499 lines
15 KiB
Python
499 lines
15 KiB
Python
|
from sympy.assumptions.ask import ask, Q
|
||
|
from sympy.assumptions.refine import handlers_dict
|
||
|
from sympy.core import Basic, sympify, S
|
||
|
from sympy.core.mul import mul, Mul
|
||
|
from sympy.core.numbers import Number, Integer
|
||
|
from sympy.core.symbol import Dummy
|
||
|
from sympy.functions import adjoint
|
||
|
from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
|
||
|
do_one, new)
|
||
|
from sympy.matrices.common import NonInvertibleMatrixError
|
||
|
from sympy.matrices.matrices import MatrixBase
|
||
|
from sympy.utilities.exceptions import sympy_deprecation_warning
|
||
|
from sympy.matrices.expressions._shape import validate_matmul_integer as validate
|
||
|
|
||
|
from .inverse import Inverse
|
||
|
from .matexpr import MatrixExpr
|
||
|
from .matpow import MatPow
|
||
|
from .transpose import transpose
|
||
|
from .permutation import PermutationMatrix
|
||
|
from .special import ZeroMatrix, Identity, GenericIdentity, OneMatrix
|
||
|
|
||
|
|
||
|
# XXX: MatMul should perhaps not subclass directly from Mul
|
||
|
class MatMul(MatrixExpr, Mul):
|
||
|
"""
|
||
|
A product of matrix expressions
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import MatMul, MatrixSymbol
|
||
|
>>> A = MatrixSymbol('A', 5, 4)
|
||
|
>>> B = MatrixSymbol('B', 4, 3)
|
||
|
>>> C = MatrixSymbol('C', 3, 6)
|
||
|
>>> MatMul(A, B, C)
|
||
|
A*B*C
|
||
|
"""
|
||
|
is_MatMul = True
|
||
|
|
||
|
identity = GenericIdentity()
|
||
|
|
||
|
def __new__(cls, *args, evaluate=False, check=None, _sympify=True):
|
||
|
if not args:
|
||
|
return cls.identity
|
||
|
|
||
|
# This must be removed aggressively in the constructor to avoid
|
||
|
# TypeErrors from GenericIdentity().shape
|
||
|
args = list(filter(lambda i: cls.identity != i, args))
|
||
|
if _sympify:
|
||
|
args = list(map(sympify, args))
|
||
|
obj = Basic.__new__(cls, *args)
|
||
|
factor, matrices = obj.as_coeff_matrices()
|
||
|
|
||
|
if check is not None:
|
||
|
sympy_deprecation_warning(
|
||
|
"Passing check to MatMul is deprecated and the check argument will be removed in a future version.",
|
||
|
deprecated_since_version="1.11",
|
||
|
active_deprecations_target='remove-check-argument-from-matrix-operations')
|
||
|
|
||
|
if check is not False:
|
||
|
validate(*matrices)
|
||
|
|
||
|
if not matrices:
|
||
|
# Should it be
|
||
|
#
|
||
|
# return Basic.__neq__(cls, factor, GenericIdentity()) ?
|
||
|
return factor
|
||
|
|
||
|
if evaluate:
|
||
|
return cls._evaluate(obj)
|
||
|
|
||
|
return obj
|
||
|
|
||
|
@classmethod
|
||
|
def _evaluate(cls, expr):
|
||
|
return canonicalize(expr)
|
||
|
|
||
|
@property
|
||
|
def shape(self):
|
||
|
matrices = [arg for arg in self.args if arg.is_Matrix]
|
||
|
return (matrices[0].rows, matrices[-1].cols)
|
||
|
|
||
|
def _entry(self, i, j, expand=True, **kwargs):
|
||
|
# Avoid cyclic imports
|
||
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.matrices.immutable import ImmutableMatrix
|
||
|
|
||
|
coeff, matrices = self.as_coeff_matrices()
|
||
|
|
||
|
if len(matrices) == 1: # situation like 2*X, matmul is just X
|
||
|
return coeff * matrices[0][i, j]
|
||
|
|
||
|
indices = [None]*(len(matrices) + 1)
|
||
|
ind_ranges = [None]*(len(matrices) - 1)
|
||
|
indices[0] = i
|
||
|
indices[-1] = j
|
||
|
|
||
|
def f():
|
||
|
counter = 1
|
||
|
while True:
|
||
|
yield Dummy("i_%i" % counter)
|
||
|
counter += 1
|
||
|
|
||
|
dummy_generator = kwargs.get("dummy_generator", f())
|
||
|
|
||
|
for i in range(1, len(matrices)):
|
||
|
indices[i] = next(dummy_generator)
|
||
|
|
||
|
for i, arg in enumerate(matrices[:-1]):
|
||
|
ind_ranges[i] = arg.shape[1] - 1
|
||
|
matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
|
||
|
expr_in_sum = Mul.fromiter(matrices)
|
||
|
if any(v.has(ImmutableMatrix) for v in matrices):
|
||
|
expand = True
|
||
|
result = coeff*Sum(
|
||
|
expr_in_sum,
|
||
|
*zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
|
||
|
)
|
||
|
|
||
|
# Don't waste time in result.doit() if the sum bounds are symbolic
|
||
|
if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
|
||
|
expand = False
|
||
|
return result.doit() if expand else result
|
||
|
|
||
|
def as_coeff_matrices(self):
|
||
|
scalars = [x for x in self.args if not x.is_Matrix]
|
||
|
matrices = [x for x in self.args if x.is_Matrix]
|
||
|
coeff = Mul(*scalars)
|
||
|
if coeff.is_commutative is False:
|
||
|
raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
|
||
|
|
||
|
return coeff, matrices
|
||
|
|
||
|
def as_coeff_mmul(self):
|
||
|
coeff, matrices = self.as_coeff_matrices()
|
||
|
return coeff, MatMul(*matrices)
|
||
|
|
||
|
def expand(self, **kwargs):
|
||
|
expanded = super(MatMul, self).expand(**kwargs)
|
||
|
return self._evaluate(expanded)
|
||
|
|
||
|
def _eval_transpose(self):
|
||
|
"""Transposition of matrix multiplication.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The following rules are applied.
|
||
|
|
||
|
Transposition for matrix multiplied with another matrix:
|
||
|
`\\left(A B\\right)^{T} = B^{T} A^{T}`
|
||
|
|
||
|
Transposition for matrix multiplied with scalar:
|
||
|
`\\left(c A\\right)^{T} = c A^{T}`
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Transpose
|
||
|
"""
|
||
|
coeff, matrices = self.as_coeff_matrices()
|
||
|
return MatMul(
|
||
|
coeff, *[transpose(arg) for arg in matrices[::-1]]).doit()
|
||
|
|
||
|
def _eval_adjoint(self):
|
||
|
return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
|
||
|
|
||
|
def _eval_trace(self):
|
||
|
factor, mmul = self.as_coeff_mmul()
|
||
|
if factor != 1:
|
||
|
from .trace import trace
|
||
|
return factor * trace(mmul.doit())
|
||
|
else:
|
||
|
raise NotImplementedError("Can't simplify any further")
|
||
|
|
||
|
def _eval_determinant(self):
|
||
|
from sympy.matrices.expressions.determinant import Determinant
|
||
|
factor, matrices = self.as_coeff_matrices()
|
||
|
square_matrices = only_squares(*matrices)
|
||
|
return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
|
||
|
|
||
|
def _eval_inverse(self):
|
||
|
if all(arg.is_square for arg in self.args if isinstance(arg, MatrixExpr)):
|
||
|
return MatMul(*(
|
||
|
arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
|
||
|
for arg in self.args[::-1]
|
||
|
)
|
||
|
).doit()
|
||
|
return Inverse(self)
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
deep = hints.get('deep', True)
|
||
|
if deep:
|
||
|
args = tuple(arg.doit(**hints) for arg in self.args)
|
||
|
else:
|
||
|
args = self.args
|
||
|
|
||
|
# treat scalar*MatrixSymbol or scalar*MatPow separately
|
||
|
expr = canonicalize(MatMul(*args))
|
||
|
return expr
|
||
|
|
||
|
# Needed for partial compatibility with Mul
|
||
|
def args_cnc(self, cset=False, warn=True, **kwargs):
|
||
|
coeff_c = [x for x in self.args if x.is_commutative]
|
||
|
coeff_nc = [x for x in self.args if not x.is_commutative]
|
||
|
if cset:
|
||
|
clen = len(coeff_c)
|
||
|
coeff_c = set(coeff_c)
|
||
|
if clen and warn and len(coeff_c) != clen:
|
||
|
raise ValueError('repeated commutative arguments: %s' %
|
||
|
[ci for ci in coeff_c if list(self.args).count(ci) > 1])
|
||
|
return [coeff_c, coeff_nc]
|
||
|
|
||
|
def _eval_derivative_matrix_lines(self, x):
|
||
|
from .transpose import Transpose
|
||
|
with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
|
||
|
lines = []
|
||
|
for ind in with_x_ind:
|
||
|
left_args = self.args[:ind]
|
||
|
right_args = self.args[ind+1:]
|
||
|
|
||
|
if right_args:
|
||
|
right_mat = MatMul.fromiter(right_args)
|
||
|
else:
|
||
|
right_mat = Identity(self.shape[1])
|
||
|
if left_args:
|
||
|
left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
|
||
|
else:
|
||
|
left_rev = Identity(self.shape[0])
|
||
|
|
||
|
d = self.args[ind]._eval_derivative_matrix_lines(x)
|
||
|
for i in d:
|
||
|
i.append_first(left_rev)
|
||
|
i.append_second(right_mat)
|
||
|
lines.append(i)
|
||
|
|
||
|
return lines
|
||
|
|
||
|
mul.register_handlerclass((Mul, MatMul), MatMul)
|
||
|
|
||
|
|
||
|
# Rules
|
||
|
def newmul(*args):
|
||
|
if args[0] == 1:
|
||
|
args = args[1:]
|
||
|
return new(MatMul, *args)
|
||
|
|
||
|
def any_zeros(mul):
|
||
|
if any(arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
|
||
|
for arg in mul.args):
|
||
|
matrices = [arg for arg in mul.args if arg.is_Matrix]
|
||
|
return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
|
||
|
return mul
|
||
|
|
||
|
def merge_explicit(matmul):
|
||
|
""" Merge explicit MatrixBase arguments
|
||
|
|
||
|
>>> from sympy import MatrixSymbol, Matrix, MatMul, pprint
|
||
|
>>> from sympy.matrices.expressions.matmul import merge_explicit
|
||
|
>>> A = MatrixSymbol('A', 2, 2)
|
||
|
>>> B = Matrix([[1, 1], [1, 1]])
|
||
|
>>> C = Matrix([[1, 2], [3, 4]])
|
||
|
>>> X = MatMul(A, B, C)
|
||
|
>>> pprint(X)
|
||
|
[1 1] [1 2]
|
||
|
A*[ ]*[ ]
|
||
|
[1 1] [3 4]
|
||
|
>>> pprint(merge_explicit(X))
|
||
|
[4 6]
|
||
|
A*[ ]
|
||
|
[4 6]
|
||
|
|
||
|
>>> X = MatMul(B, A, C)
|
||
|
>>> pprint(X)
|
||
|
[1 1] [1 2]
|
||
|
[ ]*A*[ ]
|
||
|
[1 1] [3 4]
|
||
|
>>> pprint(merge_explicit(X))
|
||
|
[1 1] [1 2]
|
||
|
[ ]*A*[ ]
|
||
|
[1 1] [3 4]
|
||
|
"""
|
||
|
if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
|
||
|
return matmul
|
||
|
newargs = []
|
||
|
last = matmul.args[0]
|
||
|
for arg in matmul.args[1:]:
|
||
|
if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
|
||
|
last = last * arg
|
||
|
else:
|
||
|
newargs.append(last)
|
||
|
last = arg
|
||
|
newargs.append(last)
|
||
|
|
||
|
return MatMul(*newargs)
|
||
|
|
||
|
def remove_ids(mul):
|
||
|
""" Remove Identities from a MatMul
|
||
|
|
||
|
This is a modified version of sympy.strategies.rm_id.
|
||
|
This is necesssary because MatMul may contain both MatrixExprs and Exprs
|
||
|
as args.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.strategies.rm_id
|
||
|
"""
|
||
|
# Separate Exprs from MatrixExprs in args
|
||
|
factor, mmul = mul.as_coeff_mmul()
|
||
|
# Apply standard rm_id for MatMuls
|
||
|
result = rm_id(lambda x: x.is_Identity is True)(mmul)
|
||
|
if result != mmul:
|
||
|
return newmul(factor, *result.args) # Recombine and return
|
||
|
else:
|
||
|
return mul
|
||
|
|
||
|
def factor_in_front(mul):
|
||
|
factor, matrices = mul.as_coeff_matrices()
|
||
|
if factor != 1:
|
||
|
return newmul(factor, *matrices)
|
||
|
return mul
|
||
|
|
||
|
def combine_powers(mul):
|
||
|
r"""Combine consecutive powers with the same base into one, e.g.
|
||
|
$$A \times A^2 \Rightarrow A^3$$
|
||
|
|
||
|
This also cancels out the possible matrix inverses using the
|
||
|
knowledgebase of :class:`~.Inverse`, e.g.,
|
||
|
$$ Y \times X \times X^{-1} \Rightarrow Y $$
|
||
|
"""
|
||
|
factor, args = mul.as_coeff_matrices()
|
||
|
new_args = [args[0]]
|
||
|
|
||
|
for i in range(1, len(args)):
|
||
|
A = new_args[-1]
|
||
|
B = args[i]
|
||
|
|
||
|
if isinstance(B, Inverse) and isinstance(B.arg, MatMul):
|
||
|
Bargs = B.arg.args
|
||
|
l = len(Bargs)
|
||
|
if list(Bargs) == new_args[-l:]:
|
||
|
new_args = new_args[:-l] + [Identity(B.shape[0])]
|
||
|
continue
|
||
|
|
||
|
if isinstance(A, Inverse) and isinstance(A.arg, MatMul):
|
||
|
Aargs = A.arg.args
|
||
|
l = len(Aargs)
|
||
|
if list(Aargs) == args[i:i+l]:
|
||
|
identity = Identity(A.shape[0])
|
||
|
new_args[-1] = identity
|
||
|
for j in range(i, i+l):
|
||
|
args[j] = identity
|
||
|
continue
|
||
|
|
||
|
if A.is_square == False or B.is_square == False:
|
||
|
new_args.append(B)
|
||
|
continue
|
||
|
|
||
|
if isinstance(A, MatPow):
|
||
|
A_base, A_exp = A.args
|
||
|
else:
|
||
|
A_base, A_exp = A, S.One
|
||
|
|
||
|
if isinstance(B, MatPow):
|
||
|
B_base, B_exp = B.args
|
||
|
else:
|
||
|
B_base, B_exp = B, S.One
|
||
|
|
||
|
if A_base == B_base:
|
||
|
new_exp = A_exp + B_exp
|
||
|
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
|
||
|
continue
|
||
|
elif not isinstance(B_base, MatrixBase):
|
||
|
try:
|
||
|
B_base_inv = B_base.inverse()
|
||
|
except NonInvertibleMatrixError:
|
||
|
B_base_inv = None
|
||
|
if B_base_inv is not None and A_base == B_base_inv:
|
||
|
new_exp = A_exp - B_exp
|
||
|
new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
|
||
|
continue
|
||
|
new_args.append(B)
|
||
|
|
||
|
return newmul(factor, *new_args)
|
||
|
|
||
|
def combine_permutations(mul):
|
||
|
"""Refine products of permutation matrices as the products of cycles.
|
||
|
"""
|
||
|
args = mul.args
|
||
|
l = len(args)
|
||
|
if l < 2:
|
||
|
return mul
|
||
|
|
||
|
result = [args[0]]
|
||
|
for i in range(1, l):
|
||
|
A = result[-1]
|
||
|
B = args[i]
|
||
|
if isinstance(A, PermutationMatrix) and \
|
||
|
isinstance(B, PermutationMatrix):
|
||
|
cycle_1 = A.args[0]
|
||
|
cycle_2 = B.args[0]
|
||
|
result[-1] = PermutationMatrix(cycle_1 * cycle_2)
|
||
|
else:
|
||
|
result.append(B)
|
||
|
|
||
|
return MatMul(*result)
|
||
|
|
||
|
def combine_one_matrices(mul):
|
||
|
"""
|
||
|
Combine products of OneMatrix
|
||
|
|
||
|
e.g. OneMatrix(2, 3) * OneMatrix(3, 4) -> 3 * OneMatrix(2, 4)
|
||
|
"""
|
||
|
factor, args = mul.as_coeff_matrices()
|
||
|
new_args = [args[0]]
|
||
|
|
||
|
for B in args[1:]:
|
||
|
A = new_args[-1]
|
||
|
if not isinstance(A, OneMatrix) or not isinstance(B, OneMatrix):
|
||
|
new_args.append(B)
|
||
|
continue
|
||
|
new_args.pop()
|
||
|
new_args.append(OneMatrix(A.shape[0], B.shape[1]))
|
||
|
factor *= A.shape[1]
|
||
|
|
||
|
return newmul(factor, *new_args)
|
||
|
|
||
|
def distribute_monom(mul):
|
||
|
"""
|
||
|
Simplify MatMul expressions but distributing
|
||
|
rational term to MatMul.
|
||
|
|
||
|
e.g. 2*(A+B) -> 2*A + 2*B
|
||
|
"""
|
||
|
args = mul.args
|
||
|
if len(args) == 2:
|
||
|
from .matadd import MatAdd
|
||
|
if args[0].is_MatAdd and args[1].is_Rational:
|
||
|
return MatAdd(*[MatMul(mat, args[1]).doit() for mat in args[0].args])
|
||
|
if args[1].is_MatAdd and args[0].is_Rational:
|
||
|
return MatAdd(*[MatMul(args[0], mat).doit() for mat in args[1].args])
|
||
|
return mul
|
||
|
|
||
|
rules = (
|
||
|
distribute_monom, any_zeros, remove_ids, combine_one_matrices, combine_powers, unpack, rm_id(lambda x: x == 1),
|
||
|
merge_explicit, factor_in_front, flatten, combine_permutations)
|
||
|
|
||
|
canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
|
||
|
|
||
|
def only_squares(*matrices):
|
||
|
"""factor matrices only if they are square"""
|
||
|
if matrices[0].rows != matrices[-1].cols:
|
||
|
raise RuntimeError("Invalid matrices being multiplied")
|
||
|
out = []
|
||
|
start = 0
|
||
|
for i, M in enumerate(matrices):
|
||
|
if M.cols == matrices[start].rows:
|
||
|
out.append(MatMul(*matrices[start:i+1]).doit())
|
||
|
start = i+1
|
||
|
return out
|
||
|
|
||
|
|
||
|
def refine_MatMul(expr, assumptions):
|
||
|
"""
|
||
|
>>> from sympy import MatrixSymbol, Q, assuming, refine
|
||
|
>>> X = MatrixSymbol('X', 2, 2)
|
||
|
>>> expr = X * X.T
|
||
|
>>> print(expr)
|
||
|
X*X.T
|
||
|
>>> with assuming(Q.orthogonal(X)):
|
||
|
... print(refine(expr))
|
||
|
I
|
||
|
"""
|
||
|
newargs = []
|
||
|
exprargs = []
|
||
|
|
||
|
for args in expr.args:
|
||
|
if args.is_Matrix:
|
||
|
exprargs.append(args)
|
||
|
else:
|
||
|
newargs.append(args)
|
||
|
|
||
|
last = exprargs[0]
|
||
|
for arg in exprargs[1:]:
|
||
|
if arg == last.T and ask(Q.orthogonal(arg), assumptions):
|
||
|
last = Identity(arg.shape[0])
|
||
|
elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
|
||
|
last = Identity(arg.shape[0])
|
||
|
else:
|
||
|
newargs.append(last)
|
||
|
last = arg
|
||
|
newargs.append(last)
|
||
|
|
||
|
return MatMul(*newargs)
|
||
|
|
||
|
|
||
|
handlers_dict['MatMul'] = refine_MatMul
|