301 lines
9.0 KiB
Python
301 lines
9.0 KiB
Python
|
from sympy.core.containers import Dict
|
||
|
from sympy.core.symbol import Dummy
|
||
|
from sympy.utilities.iterables import is_sequence
|
||
|
from sympy.utilities.misc import as_int, filldedent
|
||
|
|
||
|
from .sparse import MutableSparseMatrix as SparseMatrix
|
||
|
|
||
|
|
||
|
def _doktocsr(dok):
|
||
|
"""Converts a sparse matrix to Compressed Sparse Row (CSR) format.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
A : contains non-zero elements sorted by key (row, column)
|
||
|
JA : JA[i] is the column corresponding to A[i]
|
||
|
IA : IA[i] contains the index in A for the first non-zero element
|
||
|
of row[i]. Thus IA[i+1] - IA[i] gives number of non-zero
|
||
|
elements row[i]. The length of IA is always 1 more than the
|
||
|
number of rows in the matrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices.sparsetools import _doktocsr
|
||
|
>>> from sympy import SparseMatrix, diag
|
||
|
>>> m = SparseMatrix(diag(1, 2, 3))
|
||
|
>>> m[2, 0] = -1
|
||
|
>>> _doktocsr(m)
|
||
|
[[1, 2, -1, 3], [0, 1, 0, 2], [0, 1, 2, 4], [3, 3]]
|
||
|
|
||
|
"""
|
||
|
row, JA, A = [list(i) for i in zip(*dok.row_list())]
|
||
|
IA = [0]*((row[0] if row else 0) + 1)
|
||
|
for i, r in enumerate(row):
|
||
|
IA.extend([i]*(r - row[i - 1])) # if i = 0 nothing is extended
|
||
|
IA.extend([len(A)]*(dok.rows - len(IA) + 1))
|
||
|
shape = [dok.rows, dok.cols]
|
||
|
return [A, JA, IA, shape]
|
||
|
|
||
|
|
||
|
def _csrtodok(csr):
|
||
|
"""Converts a CSR representation to DOK representation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.matrices.sparsetools import _csrtodok
|
||
|
>>> _csrtodok([[5, 8, 3, 6], [0, 1, 2, 1], [0, 0, 2, 3, 4], [4, 3]])
|
||
|
Matrix([
|
||
|
[0, 0, 0],
|
||
|
[5, 8, 0],
|
||
|
[0, 0, 3],
|
||
|
[0, 6, 0]])
|
||
|
|
||
|
"""
|
||
|
smat = {}
|
||
|
A, JA, IA, shape = csr
|
||
|
for i in range(len(IA) - 1):
|
||
|
indices = slice(IA[i], IA[i + 1])
|
||
|
for l, m in zip(A[indices], JA[indices]):
|
||
|
smat[i, m] = l
|
||
|
return SparseMatrix(*shape, smat)
|
||
|
|
||
|
|
||
|
def banded(*args, **kwargs):
|
||
|
"""Returns a SparseMatrix from the given dictionary describing
|
||
|
the diagonals of the matrix. The keys are positive for upper
|
||
|
diagonals and negative for those below the main diagonal. The
|
||
|
values may be:
|
||
|
|
||
|
* expressions or single-argument functions,
|
||
|
|
||
|
* lists or tuples of values,
|
||
|
|
||
|
* matrices
|
||
|
|
||
|
Unless dimensions are given, the size of the returned matrix will
|
||
|
be large enough to contain the largest non-zero value provided.
|
||
|
|
||
|
kwargs
|
||
|
======
|
||
|
|
||
|
rows : rows of the resulting matrix; computed if
|
||
|
not given.
|
||
|
|
||
|
cols : columns of the resulting matrix; computed if
|
||
|
not given.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import banded, ones, Matrix
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
If explicit values are given in tuples,
|
||
|
the matrix will autosize to contain all values, otherwise
|
||
|
a single value is filled onto the entire diagonal:
|
||
|
|
||
|
>>> banded({1: (1, 2, 3), -1: (4, 5, 6), 0: x})
|
||
|
Matrix([
|
||
|
[x, 1, 0, 0],
|
||
|
[4, x, 2, 0],
|
||
|
[0, 5, x, 3],
|
||
|
[0, 0, 6, x]])
|
||
|
|
||
|
A function accepting a single argument can be used to fill the
|
||
|
diagonal as a function of diagonal index (which starts at 0).
|
||
|
The size (or shape) of the matrix must be given to obtain more
|
||
|
than a 1x1 matrix:
|
||
|
|
||
|
>>> s = lambda d: (1 + d)**2
|
||
|
>>> banded(5, {0: s, 2: s, -2: 2})
|
||
|
Matrix([
|
||
|
[1, 0, 1, 0, 0],
|
||
|
[0, 4, 0, 4, 0],
|
||
|
[2, 0, 9, 0, 9],
|
||
|
[0, 2, 0, 16, 0],
|
||
|
[0, 0, 2, 0, 25]])
|
||
|
|
||
|
The diagonal of matrices placed on a diagonal will coincide
|
||
|
with the indicated diagonal:
|
||
|
|
||
|
>>> vert = Matrix([1, 2, 3])
|
||
|
>>> banded({0: vert}, cols=3)
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[2, 1, 0],
|
||
|
[3, 2, 1],
|
||
|
[0, 3, 2],
|
||
|
[0, 0, 3]])
|
||
|
|
||
|
>>> banded(4, {0: ones(2)})
|
||
|
Matrix([
|
||
|
[1, 1, 0, 0],
|
||
|
[1, 1, 0, 0],
|
||
|
[0, 0, 1, 1],
|
||
|
[0, 0, 1, 1]])
|
||
|
|
||
|
Errors are raised if the designated size will not hold
|
||
|
all values an integral number of times. Here, the rows
|
||
|
are designated as odd (but an even number is required to
|
||
|
hold the off-diagonal 2x2 ones):
|
||
|
|
||
|
>>> banded({0: 2, 1: ones(2)}, rows=5)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError:
|
||
|
sequence does not fit an integral number of times in the matrix
|
||
|
|
||
|
And here, an even number of rows is given...but the square
|
||
|
matrix has an even number of columns, too. As we saw
|
||
|
in the previous example, an odd number is required:
|
||
|
|
||
|
>>> banded(4, {0: 2, 1: ones(2)}) # trying to make 4x4 and cols must be odd
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError:
|
||
|
sequence does not fit an integral number of times in the matrix
|
||
|
|
||
|
A way around having to count rows is to enclosing matrix elements
|
||
|
in a tuple and indicate the desired number of them to the right:
|
||
|
|
||
|
>>> banded({0: 2, 2: (ones(2),)*3})
|
||
|
Matrix([
|
||
|
[2, 0, 1, 1, 0, 0, 0, 0],
|
||
|
[0, 2, 1, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 2, 0, 1, 1, 0, 0],
|
||
|
[0, 0, 0, 2, 1, 1, 0, 0],
|
||
|
[0, 0, 0, 0, 2, 0, 1, 1],
|
||
|
[0, 0, 0, 0, 0, 2, 1, 1]])
|
||
|
|
||
|
An error will be raised if more than one value
|
||
|
is written to a given entry. Here, the ones overlap
|
||
|
with the main diagonal if they are placed on the
|
||
|
first diagonal:
|
||
|
|
||
|
>>> banded({0: (2,)*5, 1: (ones(2),)*3})
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: collision at (1, 1)
|
||
|
|
||
|
By placing a 0 at the bottom left of the 2x2 matrix of
|
||
|
ones, the collision is avoided:
|
||
|
|
||
|
>>> u2 = Matrix([
|
||
|
... [1, 1],
|
||
|
... [0, 1]])
|
||
|
>>> banded({0: [2]*5, 1: [u2]*3})
|
||
|
Matrix([
|
||
|
[2, 1, 1, 0, 0, 0, 0],
|
||
|
[0, 2, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 2, 1, 1, 0, 0],
|
||
|
[0, 0, 0, 2, 1, 0, 0],
|
||
|
[0, 0, 0, 0, 2, 1, 1],
|
||
|
[0, 0, 0, 0, 0, 0, 1]])
|
||
|
"""
|
||
|
try:
|
||
|
if len(args) not in (1, 2, 3):
|
||
|
raise TypeError
|
||
|
if not isinstance(args[-1], (dict, Dict)):
|
||
|
raise TypeError
|
||
|
if len(args) == 1:
|
||
|
rows = kwargs.get('rows', None)
|
||
|
cols = kwargs.get('cols', None)
|
||
|
if rows is not None:
|
||
|
rows = as_int(rows)
|
||
|
if cols is not None:
|
||
|
cols = as_int(cols)
|
||
|
elif len(args) == 2:
|
||
|
rows = cols = as_int(args[0])
|
||
|
else:
|
||
|
rows, cols = map(as_int, args[:2])
|
||
|
# fails with ValueError if any keys are not ints
|
||
|
_ = all(as_int(k) for k in args[-1])
|
||
|
except (ValueError, TypeError):
|
||
|
raise TypeError(filldedent(
|
||
|
'''unrecognized input to banded:
|
||
|
expecting [[row,] col,] {int: value}'''))
|
||
|
def rc(d):
|
||
|
# return row,col coord of diagonal start
|
||
|
r = -d if d < 0 else 0
|
||
|
c = 0 if r else d
|
||
|
return r, c
|
||
|
smat = {}
|
||
|
undone = []
|
||
|
tba = Dummy()
|
||
|
# first handle objects with size
|
||
|
for d, v in args[-1].items():
|
||
|
r, c = rc(d)
|
||
|
# note: only list and tuple are recognized since this
|
||
|
# will allow other Basic objects like Tuple
|
||
|
# into the matrix if so desired
|
||
|
if isinstance(v, (list, tuple)):
|
||
|
extra = 0
|
||
|
for i, vi in enumerate(v):
|
||
|
i += extra
|
||
|
if is_sequence(vi):
|
||
|
vi = SparseMatrix(vi)
|
||
|
smat[r + i, c + i] = vi
|
||
|
extra += min(vi.shape) - 1
|
||
|
else:
|
||
|
smat[r + i, c + i] = vi
|
||
|
elif is_sequence(v):
|
||
|
v = SparseMatrix(v)
|
||
|
rv, cv = v.shape
|
||
|
if rows and cols:
|
||
|
nr, xr = divmod(rows - r, rv)
|
||
|
nc, xc = divmod(cols - c, cv)
|
||
|
x = xr or xc
|
||
|
do = min(nr, nc)
|
||
|
elif rows:
|
||
|
do, x = divmod(rows - r, rv)
|
||
|
elif cols:
|
||
|
do, x = divmod(cols - c, cv)
|
||
|
else:
|
||
|
do = 1
|
||
|
x = 0
|
||
|
if x:
|
||
|
raise ValueError(filldedent('''
|
||
|
sequence does not fit an integral number of times
|
||
|
in the matrix'''))
|
||
|
j = min(v.shape)
|
||
|
for i in range(do):
|
||
|
smat[r, c] = v
|
||
|
r += j
|
||
|
c += j
|
||
|
elif v:
|
||
|
smat[r, c] = tba
|
||
|
undone.append((d, v))
|
||
|
s = SparseMatrix(None, smat) # to expand matrices
|
||
|
smat = s.todok()
|
||
|
# check for dim errors here
|
||
|
if rows is not None and rows < s.rows:
|
||
|
raise ValueError('Designated rows %s < needed %s' % (rows, s.rows))
|
||
|
if cols is not None and cols < s.cols:
|
||
|
raise ValueError('Designated cols %s < needed %s' % (cols, s.cols))
|
||
|
if rows is cols is None:
|
||
|
rows = s.rows
|
||
|
cols = s.cols
|
||
|
elif rows is not None and cols is None:
|
||
|
cols = max(rows, s.cols)
|
||
|
elif cols is not None and rows is None:
|
||
|
rows = max(cols, s.rows)
|
||
|
def update(i, j, v):
|
||
|
# update smat and make sure there are
|
||
|
# no collisions
|
||
|
if v:
|
||
|
if (i, j) in smat and smat[i, j] not in (tba, v):
|
||
|
raise ValueError('collision at %s' % ((i, j),))
|
||
|
smat[i, j] = v
|
||
|
if undone:
|
||
|
for d, vi in undone:
|
||
|
r, c = rc(d)
|
||
|
v = vi if callable(vi) else lambda _: vi
|
||
|
i = 0
|
||
|
while r + i < rows and c + i < cols:
|
||
|
update(r + i, c + i, v(i))
|
||
|
i += 1
|
||
|
return SparseMatrix(rows, cols, smat)
|