Traktor/myenv/Lib/site-packages/sympy/matrices/eigen.py

1344 lines
39 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from types import FunctionType
from collections import Counter
from mpmath import mp, workprec
from mpmath.libmp.libmpf import prec_to_dps
from sympy.core.sorting import default_sort_key
from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted
from sympy.core.logic import fuzzy_and, fuzzy_or
from sympy.core.numbers import Float
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys import roots, CRootOf, ZZ, QQ, EX
from sympy.polys.matrices import DomainMatrix
from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy
from sympy.polys.polytools import gcd
from .common import MatrixError, NonSquareMatrixError
from .determinant import _find_reasonable_pivot
from .utilities import _iszero, _simplify
def _eigenvals_eigenvects_mpmath(M):
norm2 = lambda v: mp.sqrt(sum(i**2 for i in v))
v1 = None
prec = max([x._prec for x in M.atoms(Float)])
eps = 2**-prec
while prec < DEFAULT_MAXPREC:
with workprec(prec):
A = mp.matrix(M.evalf(n=prec_to_dps(prec)))
E, ER = mp.eig(A)
v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))])
if v1 is not None and mp.fabs(v1 - v2) < eps:
return E, ER
v1 = v2
prec *= 2
# we get here because the next step would have taken us
# past MAXPREC or because we never took a step; in case
# of the latter, we refuse to send back a solution since
# it would not have been verified; we also resist taking
# a small step to arrive exactly at MAXPREC since then
# the two calculations might be artificially close.
raise PrecisionExhausted
def _eigenvals_mpmath(M, multiple=False):
"""Compute eigenvalues using mpmath"""
E, _ = _eigenvals_eigenvects_mpmath(M)
result = [_sympify(x) for x in E]
if multiple:
return result
return dict(Counter(result))
def _eigenvects_mpmath(M):
E, ER = _eigenvals_eigenvects_mpmath(M)
result = []
for i in range(M.rows):
eigenval = _sympify(E[i])
eigenvect = _sympify(ER[:, i])
result.append((eigenval, 1, [eigenvect]))
return result
# This function is a candidate for caching if it gets implemented for matrices.
def _eigenvals(
M, error_when_incomplete=True, *, simplify=False, multiple=False,
rational=False, **flags):
r"""Compute eigenvalues of the matrix.
Parameters
==========
error_when_incomplete : bool, optional
If it is set to ``True``, it will raise an error if not all
eigenvalues are computed. This is caused by ``roots`` not returning
a full list of eigenvalues.
simplify : bool or function, optional
If it is set to ``True``, it attempts to return the most
simplified form of expressions returned by applying default
simplification method in every routine.
If it is set to ``False``, it will skip simplification in this
particular routine to save computation resources.
If a function is passed to, it will attempt to apply
the particular function as simplification method.
rational : bool, optional
If it is set to ``True``, every floating point numbers would be
replaced with rationals before computation. It can solve some
issues of ``roots`` routine not working well with floats.
multiple : bool, optional
If it is set to ``True``, the result will be in the form of a
list.
If it is set to ``False``, the result will be in the form of a
dictionary.
Returns
=======
eigs : list or dict
Eigenvalues of a matrix. The return format would be specified by
the key ``multiple``.
Raises
======
MatrixError
If not enough roots had got computed.
NonSquareMatrixError
If attempted to compute eigenvalues from a non-square matrix.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvals()
{-1: 1, 0: 1, 2: 1}
See Also
========
MatrixDeterminant.charpoly
eigenvects
Notes
=====
Eigenvalues of a matrix $A$ can be computed by solving a matrix
equation $\det(A - \lambda I) = 0$
It's not always possible to return radical solutions for
eigenvalues for matrices larger than $4, 4$ shape due to
Abel-Ruffini theorem.
If there is no radical solution is found for the eigenvalue,
it may return eigenvalues in the form of
:class:`sympy.polys.rootoftools.ComplexRootOf`.
"""
if not M:
if multiple:
return []
return {}
if not M.is_square:
raise NonSquareMatrixError("{} must be a square matrix.".format(M))
if M._rep.domain not in (ZZ, QQ):
# Skip this check for ZZ/QQ because it can be slow
if all(x.is_number for x in M) and M.has(Float):
return _eigenvals_mpmath(M, multiple=multiple)
if rational:
from sympy.simplify import nsimplify
M = M.applyfunc(
lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
if multiple:
return _eigenvals_list(
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
**flags)
return _eigenvals_dict(
M, error_when_incomplete=error_when_incomplete, simplify=simplify,
**flags)
eigenvals_error_message = \
"It is not always possible to express the eigenvalues of a matrix " + \
"of size 5x5 or higher in radicals. " + \
"We have CRootOf, but domains other than the rationals are not " + \
"currently supported. " + \
"If there are no symbols in the matrix, " + \
"it should still be possible to compute numeric approximations " + \
"of the eigenvalues using " + \
"M.evalf().eigenvals() or M.charpoly().nroots()."
def _eigenvals_list(
M, error_when_incomplete=True, simplify=False, **flags):
iblocks = M.strongly_connected_components()
all_eigs = []
is_dom = M._rep.domain in (ZZ, QQ)
for b in iblocks:
# Fast path for a 1x1 block:
if is_dom and len(b) == 1:
index = b[0]
val = M[index, index]
all_eigs.append(val)
continue
block = M[b, b]
if isinstance(simplify, FunctionType):
charpoly = block.charpoly(simplify=simplify)
else:
charpoly = block.charpoly()
eigs = roots(charpoly, multiple=True, **flags)
if len(eigs) != block.rows:
degree = int(charpoly.degree())
f = charpoly.as_expr()
x = charpoly.gen
try:
eigs = [CRootOf(f, x, idx) for idx in range(degree)]
except NotImplementedError:
if error_when_incomplete:
raise MatrixError(eigenvals_error_message)
else:
eigs = []
all_eigs += eigs
if not simplify:
return all_eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
return [simplify(value) for value in all_eigs]
def _eigenvals_dict(
M, error_when_incomplete=True, simplify=False, **flags):
iblocks = M.strongly_connected_components()
all_eigs = {}
is_dom = M._rep.domain in (ZZ, QQ)
for b in iblocks:
# Fast path for a 1x1 block:
if is_dom and len(b) == 1:
index = b[0]
val = M[index, index]
all_eigs[val] = all_eigs.get(val, 0) + 1
continue
block = M[b, b]
if isinstance(simplify, FunctionType):
charpoly = block.charpoly(simplify=simplify)
else:
charpoly = block.charpoly()
eigs = roots(charpoly, multiple=False, **flags)
if sum(eigs.values()) != block.rows:
degree = int(charpoly.degree())
f = charpoly.as_expr()
x = charpoly.gen
try:
eigs = {CRootOf(f, x, idx): 1 for idx in range(degree)}
except NotImplementedError:
if error_when_incomplete:
raise MatrixError(eigenvals_error_message)
else:
eigs = {}
for k, v in eigs.items():
if k in all_eigs:
all_eigs[k] += v
else:
all_eigs[k] = v
if not simplify:
return all_eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
return {simplify(key): value for key, value in all_eigs.items()}
def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False):
"""Get a basis for the eigenspace for a particular eigenvalue"""
m = M - M.eye(M.rows) * eigenval
ret = m.nullspace(iszerofunc=iszerofunc)
# The nullspace for a real eigenvalue should be non-trivial.
# If we didn't find an eigenvector, try once more a little harder
if len(ret) == 0 and simplify:
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
if len(ret) == 0:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue {}".format(eigenval))
return ret
def _eigenvects_DOM(M, **kwargs):
DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
DOM = DOM.to_dense()
if DOM.domain != EX:
rational, algebraic = dom_eigenvects(DOM)
eigenvects = dom_eigenvects_to_sympy(
rational, algebraic, M.__class__, **kwargs)
eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0]))
return eigenvects
return None
def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags):
eigenvals = M.eigenvals(rational=False, **flags)
# Make sure that we have all roots in radical form
for x in eigenvals:
if x.has(CRootOf):
raise MatrixError(
"Eigenvector computation is not implemented if the matrix have "
"eigenvalues in CRootOf form")
eigenvals = sorted(eigenvals.items(), key=default_sort_key)
ret = []
for val, mult in eigenvals:
vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify)
ret.append((val, mult, vects))
return ret
# This functions is a candidate for caching if it gets implemented for matrices.
def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags):
"""Compute eigenvectors of the matrix.
Parameters
==========
error_when_incomplete : bool, optional
Raise an error when not all eigenvalues are computed. This is
caused by ``roots`` not returning a full list of eigenvalues.
iszerofunc : function, optional
Specifies a zero testing function to be used in ``rref``.
Default value is ``_iszero``, which uses SymPy's naive and fast
default assumption handler.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
is tested as non-zero, and ``None`` if it is undecidable.
simplify : bool or function, optional
If ``True``, ``as_content_primitive()`` will be used to tidy up
normalization artifacts.
It will also be used by the ``nullspace`` routine.
chop : bool or positive number, optional
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after
being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
When ``chop=True`` a default precision will be used; a number will
be interpreted as the desired level of precision.
Returns
=======
ret : [(eigenval, multiplicity, eigenspace), ...]
A ragged list containing tuples of data obtained by ``eigenvals``
and ``nullspace``.
``eigenspace`` is a list containing the ``eigenvector`` for each
eigenvalue.
``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
Raises
======
NotImplementedError
If failed to compute nullspace.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
See Also
========
eigenvals
MatrixSubspaces.nullspace
"""
simplify = flags.get('simplify', True)
primitive = flags.get('simplify', False)
flags.pop('simplify', None) # remove this if it's there
flags.pop('multiple', None) # remove this if it's there
if not isinstance(simplify, FunctionType):
simpfunc = _simplify if simplify else lambda x: x
has_floats = M.has(Float)
if has_floats:
if all(x.is_number for x in M):
return _eigenvects_mpmath(M)
from sympy.simplify import nsimplify
M = M.applyfunc(lambda x: nsimplify(x, rational=True))
ret = _eigenvects_DOM(M)
if ret is None:
ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags)
if primitive:
# if the primitive flag is set, get rid of any common
# integer denominators
def denom_clean(l):
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
if has_floats:
# if we had floats to start with, turn the eigenvectors to floats
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es])
for val, mult, es in ret]
return ret
def _is_diagonalizable_with_eigen(M, reals_only=False):
"""See _is_diagonalizable. This function returns the bool along with the
eigenvectors to avoid calculating them again in functions like
``diagonalize``."""
if not M.is_square:
return False, []
eigenvecs = M.eigenvects(simplify=True)
for val, mult, basis in eigenvecs:
if reals_only and not val.is_real: # if we have a complex eigenvalue
return False, eigenvecs
if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic
return False, eigenvecs
return True, eigenvecs
def _is_diagonalizable(M, reals_only=False, **kwargs):
"""Returns ``True`` if a matrix is diagonalizable.
Parameters
==========
reals_only : bool, optional
If ``True``, it tests whether the matrix can be diagonalized
to contain only real numbers on the diagonal.
If ``False``, it tests whether the matrix can be diagonalized
at all, even with numbers that may not be real.
Examples
========
Example of a diagonalizable matrix:
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
>>> M.is_diagonalizable()
True
Example of a non-diagonalizable matrix:
>>> M = Matrix([[0, 1], [0, 0]])
>>> M.is_diagonalizable()
False
Example of a matrix that is diagonalized in terms of non-real entries:
>>> M = Matrix([[0, 1], [-1, 0]])
>>> M.is_diagonalizable(reals_only=False)
True
>>> M.is_diagonalizable(reals_only=True)
False
See Also
========
is_diagonal
diagonalize
"""
if not M.is_square:
return False
if all(e.is_real for e in M) and M.is_symmetric():
return True
if all(e.is_complex for e in M) and M.is_hermitian:
return True
return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0]
#G&VL, Matrix Computations, Algo 5.4.2
def _householder_vector(x):
if not x.cols == 1:
raise ValueError("Input must be a column matrix")
v = x.copy()
v_plus = x.copy()
v_minus = x.copy()
q = x[0, 0] / abs(x[0, 0])
norm_x = x.norm()
v_plus[0, 0] = x[0, 0] + q * norm_x
v_minus[0, 0] = x[0, 0] - q * norm_x
if x[1:, 0].norm() == 0:
bet = 0
v[0, 0] = 1
else:
if v_plus.norm() <= v_minus.norm():
v = v_plus
else:
v = v_minus
v = v / v[0]
bet = 2 / (v.norm() ** 2)
return v, bet
def _bidiagonal_decmp_hholder(M):
m = M.rows
n = M.cols
A = M.as_mutable()
U, V = A.eye(m), A.eye(n)
for i in range(min(m, n)):
v, bet = _householder_vector(A[i:, i])
hh_mat = A.eye(m - i) - bet * v * v.H
A[i:, i:] = hh_mat * A[i:, i:]
temp = A.eye(m)
temp[i:, i:] = hh_mat
U = U * temp
if i + 1 <= n - 2:
v, bet = _householder_vector(A[i, i+1:].T)
hh_mat = A.eye(n - i - 1) - bet * v * v.H
A[i:, i+1:] = A[i:, i+1:] * hh_mat
temp = A.eye(n)
temp[i+1:, i+1:] = hh_mat
V = temp * V
return U, A, V
def _eval_bidiag_hholder(M):
m = M.rows
n = M.cols
A = M.as_mutable()
for i in range(min(m, n)):
v, bet = _householder_vector(A[i:, i])
hh_mat = A.eye(m-i) - bet * v * v.H
A[i:, i:] = hh_mat * A[i:, i:]
if i + 1 <= n - 2:
v, bet = _householder_vector(A[i, i+1:].T)
hh_mat = A.eye(n - i - 1) - bet * v * v.H
A[i:, i+1:] = A[i:, i+1:] * hh_mat
return A
def _bidiagonal_decomposition(M, upper=True):
"""
Returns $(U,B,V.H)$ for
$$A = UBV^{H}$$
where $A$ is the input matrix, and $B$ is its Bidiagonalized form
Note: Bidiagonal Computation can hang for symbolic matrices.
Parameters
==========
upper : bool. Whether to do upper bidiagnalization or lower.
True for upper and False for lower.
References
==========
.. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
.. [2] Complex Matrix Bidiagonalization, https://github.com/vslobody/Householder-Bidiagonalization
"""
if not isinstance(upper, bool):
raise ValueError("upper must be a boolean")
if upper:
return _bidiagonal_decmp_hholder(M)
X = _bidiagonal_decmp_hholder(M.H)
return X[2].H, X[1].H, X[0].H
def _bidiagonalize(M, upper=True):
"""
Returns $B$, the Bidiagonalized form of the input matrix.
Note: Bidiagonal Computation can hang for symbolic matrices.
Parameters
==========
upper : bool. Whether to do upper bidiagnalization or lower.
True for upper and False for lower.
References
==========
.. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
.. [2] Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
"""
if not isinstance(upper, bool):
raise ValueError("upper must be a boolean")
if upper:
return _eval_bidiag_hholder(M)
return _eval_bidiag_hholder(M.H).H
def _diagonalize(M, reals_only=False, sort=False, normalize=False):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Parameters
==========
reals_only : bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
normalize : bool. If True, normalize the columns of P. (Default: False)
Examples
========
>>> from sympy import Matrix
>>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> M
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = M.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * M * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
if not M.is_square:
raise NonSquareMatrixError()
is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
reals_only=reals_only)
if not is_diagonalizable:
raise MatrixError("Matrix is not diagonalizable")
if sort:
eigenvecs = sorted(eigenvecs, key=default_sort_key)
p_cols, diag = [], []
for val, mult, basis in eigenvecs:
diag += [val] * mult
p_cols += basis
if normalize:
p_cols = [v / v.norm() for v in p_cols]
return M.hstack(*p_cols), M.diag(*diag)
def _fuzzy_positive_definite(M):
positive_diagonals = M._has_positive_diagonals()
if positive_diagonals is False:
return False
if positive_diagonals and M.is_strongly_diagonally_dominant:
return True
return None
def _fuzzy_positive_semidefinite(M):
nonnegative_diagonals = M._has_nonnegative_diagonals()
if nonnegative_diagonals is False:
return False
if nonnegative_diagonals and M.is_weakly_diagonally_dominant:
return True
return None
def _is_positive_definite(M):
if not M.is_hermitian:
if not M.is_square:
return False
M = M + M.H
fuzzy = _fuzzy_positive_definite(M)
if fuzzy is not None:
return fuzzy
return _is_positive_definite_GE(M)
def _is_positive_semidefinite(M):
if not M.is_hermitian:
if not M.is_square:
return False
M = M + M.H
fuzzy = _fuzzy_positive_semidefinite(M)
if fuzzy is not None:
return fuzzy
return _is_positive_semidefinite_cholesky(M)
def _is_negative_definite(M):
return _is_positive_definite(-M)
def _is_negative_semidefinite(M):
return _is_positive_semidefinite(-M)
def _is_indefinite(M):
if M.is_hermitian:
eigen = M.eigenvals()
args1 = [x.is_positive for x in eigen.keys()]
any_positive = fuzzy_or(args1)
args2 = [x.is_negative for x in eigen.keys()]
any_negative = fuzzy_or(args2)
return fuzzy_and([any_positive, any_negative])
elif M.is_square:
return (M + M.H).is_indefinite
return False
def _is_positive_definite_GE(M):
"""A division-free gaussian elimination method for testing
positive-definiteness."""
M = M.as_mutable()
size = M.rows
for i in range(size):
is_positive = M[i, i].is_positive
if is_positive is not True:
return is_positive
for j in range(i+1, size):
M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:]
return True
def _is_positive_semidefinite_cholesky(M):
"""Uses Cholesky factorization with complete pivoting
References
==========
.. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf
.. [2] https://www.value-at-risk.net/cholesky-factorization/
"""
M = M.as_mutable()
for k in range(M.rows):
diags = [M[i, i] for i in range(k, M.rows)]
pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags)
if nonzero:
return None
if pivot is None:
for i in range(k+1, M.rows):
for j in range(k, M.cols):
iszero = M[i, j].is_zero
if iszero is None:
return None
elif iszero is False:
return False
return True
if M[k, k].is_negative or pivot_val.is_negative:
return False
elif not (M[k, k].is_nonnegative and pivot_val.is_nonnegative):
return None
if pivot > 0:
M.col_swap(k, k+pivot)
M.row_swap(k, k+pivot)
M[k, k] = sqrt(M[k, k])
M[k, k+1:] /= M[k, k]
M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:]
return M[-1, -1].is_nonnegative
_doc_positive_definite = \
r"""Finds out the definiteness of a matrix.
Explanation
===========
A square real matrix $A$ is:
- A positive definite matrix if $x^T A x > 0$
for all non-zero real vectors $x$.
- A positive semidefinite matrix if $x^T A x \geq 0$
for all non-zero real vectors $x$.
- A negative definite matrix if $x^T A x < 0$
for all non-zero real vectors $x$.
- A negative semidefinite matrix if $x^T A x \leq 0$
for all non-zero real vectors $x$.
- An indefinite matrix if there exists non-zero real vectors
$x, y$ with $x^T A x > 0 > y^T A y$.
A square complex matrix $A$ is:
- A positive definite matrix if $\text{re}(x^H A x) > 0$
for all non-zero complex vectors $x$.
- A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$
for all non-zero complex vectors $x$.
- A negative definite matrix if $\text{re}(x^H A x) < 0$
for all non-zero complex vectors $x$.
- A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$
for all non-zero complex vectors $x$.
- An indefinite matrix if there exists non-zero complex vectors
$x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.
A matrix need not be symmetric or hermitian to be positive definite.
- A real non-symmetric matrix is positive definite if and only if
$\frac{A + A^T}{2}$ is positive definite.
- A complex non-hermitian matrix is positive definite if and only if
$\frac{A + A^H}{2}$ is positive definite.
And this extension can apply for all the definitions above.
However, for complex cases, you can restrict the definition of
$\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix
to be hermitian.
But we do not present this restriction for computation because you
can check ``M.is_hermitian`` independently with this and use
the same procedure.
Examples
========
An example of symmetric positive definite matrix:
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import Matrix, symbols
>>> from sympy.plotting import plot3d
>>> a, b = symbols('a b')
>>> x = Matrix([a, b])
>>> A = Matrix([[1, 0], [0, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric positive semidefinite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, -1], [-1, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric negative definite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[-1, 0], [0, -1]])
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of symmetric indefinite matrix:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, 2], [2, -1]])
>>> A.is_indefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
An example of non-symmetric positive definite matrix.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> A = Matrix([[1, 2], [-2, 1]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
Notes
=====
Although some people trivialize the definition of positive definite
matrices only for symmetric or hermitian matrices, this restriction
is not correct because it does not classify all instances of
positive definite matrices from the definition $x^T A x > 0$ or
$\text{re}(x^H A x) > 0$.
For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in
the example above is an example of real positive definite matrix
that is not symmetric.
However, since the following formula holds true;
.. math::
\text{re}(x^H A x) > 0 \iff
\text{re}(x^H \frac{A + A^H}{2} x) > 0
We can classify all positive definite matrices that may or may not
be symmetric or hermitian by transforming the matrix to
$\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$
(which is guaranteed to be always real symmetric or complex
hermitian) and we can defer most of the studies to symmetric or
hermitian positive definite matrices.
But it is a different problem for the existance of Cholesky
decomposition. Because even though a non symmetric or a non
hermitian matrix can be positive definite, Cholesky or LDL
decomposition does not exist because the decompositions require the
matrix to be symmetric or hermitian.
References
==========
.. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues
.. [2] https://mathworld.wolfram.com/PositiveDefiniteMatrix.html
.. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
Math. Monthly 77, 259-264 1970.
"""
_is_positive_definite.__doc__ = _doc_positive_definite
_is_positive_semidefinite.__doc__ = _doc_positive_definite
_is_negative_definite.__doc__ = _doc_positive_definite
_is_negative_semidefinite.__doc__ = _doc_positive_definite
_is_indefinite.__doc__ = _doc_positive_definite
def _jordan_form(M, calc_transform=True, *, chop=False):
"""Return $(P, J)$ where $J$ is a Jordan block
matrix and $P$ is a matrix such that $M = P J P^{-1}$
Parameters
==========
calc_transform : bool
If ``False``, then only $J$ is returned.
chop : bool
All matrices are converted to exact types when computing
eigenvalues and eigenvectors. As a result, there may be
approximation errors. If ``chop==True``, these errors
will be truncated.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = M.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
See Also
========
jordan_block
"""
if not M.is_square:
raise NonSquareMatrixError("Only square matrices have Jordan forms")
mat = M
has_floats = M.has(Float)
if has_floats:
try:
max_prec = max(term._prec for term in M.values() if isinstance(term, Float))
except ValueError:
# if no term in the matrix is explicitly a Float calling max()
# will throw a error so setting max_prec to default value of 53
max_prec = 53
# setting minimum max_dps to 15 to prevent loss of precision in
# matrix containing non evaluated expressions
max_dps = max(prec_to_dps(max_prec), 15)
def restore_floats(*args):
"""If ``has_floats`` is `True`, cast all ``args`` as
matrices of floats."""
if has_floats:
args = [m.evalf(n=max_dps, chop=chop) for m in args]
if len(args) == 1:
return args[0]
return args
# cache calculations for some speedup
mat_cache = {}
def eig_mat(val, pow):
"""Cache computations of ``(M - val*I)**pow`` for quick
retrieval"""
if (val, pow) in mat_cache:
return mat_cache[(val, pow)]
if (val, pow - 1) in mat_cache:
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply(
mat_cache[(val, 1)], dotprodsimp=None)
else:
mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow)
return mat_cache[(val, pow)]
# helper functions
def nullity_chain(val, algebraic_multiplicity):
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
until it is constant where ``E = M - val*I``"""
# mat.rank() is faster than computing the null space,
# so use the rank-nullity theorem
cols = M.cols
ret = [0]
nullity = cols - eig_mat(val, 1).rank()
i = 2
while nullity != ret[-1]:
ret.append(nullity)
if nullity == algebraic_multiplicity:
break
nullity = cols - eig_mat(val, i).rank()
i += 1
# Due to issues like #7146 and #15872, SymPy sometimes
# gives the wrong rank. In this case, raise an error
# instead of returning an incorrect matrix
if nullity < ret[-1] or nullity > algebraic_multiplicity:
raise MatrixError(
"SymPy had encountered an inconsistent "
"result while computing Jordan block: "
"{}".format(M))
return ret
def blocks_from_nullity_chain(d):
"""Return a list of the size of each Jordan block.
If d_n is the nullity of E**n, then the number
of Jordan blocks of size n is
2*d_n - d_(n-1) - d_(n+1)"""
# d[0] is always the number of columns, so skip past it
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
return mid + end
def pick_vec(small_basis, big_basis):
"""Picks a vector from big_basis that isn't in
the subspace spanned by small_basis"""
if len(small_basis) == 0:
return big_basis[0]
for v in big_basis:
_, pivots = M.hstack(*(small_basis + [v])).echelon_form(
with_pivots=True)
if pivots[-1] == len(small_basis):
return v
# roots doesn't like Floats, so replace them with Rationals
if has_floats:
from sympy.simplify import nsimplify
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
# first calculate the jordan block structure
eigs = mat.eigenvals()
# Make sure that we have all roots in radical form
for x in eigs:
if x.has(CRootOf):
raise MatrixError(
"Jordan normal form is not implemented if the matrix have "
"eigenvalues in CRootOf form")
# most matrices have distinct eigenvalues
# and so are diagonalizable. In this case, don't
# do extra work!
if len(eigs.keys()) == mat.cols:
blocks = sorted(eigs.keys(), key=default_sort_key)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
jordan_basis = [eig_mat(eig, 1).nullspace()[0]
for eig in blocks]
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
block_structure = []
for eig in sorted(eigs.keys(), key=default_sort_key):
algebraic_multiplicity = eigs[eig]
chain = nullity_chain(eig, algebraic_multiplicity)
block_sizes = blocks_from_nullity_chain(chain)
# if block_sizes = = [a, b, c, ...], then the number of
# Jordan blocks of size 1 is a, of size 2 is b, etc.
# create an array that has (eig, block_size) with one
# entry for each block
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
# we expect larger Jordan blocks to come earlier
size_nums.reverse()
block_structure.extend(
[(eig, size) for size, num in size_nums for _ in range(num)])
jordan_form_size = sum(size for eig, size in block_structure)
if jordan_form_size != M.rows:
raise MatrixError(
"SymPy had encountered an inconsistent result while "
"computing Jordan block. : {}".format(M))
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
# For each generalized eigenspace, calculate a basis.
# We start by looking for a vector in null( (A - eig*I)**n )
# which isn't in null( (A - eig*I)**(n-1) ) where n is
# the size of the Jordan block
#
# Ideally we'd just loop through block_structure and
# compute each generalized eigenspace. However, this
# causes a lot of unneeded computation. Instead, we
# go through the eigenvalues separately, since we know
# their generalized eigenspaces must have bases that
# are linearly independent.
jordan_basis = []
for eig in sorted(eigs.keys(), key=default_sort_key):
eig_basis = []
for block_eig, size in block_structure:
if block_eig != eig:
continue
null_big = (eig_mat(eig, size)).nullspace()
null_small = (eig_mat(eig, size - 1)).nullspace()
# we want to pick something that is in the big basis
# and not the small, but also something that is independent
# of any other generalized eigenvectors from a different
# generalized eigenspace sharing the same eigenvalue.
vec = pick_vec(null_small + eig_basis, null_big)
new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None)
for i in range(size)]
eig_basis.extend(new_vecs)
jordan_basis.extend(reversed(new_vecs))
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
def _left_eigenvects(M, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
eigs = M.transpose().eigenvects(**flags)
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
def _singular_values(M):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> M.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
if M.rows >= M.cols:
valmultpairs = M.H.multiply(M).eigenvals()
else:
valmultpairs = M.multiply(M.H).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)] * v # dangerous! same k in several spots!
# Pad with zeros if singular values are computed in reverse way,
# to give consistent format.
if len(vals) < M.cols:
vals += [M.zero] * (M.cols - len(vals))
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals