement_level()
|
||
|
assert special_denom(Poly(1, t0), Poly(I*k, t0), Poly(1, t0), Poly(t0, t0),
|
||
|
Poly(1, t0), DE) == \
|
||
|
(Poly(1, t0, domain='ZZ'), Poly(I*k, t0, domain='ZZ_I[k,x]'),
|
||
|
Poly(t0, t0, domain='ZZ'), Poly(1, t0, domain='ZZ'))
|
||
|
|
||
|
|
||
|
assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t),
|
||
|
Poly(t, t), DE, case='tan') == \
|
||
|
(Poly(1, t, t0, domain='ZZ'), Poly(t**2, t0, t, domain='ZZ[x]'),
|
||
|
Poly(t, t, t0, domain='ZZ'), Poly(1, t0, domain='ZZ'))
|
||
|
|
||
|
raises(ValueError, lambda: special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t),
|
||
|
Poly(t, t), DE, case='unrecognized_case'))
|
||
|
|
||
|
|
||
|
def test_bound_degree_fail():
|
||
|
# Primitive
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x),
|
||
|
Poly(t0/x**2, t0), Poly(1/x, t)]})
|
||
|
assert bound_degree(Poly(t**2, t), Poly(-(1/x**2*t**2 + 1/x), t),
|
||
|
Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/2*x*t**2 + x*t,
|
||
|
t), DE) == 3
|
||
|
|
||
|
|
||
|
def test_bound_degree():
|
||
|
# Base
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
|
||
|
assert bound_degree(Poly(1, x), Poly(-2*x, x), Poly(1, x), DE) == 0
|
||
|
|
||
|
# Primitive (see above test_bound_degree_fail)
|
||
|
# TODO: Add test for when the degree bound becomes larger after limited_integrate
|
||
|
# TODO: Add test for db == da - 1 case
|
||
|
|
||
|
# Exp
|
||
|
# TODO: Add tests
|
||
|
# TODO: Add test for when the degree becomes larger after parametric_log_deriv()
|
||
|
|
||
|
# Nonlinear
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
|
||
|
assert bound_degree(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), DE) == 0
|
||
|
|
||
|
|
||
|
def test_spde():
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
|
||
|
raises(NonElementaryIntegralException, lambda: spde(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
|
||
|
assert spde(Poly(t**2 + x*t*2 + x**2, t), Poly(t**2/x**2 + (2/x - 1)*t, t),
|
||
|
Poly(t**2/x**2 + (2/x - 1)*t, t), 0, DE) == \
|
||
|
(Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(1, t, domain='ZZ(x)'))
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]})
|
||
|
assert spde(Poly(t**2, t), Poly(-t**2/x**2 - 1/x, t),
|
||
|
Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/(2*x)*t**2 + x*t, t), 3, DE) == \
|
||
|
(Poly(0, t), Poly(0, t), 0, Poly(0, t),
|
||
|
Poly(t0*t**2/2 + x**2*t**2 - x**2*t, t, domain='ZZ(x,t0)'))
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
|
||
|
assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
|
||
|
3*x**4/4 + x**3 - x**2 + 1, x), 4, DE) == \
|
||
|
(Poly(0, x, domain='QQ'), Poly(x/2 - Rational(1, 4), x), 2, Poly(x**2 + x + 1, x), Poly(x*Rational(5, 4), x))
|
||
|
assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
|
||
|
3*x**4/4 + x**3 - x**2 + 1, x), n, DE) == \
|
||
|
(Poly(0, x, domain='QQ'), Poly(x/2 - Rational(1, 4), x), -2 + n, Poly(x**2 + x + 1, x), Poly(x*Rational(5, 4), x))
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
|
||
|
raises(NonElementaryIntegralException, lambda: spde(Poly((t - 1)*(t**2 + 1)**2, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
|
||
|
assert spde(Poly(x**2 - x, x), Poly(1, x), Poly(9*x**4 - 10*x**3 + 2*x**2, x), 4, DE) == \
|
||
|
(Poly(0, x, domain='ZZ'), Poly(0, x), 0, Poly(0, x), Poly(3*x**3 - 2*x**2, x, domain='QQ'))
|
||
|
assert spde(Poly(x**2 - x, x), Poly(x**2 - 5*x + 3, x), Poly(x**7 - x**6 - 2*x**4 + 3*x**3 - x**2, x), 5, DE) == \
|
||
|
(Poly(1, x, domain='QQ'), Poly(x + 1, x, domain='QQ'), 1, Poly(x**4 - x**3, x), Poly(x**3 - x**2, x, domain='QQ'))
|
||
|
|
||
|
def test_solve_poly_rde_no_cancel():
|
||
|
# deg(b) large
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
|
||
|
assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t),
|
||
|
oo, DE) == Poly(t + x, t)
|
||
|
# deg(b) small
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
|
||
|
assert solve_poly_rde(Poly(0, x), Poly(x/2 - Rational(1, 4), x), oo, DE) == \
|
||
|
Poly(x**2/4 - x/4, x)
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
|
||
|
assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \
|
||
|
Poly(t + 1, t, x)
|
||
|
# deg(b) == deg(D) - 1
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
|
||
|
assert no_cancel_equal(Poly(1 - t, t),
|
||
|
Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \
|
||
|
(Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t))
|
||
|
|
||
|
|
||
|
def test_solve_poly_rde_cancel():
|
||
|
# exp
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
|
||
|
assert cancel_exp(Poly(2*x, t), Poly(2*x, t), 0, DE) == \
|
||
|
Poly(1, t)
|
||
|
assert cancel_exp(Poly(2*x, t), Poly((1 + 2*x)*t, t), 1, DE) == \
|
||
|
Poly(t, t)
|
||
|
# TODO: Add more exp tests, including tests that require is_deriv_in_field()
|
||
|
|
||
|
# primitive
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
|
||
|
|
||
|
# If the DecrementLevel context manager is working correctly, this shouldn't
|
||
|
# cause any problems with the further tests.
|
||
|
raises(NonElementaryIntegralException, lambda: cancel_primitive(Poly(1, t), Poly(t, t), oo, DE))
|
||
|
|
||
|
assert cancel_primitive(Poly(1, t), Poly(t + 1/x, t), 2, DE) == \
|
||
|
Poly(t, t)
|
||
|
assert cancel_primitive(Poly(4*x, t), Poly(4*x*t**2 + 2*t/x, t), 3, DE) == \
|
||
|
Poly(t**2, t)
|
||
|
|
||
|
# TODO: Add more primitive tests, including tests that require is_deriv_in_field()
|
||
|
|
||
|
|
||
|
def test_rischDE():
|
||
|
# TODO: Add more tests for rischDE, including ones from the text
|
||
|
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
|
||
|
DE.decrement_level()
|
||
|
assert rischDE(Poly(-2*x, x), Poly(1, x), Poly(1 - 2*x - 2*x**2, x),
|
||
|
Poly(1, x), DE) == \
|
||
|
(Poly(x + 1, x), Poly(1, x))
|