Traktor/myenv/Lib/site-packages/sympy/matrices/expressions/matexpr.py

886 lines
27 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from __future__ import annotations
from functools import wraps
from sympy.core import S, Integer, Basic, Mul, Add
from sympy.core.assumptions import check_assumptions
from sympy.core.decorators import call_highest_priority
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.logic import FuzzyBool
from sympy.core.symbol import Str, Dummy, symbols, Symbol
from sympy.core.sympify import SympifyError, _sympify
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions import conjugate, adjoint
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.common import NonSquareMatrixError
from sympy.matrices.matrices import MatrixKind, MatrixBase
from sympy.multipledispatch import dispatch
from sympy.utilities.misc import filldedent
def _sympifyit(arg, retval=None):
# This version of _sympifyit sympifies MutableMatrix objects
def deco(func):
@wraps(func)
def __sympifyit_wrapper(a, b):
try:
b = _sympify(b)
return func(a, b)
except SympifyError:
return retval
return __sympifyit_wrapper
return deco
class MatrixExpr(Expr):
"""Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented
within a particular basis.
Examples
========
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).I * A * y
See Also
========
MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
"""
__slots__: tuple[str, ...] = ()
# Should not be considered iterable by the
# sympy.utilities.iterables.iterable function. Subclass that actually are
# iterable (i.e., explicit matrices) should set this to True.
_iterable = False
_op_priority = 11.0
is_Matrix: bool = True
is_MatrixExpr: bool = True
is_Identity: FuzzyBool = None
is_Inverse = False
is_Transpose = False
is_ZeroMatrix = False
is_MatAdd = False
is_MatMul = False
is_commutative = False
is_number = False
is_symbol = False
is_scalar = False
kind: MatrixKind = MatrixKind()
def __new__(cls, *args, **kwargs):
args = map(_sympify, args)
return Basic.__new__(cls, *args, **kwargs)
# The following is adapted from the core Expr object
@property
def shape(self) -> tuple[Expr, Expr]:
raise NotImplementedError
@property
def _add_handler(self):
return MatAdd
@property
def _mul_handler(self):
return MatMul
def __neg__(self):
return MatMul(S.NegativeOne, self).doit()
def __abs__(self):
raise NotImplementedError
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return MatAdd(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return MatAdd(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return MatAdd(self, -other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return MatAdd(other, -self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __matmul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmatmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return MatPow(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
raise NotImplementedError("Matrix Power not defined")
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * other**S.NegativeOne
@_sympifyit('other', NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
raise NotImplementedError()
#return MatMul(other, Pow(self, S.NegativeOne))
@property
def rows(self):
return self.shape[0]
@property
def cols(self):
return self.shape[1]
@property
def is_square(self) -> bool | None:
rows, cols = self.shape
if isinstance(rows, Integer) and isinstance(cols, Integer):
return rows == cols
if rows == cols:
return True
return None
def _eval_conjugate(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(Transpose(self))
def as_real_imag(self, deep=True, **hints):
return self._eval_as_real_imag()
def _eval_as_real_imag(self):
real = S.Half * (self + self._eval_conjugate())
im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit)
return (real, im)
def _eval_inverse(self):
return Inverse(self)
def _eval_determinant(self):
return Determinant(self)
def _eval_transpose(self):
return Transpose(self)
def _eval_power(self, exp):
"""
Override this in sub-classes to implement simplification of powers. The cases where the exponent
is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases.
"""
return MatPow(self, exp)
def _eval_simplify(self, **kwargs):
if self.is_Atom:
return self
else:
from sympy.simplify import simplify
return self.func(*[simplify(x, **kwargs) for x in self.args])
def _eval_adjoint(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(self)
def _eval_derivative_n_times(self, x, n):
return Basic._eval_derivative_n_times(self, x, n)
def _eval_derivative(self, x):
# `x` is a scalar:
if self.has(x):
# See if there are other methods using it:
return super()._eval_derivative(x)
else:
return ZeroMatrix(*self.shape)
@classmethod
def _check_dim(cls, dim):
"""Helper function to check invalid matrix dimensions"""
ok = check_assumptions(dim, integer=True, nonnegative=True)
if ok is False:
raise ValueError(
"The dimension specification {} should be "
"a nonnegative integer.".format(dim))
def _entry(self, i, j, **kwargs):
raise NotImplementedError(
"Indexing not implemented for %s" % self.__class__.__name__)
def adjoint(self):
return adjoint(self)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product."""
return S.One, self
def conjugate(self):
return conjugate(self)
def transpose(self):
from sympy.matrices.expressions.transpose import transpose
return transpose(self)
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
def inverse(self):
if self.is_square is False:
raise NonSquareMatrixError('Inverse of non-square matrix')
return self._eval_inverse()
def inv(self):
return self.inverse()
def det(self):
from sympy.matrices.expressions.determinant import det
return det(self)
@property
def I(self):
return self.inverse()
def valid_index(self, i, j):
def is_valid(idx):
return isinstance(idx, (int, Integer, Symbol, Expr))
return (is_valid(i) and is_valid(j) and
(self.rows is None or
(i >= -self.rows) != False and (i < self.rows) != False) and
(j >= -self.cols) != False and (j < self.cols) != False)
def __getitem__(self, key):
if not isinstance(key, tuple) and isinstance(key, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, key, (0, None, 1))
if isinstance(key, tuple) and len(key) == 2:
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, i, j)
i, j = _sympify(i), _sympify(j)
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid indices (%s, %s)" % (i, j))
elif isinstance(key, (SYMPY_INTS, Integer)):
# row-wise decomposition of matrix
rows, cols = self.shape
# allow single indexing if number of columns is known
if not isinstance(cols, Integer):
raise IndexError(filldedent('''
Single indexing is only supported when the number
of columns is known.'''))
key = _sympify(key)
i = key // cols
j = key % cols
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid index %s" % key)
elif isinstance(key, (Symbol, Expr)):
raise IndexError(filldedent('''
Only integers may be used when addressing the matrix
with a single index.'''))
raise IndexError("Invalid index, wanted %s[i,j]" % self)
def _is_shape_symbolic(self) -> bool:
return (not isinstance(self.rows, (SYMPY_INTS, Integer))
or not isinstance(self.cols, (SYMPY_INTS, Integer)))
def as_explicit(self):
"""
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.as_explicit()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_mutable: returns mutable Matrix type
"""
if self._is_shape_symbolic():
raise ValueError(
'Matrix with symbolic shape '
'cannot be represented explicitly.')
from sympy.matrices.immutable import ImmutableDenseMatrix
return ImmutableDenseMatrix([[self[i, j]
for j in range(self.cols)]
for i in range(self.rows)])
def as_mutable(self):
"""
Returns a dense, mutable matrix with elements represented explicitly
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.shape
(3, 3)
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_explicit: returns ImmutableDenseMatrix
"""
return self.as_explicit().as_mutable()
def __array__(self):
from numpy import empty
a = empty(self.shape, dtype=object)
for i in range(self.rows):
for j in range(self.cols):
a[i, j] = self[i, j]
return a
def equals(self, other):
"""
Test elementwise equality between matrices, potentially of different
types
>>> from sympy import Identity, eye
>>> Identity(3).equals(eye(3))
True
"""
return self.as_explicit().equals(other)
def canonicalize(self):
return self
def as_coeff_mmul(self):
return S.One, MatMul(self)
@staticmethod
def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
r"""
Parse expression of matrices with explicitly summed indices into a
matrix expression without indices, if possible.
This transformation expressed in mathematical notation:
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
Optional parameter ``first_index``: specify which free index to use as
the index starting the expression.
Examples
========
>>> from sympy import MatrixSymbol, MatrixExpr, Sum
>>> from sympy.abc import i, j, k, l, N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A.T*B
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
Trace(A)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B.T*A.T
"""
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
first_indices = []
if first_index is not None:
first_indices.append(first_index)
if last_index is not None:
first_indices.append(last_index)
arr = convert_indexed_to_array(expr, first_indices=first_indices)
return convert_array_to_matrix(arr)
def applyfunc(self, func):
from .applyfunc import ElementwiseApplyFunction
return ElementwiseApplyFunction(func, self)
@dispatch(MatrixExpr, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return False
@dispatch(MatrixExpr, MatrixExpr) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if lhs.shape != rhs.shape:
return False
if (lhs - rhs).is_ZeroMatrix:
return True
def get_postprocessor(cls):
def _postprocessor(expr):
# To avoid circular imports, we can't have MatMul/MatAdd on the top level
mat_class = {Mul: MatMul, Add: MatAdd}[cls]
nonmatrices = []
matrices = []
for term in expr.args:
if isinstance(term, MatrixExpr):
matrices.append(term)
else:
nonmatrices.append(term)
if not matrices:
return cls._from_args(nonmatrices)
if nonmatrices:
if cls == Mul:
for i in range(len(matrices)):
if not matrices[i].is_MatrixExpr:
# If one of the matrices explicit, absorb the scalar into it
# (doit will combine all explicit matrices into one, so it
# doesn't matter which)
matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
nonmatrices = []
break
else:
# Maintain the ability to create Add(scalar, matrix) without
# raising an exception. That way different algorithms can
# replace matrix expressions with non-commutative symbols to
# manipulate them like non-commutative scalars.
return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
if mat_class == MatAdd:
return mat_class(*matrices).doit(deep=False)
return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
return _postprocessor
Basic._constructor_postprocessor_mapping[MatrixExpr] = {
"Mul": [get_postprocessor(Mul)],
"Add": [get_postprocessor(Add)],
}
def _matrix_derivative(expr, x, old_algorithm=False):
if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase):
# Do not use array expressions for explicit matrices:
old_algorithm = True
if old_algorithm:
return _matrix_derivative_old_algorithm(expr, x)
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
array_expr = convert_matrix_to_array(expr)
diff_array_expr = array_derive(array_expr, x)
diff_matrix_expr = convert_array_to_matrix(diff_array_expr)
return diff_matrix_expr
def _matrix_derivative_old_algorithm(expr, x):
from sympy.tensor.array.array_derivatives import ArrayDerivative
lines = expr._eval_derivative_matrix_lines(x)
parts = [i.build() for i in lines]
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
parts = [[convert_array_to_matrix(j) for j in i] for i in parts]
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return 1, 1
def get_rank(parts):
return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
ranks = [get_rank(i) for i in parts]
rank = ranks[0]
def contract_one_dims(parts):
if len(parts) == 1:
return parts[0]
else:
p1, p2 = parts[:2]
if p2.is_Matrix:
p2 = p2.T
if p1 == Identity(1):
pbase = p2
elif p2 == Identity(1):
pbase = p1
else:
pbase = p1*p2
if len(parts) == 2:
return pbase
else: # len(parts) > 2
if pbase.is_Matrix:
raise ValueError("")
return pbase*Mul.fromiter(parts[2:])
if rank <= 2:
return Add.fromiter([contract_one_dims(i) for i in parts])
return ArrayDerivative(expr, x)
class MatrixElement(Expr):
parent = property(lambda self: self.args[0])
i = property(lambda self: self.args[1])
j = property(lambda self: self.args[2])
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, n, m):
n, m = map(_sympify, (n, m))
from sympy.matrices.matrices import MatrixBase
if isinstance(name, str):
name = Symbol(name)
else:
if isinstance(name, MatrixBase):
if n.is_Integer and m.is_Integer:
return name[n, m]
name = _sympify(name) # change mutable into immutable
else:
name = _sympify(name)
if not isinstance(name.kind, MatrixKind):
raise TypeError("First argument of MatrixElement should be a matrix")
if not getattr(name, 'valid_index', lambda n, m: True)(n, m):
raise IndexError('indices out of range')
obj = Expr.__new__(cls, name, n, m)
return obj
@property
def symbol(self):
return self.args[0]
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
return args[0][args[1], args[2]]
@property
def indices(self):
return self.args[1:]
def _eval_derivative(self, v):
if not isinstance(v, MatrixElement):
from sympy.matrices.matrices import MatrixBase
if isinstance(self.parent, MatrixBase):
return self.parent.diff(v)[self.i, self.j]
return S.Zero
M = self.args[0]
m, n = self.parent.shape
if M == v.args[0]:
return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \
KroneckerDelta(self.args[2], v.args[2], (0, n-1))
if isinstance(M, Inverse):
from sympy.concrete.summations import Sum
i, j = self.args[1:]
i1, i2 = symbols("z1, z2", cls=Dummy)
Y = M.args[0]
r1, r2 = Y.shape
return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
if self.has(v.args[0]):
return None
return S.Zero
class MatrixSymbol(MatrixExpr):
"""Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
can be included in Matrix Expressions
Examples
========
>>> from sympy import MatrixSymbol, Identity
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
"""
is_commutative = False
is_symbol = True
_diff_wrt = True
def __new__(cls, name, n, m):
n, m = _sympify(n), _sympify(m)
cls._check_dim(m)
cls._check_dim(n)
if isinstance(name, str):
name = Str(name)
obj = Basic.__new__(cls, name, n, m)
return obj
@property
def shape(self):
return self.args[1], self.args[2]
@property
def name(self):
return self.args[0].name
def _entry(self, i, j, **kwargs):
return MatrixElement(self, i, j)
@property
def free_symbols(self):
return {self}
def _eval_simplify(self, **kwargs):
return self
def _eval_derivative(self, x):
# x is a scalar:
return ZeroMatrix(self.shape[0], self.shape[1])
def _eval_derivative_matrix_lines(self, x):
if self != x:
first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
return [_LeftRightArgs(
[first, second],
)]
else:
first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
return [_LeftRightArgs(
[first, second],
)]
def matrix_symbols(expr):
return [sym for sym in expr.free_symbols if sym.is_Matrix]
class _LeftRightArgs:
r"""
Helper class to compute matrix derivatives.
The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
matrix multiplications are created: the one contracted to `m` (first line),
and the one contracted to `n` (second line).
Transposition flips the side by which new matrices are connected to the
lines.
The trace connects the end of the two lines.
"""
def __init__(self, lines, higher=S.One):
self._lines = list(lines)
self._first_pointer_parent = self._lines
self._first_pointer_index = 0
self._first_line_index = 0
self._second_pointer_parent = self._lines
self._second_pointer_index = 1
self._second_line_index = 1
self.higher = higher
@property
def first_pointer(self):
return self._first_pointer_parent[self._first_pointer_index]
@first_pointer.setter
def first_pointer(self, value):
self._first_pointer_parent[self._first_pointer_index] = value
@property
def second_pointer(self):
return self._second_pointer_parent[self._second_pointer_index]
@second_pointer.setter
def second_pointer(self, value):
self._second_pointer_parent[self._second_pointer_index] = value
def __repr__(self):
built = [self._build(i) for i in self._lines]
return "_LeftRightArgs(lines=%s, higher=%s)" % (
built,
self.higher,
)
def transpose(self):
self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
return self
@staticmethod
def _build(expr):
if isinstance(expr, ExprBuilder):
return expr.build()
if isinstance(expr, list):
if len(expr) == 1:
return expr[0]
else:
return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
else:
return expr
def build(self):
data = [self._build(i) for i in self._lines]
if self.higher != 1:
data += [self._build(self.higher)]
data = list(data)
return data
def matrix_form(self):
if self.first != 1 and self.higher != 1:
raise ValueError("higher dimensional array cannot be represented")
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return (None, None)
if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
# Remove one-dimensional identity matrices:
# (this is needed by `a.diff(a)` where `a` is a vector)
if _get_shape(self.second) == (1, 1):
return self.first*self.second[0, 0]
if _get_shape(self.first) == (1, 1):
return self.first[1, 1]*self.second.T
raise ValueError("incompatible shapes")
if self.first != 1:
return self.first*self.second.T
else:
return self.higher
def rank(self):
"""
Number of dimensions different from trivial (warning: not related to
matrix rank).
"""
rank = 0
if self.first != 1:
rank += sum([i != 1 for i in self.first.shape])
if self.second != 1:
rank += sum([i != 1 for i in self.second.shape])
if self.higher != 1:
rank += 2
return rank
def _multiply_pointer(self, pointer, other):
from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
from ...tensor.array.expressions.array_expressions import ArrayContraction
subexpr = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
pointer,
other
]
),
(1, 2)
],
validator=ArrayContraction._validate
)
return subexpr
def append_first(self, other):
self.first_pointer *= other
def append_second(self, other):
self.second_pointer *= other
def _make_matrix(x):
from sympy.matrices.immutable import ImmutableDenseMatrix
if isinstance(x, MatrixExpr):
return x
return ImmutableDenseMatrix([[x]])
from .matmul import MatMul
from .matadd import MatAdd
from .matpow import MatPow
from .transpose import Transpose
from .inverse import Inverse
from .special import ZeroMatrix, Identity
from .determinant import Determinant